1
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
2
|
Jochmans I, Lerut E, Monbaliu D, Pirenne J. Impact of a Single Dose of Alpha-1-Antitrypsin in a Rat Model of Bilateral Kidney Ischemia Reperfusion Injury. J Surg Res 2024; 299:179-187. [PMID: 38759334 DOI: 10.1016/j.jss.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
INTRODUCTION Renal ischemia reperfusion injury is a major cause of perioperative acute kidney injury. Alpha-1-antitrypsin (AAT), a protease inhibitor, might improve outcomes by reducing inflammation and apoptosis. We investigated the effects of a single intravenous dose of AAT immediately before ischemia in a rat bilateral renal clamping model. METHODS Both renal pedicles of male Sprague-Dawley rats were clamped (45 min). Plasma and renal tissue were collected at 3 h, 24 h, and 7 d. Intravenous AAT (60 mg/kg) was administered 5 min before clamping. Controls received saline. Shams underwent surgery without clamping or injection. Kidney function was assessed by plasma creatinine; injury by aspartate aminotransferase, heart-type-fatty-acid-binding-protein, and histopathology. Renal gene expression of tumor necrosis factor α, interleukin (IL)-6, heat shock protein 70, Chemokine (C-X-C motif) ligand 2, cyclo-oxygenase 2, endothelin-1, IL-10, heme oxygenase 1, B-cell lymphoma 2, and bcl-2-like protein 4 were determined by quantitative reverse transcriptase polymerase chain reaction. RESULTS None of the 3 h and 24 h end points were different between Control and AAT. In Sham, survival was 100% (6/6), 33% in Control (2/6), and 83% (5/6) in AAT (overall log-rank 0.03). At 7 d, plasma creatinine was lower with higher glomerular filtration rate in surviving AAT treated animals compared to Control (P < 0.001, P 0.03, respectively). These also had lower tumor necrosis factor α and IL-6 gene expression (P 0.001, P < 0.001, respectively). CONCLUSIONS These data suggest that a single intravenous dose of AAT immediately before ischemia might affect proinflammatory gene expression, glomerular filtration rate and animal survival at 1 wk after reperfusion despite an absence of improvement in early renal function and injury. These findings deserve further investigating in sufficiently powered studies including both sexes.
Collapse
Affiliation(s)
- Ina Jochmans
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium; Translational Cell & Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| | - Evelyne Lerut
- Translational Cell & Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Wang Q, Huang YX, Liu L, Zhao XH, Sun Y, Mao X, Li SW. Pancreatic islet transplantation: current advances and challenges. Front Immunol 2024; 15:1391504. [PMID: 38887292 PMCID: PMC11180903 DOI: 10.3389/fimmu.2024.1391504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Diabetes is a prevalent chronic disease that traditionally requires severe reliance on medication for treatment. Oral medication and exogenous insulin can only temporarily maintain blood glucose levels and do not cure the disease. Most patients need life-long injections of exogenous insulin. In recent years, advances in islet transplantation have significantly advanced the treatment of diabetes, allowing patients to discontinue exogenous insulin and avoid complications.Long-term follow-up results from recent reports on islet transplantation suggest that they provide significant therapeutic benefit although patients still require immunotherapy, suggesting the importance of future transplantation strategies. Although organ shortage remains the primary obstacle for the development of islet transplantation, new sources of islet cells, such as stem cells and porcine islet cells, have been proposed, and are gradually being incorporated into clinical research. Further research on new transplantation sites, such as the subcutaneous space and mesenteric fat, may eventually replace the traditional portal vein intra-islet cell infusion. Additionally, the immunological rejection reaction in islet transplantation will be resolved through the combined application of immunosuppressant agents, islet encapsulation technology, and the most promising mesenchymal stem cells/regulatory T cell and islet cell combined transplantation cell therapy. This review summarizes the progress achieved in islet transplantation, and discusses the research progress and potential solutions to the challenges faced.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yu-xi Huang
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University, Taizhou, Zhejiang, China
| | - Yi Sun
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
4
|
Kim DS, Song L, Gou W, Kim J, Liu B, Wei H, Muise-Helmericks RC, Li Z, Wang H. GRP94 is an IGF-1R chaperone and regulates beta cell death in diabetes. Cell Death Dis 2024; 15:374. [PMID: 38811543 PMCID: PMC11137047 DOI: 10.1038/s41419-024-06754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
High workload-induced cellular stress can cause pancreatic islet β cell death and dysfunction, or β cell failure, a hallmark of type 2 diabetes mellitus. Thus, activation of molecular chaperones and other stress-response genes prevents β cell failure. To this end, we have shown that deletion of the glucose-regulated protein 94 (GRP94) in Pdx1+ pancreatic progenitor cells led to pancreas hypoplasia and reduced β cell mass during pancreas development in mice. Here, we show that GRP94 was involved in β cell adaption and compensation (or failure) in islets from leptin receptor-deficient (db/db) mice in an age-dependent manner. GRP94-deficient cells were more susceptible to cell death induced by various diabetogenic stress conditions. We also identified a new client of GRP94, insulin-like growth factor-1 receptor (IGF-1R), a critical factor for β cell survival and function that may mediate the effect of GRP94 in the pathogenesis of diabetes. This study has identified essential functions of GRP94 in β cell failure related to diabetes.
Collapse
Affiliation(s)
- Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lili Song
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jisun Kim
- Microbiology and Immunology, Medical University of South Carolina, Charleson, SC, 29425, USA
| | - Bei Liu
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-James, Columbus, OH, 43210, USA
| | - Hua Wei
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robin C Muise-Helmericks
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-James, Columbus, OH, 43210, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
5
|
Abdel-Karim TR, Hodges JS, Herold KC, Pruett TL, Ramanathan KV, Hering BJ, Dunn TB, Kirchner VA, Beilman GJ, Bellin MD. Peri-Transplant Inflammation and Long-Term Diabetes Outcomes Were Not Impacted by Either Etanercept or Alpha-1-Antitrypsin Treatment in Islet Autotransplant Recipients. Transpl Int 2024; 37:12320. [PMID: 38357216 PMCID: PMC10864605 DOI: 10.3389/ti.2024.12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
The instant blood-mediated inflammatory response (IBMIR) causes islet loss and compromises diabetes outcomes after total pancreatectomy with islet autotransplant (TPIAT). We previously reported a possible benefit of etanercept in maintaining insulin secretion 3 months post-TPIAT. Here, we report 2-year diabetes outcomes and peri-operative inflammatory profiles from a randomized trial of etanercept and alpha-1 antitrypsin (A1AT) in TPIAT. We randomized 43 TPIAT recipients to A1AT (90 mg/kg IV x6 doses, n = 13), etanercept (50 mg then 25 mg SQ x 5 doses, n = 14), or standard care (n = 16). Inflammatory cytokines, serum A1AT and unmethylated insulin DNA were drawn multiple times in the perioperative period. Islet function was assessed 2 years after TPIAT with mixed meal tolerance test, intravenous glucose tolerance test and glucose-potentiated arginine induced insulin secretion. Cytokines, especially IL-6, IL-8, IL-10, and MCP-1, were elevated during and after TPIAT. However, only TNFα differed significantly between groups, with highest levels in the etanercept group (p = 0.027). A1AT increased after IAT in all groups (p < 0.001), suggesting endogenous upregulation. Unmethylated insulin DNA ratios (a marker of islet loss) and 2 years islet function testing were similar in the three groups. To conclude, we found no sustained benefit from administering etanercept or A1AT in the perioperative period.
