1
|
Chenodeoxycholic Acid Pharmacology in Biotechnology and Transplantable Pharmaceutical Applications for Tissue Delivery: An Acute Preclinical Study. Cells 2021; 10:cells10092437. [PMID: 34572086 PMCID: PMC8472107 DOI: 10.3390/cells10092437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Primary bile acids (PBAs) are produced and released into human gut as a result of cholesterol catabolism in the liver. A predominant PBA is chenodeoxycholic acid (CDCA), which in a recent study in our laboratory, showed significant excipient-stabilizing effects on microcapsules carrying insulinoma β-cells, in vitro, resulting in improved cell functions and insulin release, in the hyperglycemic state. Hence, this study aimed to investigate the applications of CDCA in bio-encapsulation and transplantation of primary healthy viable islets, preclinically, in type 1 diabetes. METHODS Healthy islets were harvested from balb/c mice, encapsulated in CDCA microcapsules, and transplanted into the epididymal tissues of 6 syngeneic diabetic mice, post diabetes confirmation. Pre-transplantation, the microcapsules' morphology, size, CDCA-deep layer distribution, and physical features such as swelling ratio and mechanical strength were analyzed. Post-transplantation, animals' weight, bile acids', and proinflammatory biomarkers' concentrations were analyzed. The control group was diabetic mice that were transplanted encapsulated islets (without PBA). RESULTS AND CONCLUSION Islet encapsulation by PBA microcapsules did not compromise the microcapsules' morphology or features. Furthermore, the PBA-graft performed better in terms of glycemic control and resulted in modulation of the bile acid profile in the brain. This is suggestive that the improved glycemic control was mediated via brain-related effects. However, the improvement in graft insulin delivery and glycemic control was short-term.
Collapse
|
2
|
Serum Bile Acid Levels Before and After Sleeve Gastrectomy and Their Correlation with Obesity-Related Comorbidities. Obes Surg 2020; 29:2517-2526. [PMID: 31069691 DOI: 10.1007/s11695-019-03877-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The rising prevalence of morbid obesity is increasing the demand for bariatric surgery. The benefits observed after bariatric surgery seems to be not fully explained by surgery-induced weight loss or traditional cardiovascular risk factors regression or improvement. Some evidences suggest that bile acid (BA) levels change after bariatric surgery, thus suggesting that BA concentrations could influence some of the metabolic improvement induced by bariatric surgery. In this report, we have characterized circulating BA patterns and compared them to metabolic and vascular parameters before and after sleeve gastrectomy (SG). PATIENTS AND METHODS Seventy-nine subjects (27 males, 52 females, aged 45 ± 12 years, mean BMI 45 ± 7 kg/m2) SG candidates were included in the study. Before and about 12 months after SG, all subjects underwent a clinical examination, blood tests (including lipid profile, plasma glucose and insulin, both used for calculating HOMA-IR, and glycated hemoglobin), ultrasound visceral fat area estimation, ultrasound flow-mediated dilation evaluation, and determination of plasma BA concentrations. RESULTS Before SG, both primary and secondary BA levels were higher in insulin-resistant obese subjects than in non-insulin resistant obese, and BA were positively associated with the markers of insulin-resistance. After SG, total (conjugated and unconjugated) cholic acids significantly decreased (p 0.007), and total lithocholic acids significantly increased (p 0.017). SG-induced total cholic and chenodeoxycholic acid changes were directly associated with surgery-induced glycemia (p 0.011 and 0.033 respectively) and HOMA-IR (p 0.016 and 0.012 respectively) changes. CONCLUSIONS Serum BA are associated with glucose metabolism and particularly with markers of insulin-resistance. SG modifies circulating BA pool size and composition. SG-induced BA changes are associated with insulin-resistance amelioration. In conclusion, an interplay between glucose metabolism and circulating BA exists but further studies are needed.