Collapse
Affiliation(s)
| | - James S. Hodges
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, United States
| | - Timothy L. Pruett
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | | | - Bernhard J. Hering
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Ty B. Dunn
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Varvara A. Kirchner
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
- Department of Surgery, Stanford University, Palo Alto, CA, United States
| | - Gregory J. Beilman
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Melena D. Bellin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Czarnecka Z, Dadheech N, Razavy H, Pawlick R, Shapiro AMJ. The Current Status of Allogenic Islet Cell Transplantation. Cells 2023; 12:2423. [PMID: 37887267 PMCID: PMC10605704 DOI: 10.3390/cells12202423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Type 1 Diabetes (T1D) is an autoimmune destruction of pancreatic beta cells. The development of the Edmonton Protocol for islet transplantation in 2000 revolutionized T1D treatment and offered a glimpse at a cure for the disease. In 2022, the 20-year follow-up findings of islet cell transplantation demonstrated the long-term safety of islet cell transplantation despite chronic immunosuppression. The Edmonton Protocol, however, remains limited by two obstacles: scarce organ donor availability and risks associated with chronic immunosuppression. To overcome these challenges, the search has begun for an alternative cell source. In 2006, pluripotency genomic factors, coined "Yamanaka Factors," were discovered, which reprogram mature somatic cells back to their embryonic, pluripotent form (iPSC). iPSCs can then be differentiated into specialized cell types, including islet cells. This discovery has opened a gateway to a personalized medicine approach to treating diabetes, circumventing the issues of donor supply and immunosuppression. In this review, we present a brief history of allogenic islet cell transplantation from the early days of pancreatic remnant transplantation to present work on encapsulating stem cell-derived cells. We review data on long-term outcomes and the ongoing challenges of allogenic islet cell and stem cell-derived islet cell transplant.
Collapse
Affiliation(s)
- Zofia Czarnecka
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2RW3, Canada; (N.D.); (H.R.); (R.P.); (A.M.J.S.)
| | | | | | | | | |
Collapse
|
7
|
Turan A, Zhang L, Tarique M, Ulker V, Arguc FN, Badal D, Yolcu ES, Shirwan H. Engineering pancreatic islets with a novel form of thrombomodulin protein to overcome early graft loss triggered by instant blood-mediated inflammatory reaction. Am J Transplant 2023; 23:619-628. [PMID: 36863480 PMCID: PMC10318623 DOI: 10.1016/j.ajt.2023.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The instant blood-mediated inflammatory reaction (IBMIR) is initiated by innate immune responses that cause substantial islet loss after intraportal transplantation. Thrombomodulin (TM) is a multifaceted innate immune modulator. In this study, we report the generation of a chimeric form of thrombomodulin with streptavidin (SA-TM) for transient display on the surface of islets modified with biotin to mitigate IBMIR. SA-TM protein expressed in insect cells showed the expected structural and functional features. SA-TM converted protein C into activated protein C, blocked phagocytosis of xenogeneic cells by mouse macrophages and inhibited neutrophil activation. SA-TM was effectively displayed on the surface of biotinylated islets without a negative effect on their viability or function. Islets engineered with SA-TM showed improved engraftment and established euglycemia in 83% of diabetic recipients when compared with 29% of recipients transplanted with SA-engineered islets as control in a syngeneic minimal mass intraportal transplantation model. Enhanced engraftment and function of SA-TM-engineered islets were associated with the inhibition of intragraft proinflammatory innate cellular and soluble mediators of IBMIR, such as macrophages, neutrophils, high-mobility group box 1, tissue factor, macrophage chemoattractant protein-1, interleukin-1β, interleukin-6, tumor necrosis factor-α, interferon-γ. Transient display of SA-TM protein on the islet surface to modulate innate immune responses causing islet graft destruction has clinical potential for autologous and allogeneic islet transplantation.
Collapse
Affiliation(s)
- Ali Turan
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Lei Zhang
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Mohammad Tarique
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Vahap Ulker
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Feyza Nur Arguc
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Darshan Badal
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Esma S Yolcu
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
| | - Haval Shirwan
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
| |
Collapse
|
8
|
Lotfy A, AboQuella NM, Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res Ther 2023; 14:66. [PMID: 37024925 PMCID: PMC10079493 DOI: 10.1186/s13287-023-03287-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are widely utilized in cell therapy because of their robust immunomodulatory and regenerative properties. Their paracrine activity is one of the most important features that contribute to their efficacy. Recently, it has been demonstrated that the production of various factors via extracellular vesicles, especially exosomes, governs the principal efficacy of MSCs after infusion in experimental models. Compared to MSCs themselves, MSC-derived exosomes (MSC-Exos) have provided significant advantages by efficiently decreasing unfavorable adverse effects, such as infusion-related toxicities. MSC-Exos is becoming a promising cell-free therapeutic tool and an increasing number of clinical studies started to assess the therapeutic effect of MSC-Exos in different diseases. In this review, we summarized the ongoing and completed clinical studies using MSC-Exos for immunomodulation, regenerative medicine, gene delivery, and beyond. Additionally, we summarized MSC-Exos production methods utilized in these studies with an emphasis on MSCs source, MSC-Exos isolation methods, characterization, dosage, and route of administration. Lastly, we discussed the current challenges and future directions of exosome utilization in different clinical studies as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Ahmed Lotfy
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Noha M AboQuella
- International Graduate Program Medical Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
9
|
Gou W, Hua W, Swaby L, Cui W, Green E, Morgan KA, Strange C, Wang H. Stem Cell Therapy Improves Human Islet Graft Survival in Mice via Regulation of Macrophages. Diabetes 2022; 71:2642-2655. [PMID: 36084289 PMCID: PMC9750955 DOI: 10.2337/db22-0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/01/2022] [Indexed: 01/23/2023]
Abstract
Islet/β-cell transplantation offers great hope for patients with type 1 diabetes. We assessed the mechanisms of how intrahepatic coinfusion of human α-1 antitrypsin (hAAT)-engineered mesenchymal stromal cells (hAAT-MSCs) improves survival of human islet grafts posttransplantation (PT). Longitudinal in vivo bioluminescence imaging studies identified significantly more islets in the livers bearing islets cotransplanted with hAAT-MSCs compared with islets transplanted alone. In vitro mechanistic studies revealed that hAAT-MSCs inhibit macrophage migration and suppress IFN-γ-induced M1-like macrophages while promoting IL-4-induced M2-like macrophages. In vivo this translated to significantly reduced CD11c+ and F4/80+ cells and increased CD206+ cells around islets cotransplanted with hAAT-MSCs as identified by multiplex immunofluorescence staining. Recipient-derived F4/80+and CD11b+ macrophages were mainly present in the periphery of an islet, while CD11c+ and CD206+ cells appeared inside an islet. hAAT-MSCs inhibited macrophage migration and skewed the M1-like phenotype toward an M2 phenotype both in vitro and in vivo, which may have favored islet survival. These data provide evidence that hAAT-MSCs cotransplanted with islets remain in the liver and shift macrophages to a protective state that favors islet survival. This novel strategy may be used to enhance β-cell survival during islet/β-cell transplantation for the treatment of type 1 diabetes or other diseases.
Collapse
Affiliation(s)
- Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC
| | - Wei Hua
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Lindsay Swaby
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Erica Green
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| |
Collapse
|
10
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
11
|
Human Alpha 1 Antitrypsin Suppresses NF-κB Activity and Extends Lifespan in Adult Drosophila. Biomolecules 2022; 12:biom12101347. [PMID: 36291555 PMCID: PMC9599126 DOI: 10.3390/biom12101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Human alpha 1 antitrypsin (hAAT) is a multifunctional protein that has been shown to have anti-inflammatory and cellular protective properties. While previous studies demonstrated the antiaging potential of hAAT, the mechanism(s) underlying the antiaging effect remain elusive. In this study, we performed a detailed analysis of transcriptomic data that indicated that NF-κB-targeted genes and NF-κB-regulated pathways were selectively inhibited by hAAT treatment. We further showed that the first detectable impact of hAAT treatment was the inhibition of the nuclear activity of NF-κB. Subsequently, hAAT treatment suppressed the mRNA levels of NF-κB-targeted genes, as well as NF-κB itself (P65 and P50), in human senescent cells. Using Drosophila models, we further examined the impact of hAAT on locomotor activity and endurance. Finally, using an adult-specific promotor, we demonstrated that overexpression of hAAT in the late stage of life significantly extended the lifespan of transgenic flies. These results extend the current understanding of the anti-inflammatory function of hAAT.
Collapse
|
12
|
Luo H, Wu P, Chen X, Wang B, Chen G, Su X. Novel insights into the relationship between α-1 anti-trypsin with the pathological development of cardio-metabolic disorders. Int Immunopharmacol 2022; 111:109077. [PMID: 35907338 DOI: 10.1016/j.intimp.2022.109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
According to the previous studies, chronic low-grade systemic inflammatory response has been shown to be significantly associated with the pathological development of cardio-metabolic disorder diseases, including atherosclerosis, type 2 diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). On the other hand, auto-immunity process could also facilitate the pathogenesis of type 1 diabetes mellitus importantly. Concerning on this notion, the anti-inflammatory therapeutic strategy is demonstrated to embrace an essential function in those cardio-metabolic disorders in clinical practice. The α-1 anti-trypsin, also named Serpin-A1 and as an acute phase endogenous protein, has been verified to have several modulatory effects such as anti-inflammatory response, anti-apoptosis, and immunomodulatory functions. In addition, it is also used for therapeutic strategy of a rare genetic disease caused by the deficiency of α-1 anti-trypsin. Recent emerging evidence has indicated that the serum concentrations of α-1 anti-trypsin levels and its biological activity are significantly changed in those inflammatory and immune related cardio-metabolic disorder diseases. Nevertheless, the underlying mechanism is still not elucidated. In the current review, the basic experiments and clinical trials which provided the evidence revealing the potential therapeutic function of the α-1 anti-trypsin in cardio-metabolic disorder diseases were well-summarized. Furthermore, the results which indicated that the α-1 anti-trypsin presented the possibility as a novel serum biomarker in humans to predict those cardio-metabolic disorder diseases were also elucidated.
Collapse
Affiliation(s)
- Haizhen Luo
- Department of Cardiology, the Fuding Hospital of Fujian University of Traditional Chinese Medicine, Fuding, Fujian, China
| | - Penglong Wu
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiang Chen
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Geng Chen
- Department of Cardiology, the Fuding Hospital of Fujian University of Traditional Chinese Medicine, Fuding, Fujian, China.
| | - Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
13
|
Zhang X, Ostrov DA, Tian H. Alpha-1 antitrypsin: A novel biomarker and potential therapeutic approach for metabolic diseases. Clin Chim Acta 2022; 534:71-76. [PMID: 35810800 DOI: 10.1016/j.cca.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
It is well recognized that chronic low-grade systemic inflammation and autoimmunity contribute to the pathogenesis of metabolic syndrome, its associated diseases (e.g. type 2 diabetes, non-alcoholic fatty liver disease) and type 1 diabetes, respectively. Consequently, anti-inflammatory agents might play a role in managing these immune associated metabolic diseases. Alpha-1 antitrypsin (AAT), an endogenous acute phase protein being used for treatment of AAT deficiency (a rare genetic disease), has multiple functions including anti-inflammatory, immunomodulatory, anti-apoptosis and cytoprotective effects. In this review, we summarized basic and clinical studies that reported potential therapeutic role of AAT in metabolic syndrome associated diseases and type 1 diabetes. Studies that demonstrated AAT had the possibility to be used as a novel biomarker to predict these immune associated metabolic diseases were also included.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Eguchi N, Damyar K, Alexander M, Dafoe D, Lakey JRT, Ichii H. Anti-Oxidative Therapy in Islet Cell Transplantation. Antioxidants (Basel) 2022; 11:1038. [PMID: 35739935 PMCID: PMC9219662 DOI: 10.3390/antiox11061038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Islet cell transplantation has become a favorable therapeutic approach in the treatment of Type 1 Diabetes due to the lower surgical risks and potential complications compared to conventional pancreas transplantation. Despite significant improvements in islet cell transplantation outcomes, several limitations hamper long-term graft survival due to tremendous damage and loss of islet cells during the islet cell transplantation process. Oxidative stress has been identified as an omnipresent stressor that negatively affects both the viability and function of isolated islets. Furthermore, it has been established that at baseline, pancreatic β cells exhibit reduced antioxidative capacity, rendering them even more susceptible to oxidative stress during metabolic stress. Thus, identifying antioxidants capable of conferring protection against oxidative stressors present throughout the islet transplantation process is a valuable approach to improving the overall outcomes of islet cell transplantation. In this review we discuss the potential application of antioxidative therapy during each step of islet cell transplantation.