Collapse
|
3
|
Cӑtoi AF, Pârvu AE, Mironiuc A, Silaghi H, Pop ID, Andreicuț AD. Ultra-Early and Early Changes in Bile Acids and Insulin After Sleeve Gastrectomy Among Obese Patients. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E757. [PMID: 31766784 PMCID: PMC6955910 DOI: 10.3390/medicina55120757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE In obese patients, sleeve gastrectomy (SG) has shown mixed results on bile acid (BA) values. The aim of our study was to examine the potential ultra-early and early changes of the circulating total BA in relation with the changes of insulin resistance (IR) in obese patients submitted to laparoscopic SG. Materials and Methods: Twenty-four obese subjects were investigated for body mass index (BMI), total fasting BA, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and leptin before and at 7 and 30 d after SG. Results: After surgery, mean BMI decreased at the first (p < 0.001) and at the second time point (p < 0.001) relative to baseline. Total fasting BA values did not change significantly at 7 d (p = 0.938) and at 30 d (p = 0.289) after SG. No significant changes were found at 7 d (p = 0.194, p = 0.34) and 30 d (p = 0.329, p = 0.151) after surgery regarding fasting insulin and HOMA-IR, respectively. However, a trend of increased total fasting BA and decreased fasting insulin and HOMA- after laparoscopic SG has been found. Negative correlations between total fasting BA and insulin (r = -0.807, p = 0.009), HOMA-IR (r = -0.855, p = 0.014), and blood glucose (r = -0.761, p = 0.047), respectively, were observed at one month after SG. Conclusion: In conclusion, here, we found a lack of significant changes in total fasting BA, insulin, and HOMA-IR ultra-early and early after SG, which precluded us to consider a possible relation between the variations of BA and IR. However, the presence of the tendency for total fasting BA to increase and for insulin and HOMA-IR to decrease, as well as of the negative correlations one month after laparoscopic SG, suggest that this surgery brings about some changes that point towards the existence, and possibly towards the restoration, at least to some extent, of the link between BA and glucose metabolism.
Collapse
Affiliation(s)
- Adriana Florinela Cӑtoi
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.P.); (A.D.A.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.P.); (A.D.A.)
| | - Aurel Mironiuc
- 2nd Surgical Clinic, Department of Surgery, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Horațiu Silaghi
- 5th Surgical Clinic, Department of Surgery, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Ioana Delia Pop
- Department of Exact Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Andra Diana Andreicuț
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.P.); (A.D.A.)
| |
Collapse
|
4
|
Diamanti K, Cavalli M, Pan G, Pereira MJ, Kumar C, Skrtic S, Grabherr M, Risérus U, Eriksson JW, Komorowski J, Wadelius C. Intra- and inter-individual metabolic profiling highlights carnitine and lysophosphatidylcholine pathways as key molecular defects in type 2 diabetes. Sci Rep 2019; 9:9653. [PMID: 31273253 PMCID: PMC6609645 DOI: 10.1038/s41598-019-45906-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/07/2019] [Indexed: 01/22/2023] Open
Abstract
Type 2 diabetes (T2D) mellitus is a complex metabolic disease commonly caused by insulin resistance in several tissues. We performed a matched two-dimensional metabolic screening in tissue samples from 43 multi-organ donors. The intra-individual analysis was assessed across five key metabolic tissues (serum, visceral adipose tissue, liver, pancreatic islets and skeletal muscle), and the inter-individual across three different groups reflecting T2D progression. We identified 92 metabolites differing significantly between non-diabetes and T2D subjects. In diabetes cases, carnitines were significantly higher in liver, while lysophosphatidylcholines were significantly lower in muscle and serum. We tracked the primary tissue of origin for multiple metabolites whose alterations were reflected in serum. An investigation of three major stages spanning from controls, to pre-diabetes and to overt T2D indicated that a subset of lysophosphatidylcholines was significantly lower in the muscle of pre-diabetes subjects. Moreover, glycodeoxycholic acid was significantly higher in liver of pre-diabetes subjects while additional increase in T2D was insignificant. We confirmed many previously reported findings and substantially expanded on them with altered markers for early and overt T2D. Overall, the analysis of this unique dataset can increase the understanding of the metabolic interplay between organs in the development of T2D.