Collapse
Affiliation(s)
- Natsuki Eguchi
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Kimia Damyar
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Michael Alexander
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Donald Dafoe
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92686, USA
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| |
Collapse
|
15
|
Yan LL, Ye LP, Chen YH, He SQ, Zhang CY, Mao XL, Li SW. The Influence of Microenvironment on Survival of Intraportal Transplanted Islets. Front Immunol 2022; 13:849580. [PMID: 35418988 PMCID: PMC8995531 DOI: 10.3389/fimmu.2022.849580] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Clinical islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still uncommon because transplanted islets are damaged by multiple challenges, including instant blood mediated inflammatory reaction (IBMIR), inflammatory cytokines, hypoxia/reperfusion injury, and immune rejection. The transplantation microenvironment plays a vital role especially in intraportal islet transplantation. The identification and targeting of pathways that function as "master regulators" during deleterious inflammatory events after transplantation, and the induction of immune tolerance, are necessary to improve the survival of transplanted islets. In this article, we attempt to provide an overview of the influence of microenvironment on the survival of transplanted islets, as well as possible therapeutic targets.
Collapse
Affiliation(s)
- Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Sai-qin He
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Chen-yang Zhang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
16
|
LMAN1-MCFD2 complex is a cargo receptor for the ER-Golgi transport of α1-antitrypsin. Biochem J 2022; 479:839-855. [PMID: 35322856 PMCID: PMC9022998 DOI: 10.1042/bcj20220055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
α1-antitrypsin (AAT) is a serine protease inhibitor synthesized in hepatocytes and protects the lung from damage by neutrophil elastase. AAT gene mutations result in AAT deficiency (AATD), which leads to lung and liver diseases. The AAT Z variant forms polymer within the endoplasmic reticulum (ER) of hepatocytes and results in reduction of AAT secretion and severe disease. Previous studies demonstrated a secretion defect of AAT in LMAN1 deficient cells, and mild decreases in AAT levels in male LMAN1 and MCFD2 deficient mice. LMAN1 is a transmembrane lectin that forms a complex with a small soluble protein MCFD2. The LMAN1-MCFD2 protein complex cycles between the ER and the Golgi. Here we report that LMAN1 and MCFD2 knockout (KO) HepG2 and HEK293T cells display reduced AAT secretion and elevated intracellular AAT levels due to a delayed ER-to-Golgi transport of AAT. Secretion defects in KO cells were rescued by wild-type LMAN1 or MCFD2, but not by mutant proteins. Elimination of the second glycosylation site of AAT abolished LMAN1 dependent secretion. Co-immunoprecipitation experiment in MCFD2 KO cells suggested that AAT interaction with LMAN1 is independent of MCFD2. Furthermore, our results suggest that secretion of the Z variant, both monomers and polymers, is also LMAN1-dependent. Results provide direct evidence supporting that the LMAN1-MCFD2 complex is a cargo receptor for the ER-to-Golgi transport of AAT and that interactions of LMAN1 with an N-glycan of AAT is critical for this process. These results have implications in production of recombinant AAT and in developing treatments for AATD patients.
Collapse
|
17
|
Koppula S, Akther M, Haque ME, Kopalli SR. Potential Nutrients from Natural and Synthetic Sources Targeting Inflammaging-A Review of Literature, Clinical Data and Patents. Nutrients 2021; 13:nu13114058. [PMID: 34836313 PMCID: PMC8617641 DOI: 10.3390/nu13114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed. In this review, the available literature and recent updates of natural and synthetic nutrients that help in controlling inflammaging process was explored. Also, we discussed the clinical trial reports and patent claims on potential nutrients demonstrating therapeutic benefits in controlling inflammaging and inflammation-associated ARDs.
Collapse
Affiliation(s)
- Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Mahbuba Akther
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27381, Korea;
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea
- Correspondence: ; Tel.: +82-2-6935-2619
| |
Collapse
|
18
|
Bianchera A, Alomari E, Bruno S. Augmentation therapy with alpha 1-antitrypsin: present and future of production, formulation, and delivery. Curr Med Chem 2021; 29:385-410. [PMID: 34036902 DOI: 10.2174/0929867328666210525161942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Alpha 1-antitrypsin is one of the first protein therapeutics introduced on the market - more than 30 years ago - and, to date, it is indicated only for the treatment of the severe forms of a genetic condition known as alpha-1 antitrypsin deficiency. The only approved preparations are derived from plasma, posing potential problems associated with its limited supply and high processing costs. Moreover, augmentation therapy with alpha 1-antitrypsin is still limited to intravenous infusions, a cumbersome regimen for patients. Here, we review the recent literature on its possible future developments, focusing on i) the recombinant alternatives to the plasma-derived protein, ii) novel formulations, and iii) novel administration routes. Regulatory issues and the still unclear noncanonical functions of alpha 1-antitrypsin - possibly associated with the glycosylation pattern found only in the plasma-derived protein - have hindered the introduction of new products. However, potentially new therapeutic indications other than the treatment of alpha-1 antitrypsin deficiency might open the way to new sources and new formulations.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Esraa Alomari
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Gou W, Cui W, Cui Y, Wang H. Minimizing Post-Infusion Portal Vein Bleeding during Intrahepatic Islet Transplantation in Mice. J Vis Exp 2021:10.3791/62530. [PMID: 34028442 PMCID: PMC11094622 DOI: 10.3791/62530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Although the liver is currently accepted as the primary transplantation site for human islets in clinical settings, islets are transplanted under the kidney capsule in most rodent preclinical islet transplantation studies. This model is commonly used because murine intrahepatic islet transplantation is technically challenging, and a high percentage of mice could die from surgical complications, especially bleeding from the injection site post-transplantation. In this study, two procedures that can minimize the incidence of post-infusion portal vein bleeding are demonstrated. The first method applies an absorbable hemostatic gelatin sponge to the injection site, and the second method involves penetrating the islet injection needle through the fat tissue first and then into the portal vein by using the fat tissue as a physical barrier to stop bleeding. Both methods could effectively prevent bleeding-induced mouse death. The whole liver section showing islet distribution and evidence of islet thrombosis post-transplantation, a typical feature for intrahepatic islet transplantation, were presented. These improved protocols refine the intrahepatic islet transplantation procedures and may help laboratories set up the procedure to study islet survival and function in pre-clinical settings.
Collapse
Affiliation(s)
- Wenyu Gou
- Department of Surgery, Medical University of South Carolina
| | | | | | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina; Ralph H. Johnson Veterans Affairs Medical Center;
| |
Collapse
|
20
|
Gou W, Wang J, Song L, Kim DS, Cui W, Strange C, Wang H. Alpha-1 antitrypsin suppresses macrophage activation and promotes islet graft survival after intrahepatic islet transplantation. Am J Transplant 2021; 21:1713-1724. [PMID: 33047509 PMCID: PMC8082666 DOI: 10.1111/ajt.16342] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023]
Abstract
Alpha-1 antitrypsin (AAT) has protective functions in animal islet transplantation models. While the therapeutic effect of AAT therapy is currently being tested in clinical trials, we investigated the mechanism of AAT protection in a clinically relevant marginal intrahepatic human islet transplantation model. In recipients receiving islets and AAT, 68.9% (20/29) reached normoglycemia, compared to 35.7% (10/28) in those receiving islets only, at 60 days posttransplant (PT). AAT-treated mice had lower serum levels of inflammatory cytokines immediately PT. Reduced M1 macrophages were observed in livers of AAT-treated recipients compared to controls as evidenced by flow cytometry and RNA-seq transcriptional profiling analysis. In vitro AAT suppressed IFN-γ-induced M1 macrophage activation/polarization via suppression of STAT1 phosphorylation and iNOS production. AAT inhibits macrophage activation induced by cytokines or dying islets, and consequently leads to islet cell survival. In a macrophage depletion mouse model, the presence of M1 macrophages in the liver contributed to graft death. AAT, through suppressing macrophage activation, protected transplanted islets from death and dysfunction in the human islet and NOD-SCID mouse model. The protective effect of AAT was confirmed in a major mismatch allogeneic islet transplantation model. Taken together, AAT suppresses liver macrophage activation that contributes to graft survival after transplantation.
Collapse
Affiliation(s)
- Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Jingjing Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Lili Song
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Wanxing Cui
- MedStar Georgetown University, Washington, District of Columbia
| | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
21
|
Therapeutic Potential of Alpha-1 Antitrypsin in Type 1 and Type 2 Diabetes Mellitus. ACTA ACUST UNITED AC 2021; 57:medicina57040397. [PMID: 33923873 PMCID: PMC8073794 DOI: 10.3390/medicina57040397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/21/2022]
Abstract
Alpha-1 antitrypsin (AAT) has established anti-inflammatory and immunomodulatory effects in chronic obstructive pulmonary disease but there is increasing evidence of its role in other inflammatory and immune-mediated conditions, like diabetes mellitus (DM). AAT activity is altered in both developing and established type 1 diabetes mellitus (T1DM) as well in established type 2 DM (T2DM). Augmentation therapy with AAT appears to favorably impact T1DM development in mice models and to affect β-cell function and inflammation in humans with T1DM. The role of AAT in T2DM is less clear, but AAT activity appears to be reduced in T2DM. This article reviews these associations and emerging therapeutic strategies using AAT to treat DM.
Collapse
|
22
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2021; 10:160-163. [PMID: 33522152 PMCID: PMC7848349 DOI: 10.1002/sctm.20-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 11/29/2022] Open
|
23
|
McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radic Biol Med 2021; 163:10-30. [PMID: 33279618 DOI: 10.1016/j.freeradbiomed.2020.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is an autosomal recessive disease characterized by low plasma levels of A1AT, a serine protease inhibitor representing the most abundant circulating antiprotease normally present at plasma levels of 1-2 g/L. The dominant clinical manifestations include predispositions to early onset emphysema due to protease/antiprotease imbalance in distal lung parenchyma and liver disease largely due to unsecreted polymerized accumulations of misfolded mutant A1AT within the endoplasmic reticulum of hepatocytes. Since 1987, the only FDA licensed specific therapy for the emphysema component has been infusions of A1AT purified from pooled human plasma at the 2020 cost of up to US $200,000/year with the risk of intermittent shortages. In the past three decades various, potentially less expensive, recombinant forms of human A1AT have reached early stages of development, one of which is just reaching the stage of human clinical trials. The focus of this review is to update strategies for the treatment of the pulmonary component of A1ATD with some focus on perspectives for therapeutic production and regulatory approval of a recombinant product from plants. We review other competitive technologies for treating the lung disease manifestations of A1ATD, highlight strategies for the generation of data potentially helpful for securing FDA Investigational New Drug (IND) approval and present challenges in the selection of clinical trial strategies required for FDA licensing of a New Drug Approval (NDA) for this disease.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - David Z Silberstein
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Carroll E Cross
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
24
|
Song L, Gou W, Wang J, Wei H, Lee J, Strange C, Wang H. Overexpression of alpha-1 antitrypsin in mesenchymal stromal cells improves their intrinsic biological properties and therapeutic effects in nonobese diabetic mice. Stem Cells Transl Med 2021; 10:320-331. [PMID: 32945622 PMCID: PMC7848369 DOI: 10.1002/sctm.20-0122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Islet/β cell dysfunction and death caused by autoimmune-mediated injuries are major features of type 1 diabetes (T1D). Mesenchymal stromal cells (MSCs) have been used for the treatment of T1D in animal models and clinical trials. Based on the anti-inflammatory effects of alpha-1 antitrypsin (AAT), we generated human AAT engineered MSCs (hAAT-MSCs) by infecting human bone marrow-derived MSCs with the pHAGE CMV-a1aT-UBC-GFP-W lentiviral vector. We compared the colony forming, differentiation, and migration capacity of empty virus-treated MSCs (hMSC) and hAAT-MSCs and tested their protective effects in the prevention of onset of T1D in nonobese diabetic (NOD) mice. hAAT-MSCs showed increased self-renewal, better migration and multilineage differentiation abilities compared to hMSCs. In addition, polymerase chain reaction array for 84 MSC-related genes showed that 23 genes were upregulated, and 3 genes were downregulated in hAAT-MSCs compared to hMSCs. Upregulated genes include those critical for the stemness (ie, Wnt family member 3A [WNT3A], kinase insert domain receptor [KDR]), migration (intercellular adhesion molecule 1 [ICAM-1], vascular cell adhesion protein 1 [VICAM-1], matrix metalloproteinase-2 [MMP2]), and survival (insulin-like growth factor 1 [IGF-1]) of MSCs. Pathway analysis showed that changed genes were related to growth factor activity, positive regulation of cell migration, and positive regulation of transcription. In vivo, a single intravenous infusion of hAAT-MSCs significantly limited inflammatory infiltration into islets and delayed diabetes onset in the NOD mice compared with those receiving vehicle or hMSCs. Taken together, overexpression of hAAT in MSCs improved intrinsic biological properties of MSCs needed for cellular therapy for the treatment of T1D.