Collapse
Affiliation(s)
- Klev Diamanti
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Chanchal Kumar
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Department of Medicine, Novum, Huddinge, Sweden
| | - Stanko Skrtic
- Pharmaceutical Technology & Development, AstraZeneca AB, Gothenburg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Manfred Grabherr
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan Komorowski
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Zhou Y, Men L, Pi Z, Wei M, Song F, Zhao C, Liu Z. Fecal Metabolomics of Type 2 Diabetic Rats and Treatment with Gardenia jasminoides Ellis Based on Mass Spectrometry Technique. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1591-1599. [PMID: 29363305 DOI: 10.1021/acs.jafc.7b06082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Modern studies have indicated Gardenia jasminoides Ellis (G. jasminoides) showed positive effect in treating type 2 diabetes mellitus (T2DM). In this study, 60 streptozotocin-induced T2DM rats were divided into four groups: type 2 diabetes control group, geniposide-treated group, total iridoid glycosides-treated group, and crude extraction of gardenlae fructus-treated group. The other ten healthy rats were the healthy control group. During 12 weeks of treatment, rat's feces samples were collected for the metabolomics study based on mass spectrometry technique. On the basis of the fecal metabolomics method, 19 potential biomarkers were screened and their relative intensities in each group were compared. The results revealed G. jasminoides mainly regulated dysfunctions in phenylalanine metabolism, tryptophan metabolism, and secondary bile acid biosynthesis pathways induced by diabetes. The current study provides new insight for metabonomics methodology toward T2DM, and the results show that feces can preferably reflect the liver and intestines disorders.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, China
| | - Lihui Men
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Zifeng Pi
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Mengying Wei
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Fengrui Song
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Chunfang Zhao
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| |
Collapse
|
6
|
Benítez-Páez A, Gómez Del Pulgar EM, Kjølbæk L, Brahe LK, Astrup A, Larsen L, Sanz Y. Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Chen C, Hu B, Wu T, Zhang Y, Xu Y, Feng Y, Jiang H. Bile acid profiles in diabetic (db/db) mice and their wild type littermates. J Pharm Biomed Anal 2016; 131:473-481. [PMID: 27689719 DOI: 10.1016/j.jpba.2016.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/12/2022]
Abstract
This study aimed to obtain information on bile acid profiles in diabetic (db/db) mice and their wild type (wt) littermates for the understanding of pathogenesis and discovery of potential biomarkers of type 2 diabetes. Analytical methods based on protein precipitation or solid-phase extraction together with liquid chromatography-tandem mass spectrometry were developed for the determination of 25 bile acids in plasma, urine and feces samples collected from db/db and wt mice. GLP-1 concentration and hepatic genes related to bile acid synthesis were also investigated. The results showed that the concentrations of individual bile acids varied notably both interindividually and temporally. However, plasma, urine and feces samples displayed discriminating bile acid profiles between the db/db and wt groups, with the plasma profile showing the best differentiation capacity. In plasma and urine, the concentration variation of taurine-conjugated bile acids was more correlated with that of other taurine-conjugated bile acids, and vice versa for the unconjugated bile acids. Transcription of hepatic gene Cyp7b1 was downregulated, and Hsd3b7 upregulated in db/db mice. In conclusion, the bile acid profile, particularly that in plasma, can distinguish the two animal groups and is a promising biomarker for type 2 diabetes.
Collapse
Affiliation(s)
- Chang Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Bingying Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Tongzhi Wu
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Yang Zhang
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Medical Research Center, Humanwell Healthcare (Group) Co., Ltd., Wuhan, China
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity. Cell Metab 2015; 22:418-26. [PMID: 26235421 DOI: 10.1016/j.cmet.2015.07.002] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/01/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022]
Abstract
The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans.
Collapse
|
9
|
Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: A transcriptomic and metabolomic study. Food Chem Toxicol 2015; 77:22-33. [DOI: 10.1016/j.fct.2014.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 11/21/2022]
|