Collapse
Affiliation(s)
- Lili Song
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Wenyu Gou
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Jingjing Wang
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hua Wei
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Jennifer Lee
- Academic Magnet High SchoolNorth CharlestonSouth CarolinaUSA
| | - Charlie Strange
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hongjun Wang
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Ralph H. Johnson Veterans Affairs Medical CenterCharlestonSouth CarolinaUSA
| |
Collapse
|
25
|
Pathak S, Meyer EH. Tregs and Mixed Chimerism as Approaches for Tolerance Induction in Islet Transplantation. Front Immunol 2021; 11:612737. [PMID: 33658995 PMCID: PMC7917336 DOI: 10.3389/fimmu.2020.612737] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Pancreatic islet transplantation is a promising method for the treatment of type 1 and type 3 diabetes whereby replacement of islets may be curative. However, long-term treatment with immunosuppressive drugs (ISDs) remains essential for islet graft survival. Current ISD regimens carry significant side-effects for transplant recipients, and are also toxic to the transplanted islets. Pre-clinical efforts to induce immune tolerance to islet allografts identify ways in which the recipient immune system may be reeducated to induce a sustained transplant tolerance and even overcome autoimmune islet destruction. The goal of these efforts is to induce tolerance to transplanted islets with minimal to no long-term immunosuppression. Two most promising cell-based therapeutic strategies for inducing immune tolerance include T regulatory cells (Tregs) and donor and recipient hematopoietic mixed chimerism. Here, we review preclinical studies which utilize Tregs for tolerance induction in islet transplantation. We also review myeloablative and non-myeloablative hematopoietic stem cell transplantation (HSCT) strategies in preclinical and clinical studies to induce sustained mixed chimerism and allograft tolerance, in particular in islet transplantation. Since Tregs play a critical role in the establishment of mixed chimerism, it follows that the combination of Treg and HSCT may be synergistic. Since the success of the Edmonton protocol, the feasibility of clinical islet transplantation has been established and nascent clinical trials testing immune tolerance strategies using Tregs and/or hematopoietic mixed chimerism are underway or being formulated.
Collapse
Affiliation(s)
- Shiva Pathak
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Everett H. Meyer
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
26
|
Yonaha T, Miyagi-Shiohira C, Kuwae K, Tamaki Y, Nishime K, Sakai-Yonaha M, Saitoh I, Watanabe M, Noguchi H. Pancreas preservation in extracellular-type p38 inhibitor-containing solution improves islet yield for porcine islet isolation. Xenotransplantation 2020; 28:e12661. [PMID: 33231337 DOI: 10.1111/xen.12661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND For islet transplantation, pancreas preservation and islet isolation activate p38, which is a member of the stress-activated group of mitogen-activated protein kinases (MAPKs). In this study, we evaluated an extracellular-type p38 inhibitor-containing (EP) solution with University of Wisconsin (UW) solution, the gold standard for organ preservation. The EP solution has high sodium-low potassium composition with low viscosity compared to UW solution. Moreover, EP solution contains a recently developed p38 inhibitor (11R-p38I110 ) from our laboratory. METHODS Porcine pancreata were preserved in UW, EP, or EP-P solution (EP solution without 11R-p38I110 ), and then islet isolation was performed. An optimized number (1500 IE) of isolated islets from each group were transplanted into streptozotocin-induced diabetic mice. RESULTS The islet yield before and after purification was significantly higher in the EP group than in the UW group. The islet yield before and after purification was not significantly different between the EP and EP-P groups; however, the EP solution prevented a reduction in the number of islets during culture. Western blot analysis showed that p38 activation was attenuated by EP solution. For islet transplantation into streptozotocin-induced diabetic mice, pancreas preservation in EP solution improved the outcome of islet transplantation. CONCLUSIONS Pancreas preservation with EP solution preserved islet function better than with UW solution. The advantages of EP solution over UW solution may include the inhibition of p38 activity as well as the composition of the solution.
Collapse
Affiliation(s)
- Tasuku Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuho Kuwae
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshihito Tamaki
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kai Nishime
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mayuko Sakai-Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
27
|
Elnashar M, Vaccarezza M, Al-Salami H. Cutting-edge biotechnological advancement in islet delivery using pancreatic and cellular approaches. Future Sci OA 2020; 7:FSO660. [PMID: 33552541 PMCID: PMC7849926 DOI: 10.2144/fsoa-2020-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
There are approximately 1 billion prediabetic people worldwide, and the global cost for diabetes mellitus (DM) is estimated to be $825 billion. In regard to Type 1 DM, transplanting a whole pancreas or its islets has gained the attention of researchers in the last few decades. Recent studies showed that islet transplantation (ILT) containing insulin-producing β cells is the most notable advancement cure for Type 1 DM. However, this procedure has been hindered by shortage and lack of sufficient islet donors and the need for long-term immunosuppression of any potential graft rejection. The strategy of encapsulation may avoid the rejection of stem-cell-derived allogeneic islets or xenogeneic islets. This review article describes various biotechnology features in encapsulation-of-islet-cell therapy for humans, including the use of bile acids.
Collapse
Affiliation(s)
- Magdy Elnashar
- Biotechnology & Drug Development Research Laboratory, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.,Centre of Excellence, Department of Polymers, National Research Centre, Cairo, Egypt
| | - Mauro Vaccarezza
- School of Pharmacy & Biomedical Science, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Hani Al-Salami
- Biotechnology & Drug Development Research Laboratory, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
28
|
Choi Y, Phan B, Tanaka M, Hong J, Choi J. Methods and Applications of Biomolecular Surface Coatings on Individual Cells. ACS APPLIED BIO MATERIALS 2020; 3:6556-6570. [DOI: 10.1021/acsabm.0c00867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Binh Phan
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
29
|
Song L, Kim DS, Gou W, Wang J, Wang P, Wei Z, Liu B, Li Z, Gou K, Wang H. GRP94 regulates M1 macrophage polarization and insulin resistance. Am J Physiol Endocrinol Metab 2020; 318:E1004-E1013. [PMID: 32208002 PMCID: PMC7311672 DOI: 10.1152/ajpendo.00542.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/24/2020] [Accepted: 03/12/2020] [Indexed: 11/22/2022]
Abstract
Macrophage polarization contributes to obesity-induced insulin resistance. Glucose-regulated protein 94 (GRP94) is an endoplasmic reticulum (ER) chaperone specialized for folding and quality control of secreted and membrane proteins. To determine the role of GRP94 in macrophage polarization and insulin resistance, macrophage-specific GRP94 conditional knockout (KO) mice were challenged with a high-fat diet (HFD). Glucose tolerance, insulin sensitivity, and macrophage composition were compared with control mice. KO mice showed better glucose tolerance and increased insulin sensitivity. Adipose tissues from HFD-KO mice contained lower numbers of M1 macrophages, with lower expression of M1 macrophage markers, than wild-type (WT) mice. In vitro, WT adipocytes cocultured with KO macrophages retained insulin sensitivity, whereas those cultured with WT macrophages did not. In addition, compared with WT bone marrow-derived macrophages (BMDMs), BMDMs from GRP94 KO mice exhibited lower expression of M1 macrophage marker genes following stimulation with LPS or IFN-γ, and exhibited partially increased expression of M2 macrophage marker genes following stimulation with interleukin-4. These findings identify GRP94 as a novel regulator of M1 macrophage polarization and insulin resistance and inflammation.
Collapse
Affiliation(s)
- Lili Song
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Jingjing Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Ping Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Zhiguo Wei
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Bei Liu
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Zihai Li
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kemian Gou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
30
|
Cui W, Khan KM, Ma X, Chen G, Desai CS. Human Amniotic Epithelial Cells and Human Amniotic Membrane as a Vehicle for Islet Cell Transplantation. Transplant Proc 2020; 52:982-986. [DOI: 10.1016/j.transproceed.2020.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 01/06/2023]
|
31
|
Potilinski MC, Lorenc V, Perisset S, Gallo JE. Mechanisms behind Retinal Ganglion Cell Loss in Diabetes and Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21072351. [PMID: 32231131 PMCID: PMC7177797 DOI: 10.3390/ijms21072351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes produces several changes in the body triggered by high glycemia. Some of these changes include altered metabolism, structural changes in blood vessels and chronic inflammation. The eye and particularly the retinal ganglion cells (RGCs) are not spared, and the changes eventually lead to cell loss and visual function impairment. Understanding the mechanisms resulting in RGC damage and loss from diabetic retinopathy is essential to find an effective treatment. This review focuses mainly on the signaling pathways and molecules involved in RGC loss and the potential therapeutic approaches for the prevention of this cell death. Throughout the manuscript it became evident that multiple factors of different kind are responsible for RGC damage. This shows that new therapeutic agents targeting several factors at the same time are needed. Alpha-1 antitrypsin as an anti-inflammatory agent may become a suitable option for the treatment of RGC loss because of its beneficial interaction with several signaling pathways involved in RGC injury and inflammation. In conclusion, alpha-1 antitrypsin may become a potential therapeutic agent for the treatment of RGC loss and processes behind diabetic retinopathy.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Valeria Lorenc
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Sofía Perisset
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Juan Eduardo Gallo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
- Departamento de Oftalmologia, Hospital Universitario Austral, Av. Juan Perón 1500, 1629 Pilar, Buenos Aires, Argentina
- Correspondence: ; Tel.: +54-91164038725
| |
Collapse
|
32
|
Alpha1-antitrypsin ameliorates islet amyloid-induced glucose intolerance and β-cell dysfunction. Mol Metab 2020; 37:100984. [PMID: 32229246 PMCID: PMC7186564 DOI: 10.1016/j.molmet.2020.100984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Pancreatic β-cell failure is central to the development and progression of type 2 diabetes (T2D). The aggregation of human islet amyloid polypeptide (hIAPP) has been associated with pancreatic islet inflammation and dysfunction in T2D. Alpha1-antitrypsin (AAT) is a circulating protease inhibitor with anti-inflammatory properties. Here, we sought to investigate the potential therapeutic effect of AAT treatment in a mouse model characterized by hIAPP overexpression in pancreatic β-cells. Methods Mice overexpressing hIAPP (hIAPP-Tg) in pancreatic β-cells were used as a model of amyloid-induced β-cell dysfunction. Glucose homeostasis was evaluated by glucose tolerance tests and insulin secretion assays. Apoptosis and amyloid formation was assessed in hIAPP-Tg mouse islets cultured at high glucose levels. Dissociated islet cells were cocultured with macrophages obtained from the peritoneal cavity. Results Nontreated hIAPP-Tg mice were glucose intolerant and exhibited impaired insulin secretion. Interestingly, AAT treatment improved glucose tolerance and restored the insulin secretory response to glucose in hIAPP-Tg mice. Moreover, AAT administration normalized the expression of the essential β-cell genes MafA and Pdx1, which were downregulated in pancreatic islets from hIAPP-Tg mice. AAT prevented the formation of amyloid deposits and apoptosis in hIAPP-Tg islets cultured at high glucose concentrations. Since islet macrophages mediate hIAPP-induced β-cell dysfunction, we investigated the effect of AAT in cocultures of macrophages and islet cells. AAT prevented hIAPP-induced β-cell apoptosis in these cocultures without reducing the hIAPP-induced secretion of IL-1β by macrophages. Remarkably, AAT protected β-cells against the cytotoxic effects of conditioned medium from hIAPP-treated macrophages. Similarly, AAT also abrogated the cytotoxic effects of exogenous proinflammatory cytokines on pancreatic β-cells. Conclusions These results demonstrate that treatment with AAT improves glucose homeostasis in mice overexpressing hIAPP and protects pancreatic β-cells from the cytotoxic actions of hIAPP mediated by macrophages. These results support the use of AAT-based therapies to recover pancreatic β-cell function for the treatment of T2D. Alpha1-antitrypsin (AAT) ameliorates glucose intolerance in hIAPP transgenic mice. AAT improves insulin secretion in hIAPP transgenic mice. AAT prevents apoptosis and amyloid deposition in cultured hIAPP transgenic islets. AAT protects β-cells from hIAPP-induced cytotoxicity mediated by macrophages. AAT abrogates the cytotoxic effects of proinflammatory cytokines on β-cells.
Collapse
|
33
|
Stabler CL, Giraldo JA, Berman DM, Gattás-Asfura KM, Willman MA, Rabassa A, Geary J, Diaz W, Kenyon NM, Kenyon NS. Transplantation of PEGylated islets enhances therapeutic efficacy in a diabetic nonhuman primate model. Am J Transplant 2020; 20:689-700. [PMID: 31597005 PMCID: PMC7042048 DOI: 10.1111/ajt.15643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 01/25/2023]
Abstract
Islet cell transplantation can lead to insulin independence, reduced hypoglycemia, and amelioration of diabetes complications in patients with type 1 diabetes. The systemic delivery of anti-inflammatory agents, while considered crucial to limit the early loss of islets associated with intrahepatic infusion, increases the burden of immunosuppression. In an effort to decrease the pharmaceutical load to the patient, we modified the pancreatic islet surface with long-chain poly(ethylene glycol) (PEG) to mitigate detrimental host-implant interactions. The effect of PEGylation on islet engraftment and long-term survival was examined in a robust nonhuman primate model via three paired transplants of dosages 4300, 8300, and 10 000 islet equivalents per kg body weight. A reduced immunosuppressive regimen of anti-thymocyte globulin induction plus tacrolimus in the first posttransplant month followed by maintenance with sirolimus monotherapy was employed. To limit transplant variability, two of the three pairs were closely MHC-matched recipients and received MHC-disparate PEGylated or untreated islets isolated from the same donors. Recipients of PEGylated islets exhibited significantly improved early c-peptide levels, reduced exogenous insulin requirements, and superior glycemic control, as compared to recipients of untreated islets. These results indicate that this simple islet modification procedure may improve islet engraftment and survival in the setting of reduced immunosuppression.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA,Diabetes Research Institute, University of Miami, Miami, FL USA,Corresponding Authors: Prof Cherie Stabler, ; Prof Norma Kenyon,
| | - JA Giraldo
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - DM Berman
- Diabetes Research Institute, University of Miami, Miami, FL USA,Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - KM Gattás-Asfura
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA,Diabetes Research Institute, University of Miami, Miami, FL USA
| | - MA Willman
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - A Rabassa
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - J Geary
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - W Diaz
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - NM Kenyon
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - NS Kenyon
- Diabetes Research Institute, University of Miami, Miami, FL USA,Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136,Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136,Biomedical Engineering, University of Miami, Miami, FL 33136,Corresponding Authors: Prof Cherie Stabler, ; Prof Norma Kenyon,
| |
Collapse
|
34
|
Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS One 2020; 15:e0228895. [PMID: 32032388 PMCID: PMC7006930 DOI: 10.1371/journal.pone.0228895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alpha-1-antitrypsin is a protein involved in avoidance of different processes that are seen in diabetic retinopathy pathogenesis. These processes include apoptosis, extracellular matrix remodeling and damage of vessel walls and capillaries. Furthermore, because of its anti-inflammatory effects, alpha-1-antitrypsin has been proposed as a possible therapeutic approach for diabetic retinopathy. Our group tested alpha-1-antitrypsin in a type 1 diabetes mouse model and observed a reduction of inflammation and retinal neurodegeneration. Thus, shedding light on the mechanism of action of alpha-1-antitrypsin at molecular level may explain how it works in the diabetic retinopathy context and show its potential for use in other retinal diseases. METHODS In this work, we evaluated alpha-1-antitrypsin in an ARPE-19 human cell line exposed to high glucose. We explored the expression of different mediators on signaling pathways related to pro-inflammatory cytokines production, glucose metabolism, epithelial-mesenchymal transition and other proteins involved in the normal function of retinal pigment epithelium by RT-qPCR and Western Blot. RESULTS We obtained different expression patterns for evaluated mediators altered with high glucose exposure and corrected with the use of alpha-1-antitrypsin. CONCLUSIONS The expression profile obtained in vitro for the evaluated proteins and mRNA allowed us to explain our previous results obtained on mouse models and to hypothesize how alpha-1-antitrypsin hinder diabetic retinopathy progression on a complex network between different signaling pathways. GENERAL SIGNIFICANCE This network helps to understand the way alpha-1-antitrypsin works in diabetic retinopathy and its scope of action.
Collapse
|
35
|
Wang H, Gou W, Strange C, Wang J, Nietert PJ, Cloud C, Owzarski S, Shuford B, Duke T, Luttrell L, Lesher A, Papas KK, Herold KC, Clark P, Usmani-Brown S, Kitzmann J, Crosson C, Adams DB, Morgan KA. Islet Harvest in Carbon Monoxide-Saturated Medium for Chronic Pancreatitis Patients Undergoing Islet Autotransplantation. Cell Transplant 2019; 28:25S-36S. [PMID: 31885286 PMCID: PMC7016471 DOI: 10.1177/0963689719890596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Stresses encountered during human islet isolation lead to unavoidable β-cell death after transplantation. This reduces the chance of insulin independence in chronic pancreatitis patients undergoing total pancreatectomy and islet autotransplantation. We tested whether harvesting islets in carbon monoxide-saturated solutions is safe and can enhance islet survival and insulin independence after total pancreatectomy and islet autotransplantation. Chronic pancreatitis patients who consented to the study were randomized into carbon monoxide (islets harvested in a carbon monoxide-saturated medium) or control (islets harvested in a normal medium) groups. Islet yield, viability, oxygen consumption rate, β-cell death (measured by unmethylated insulin DNA), and serum cytokine levels were measured during the peri-transplantation period. Adverse events, metabolic phenotypes, and islet function were measured prior and at 6 months post-transplantation. No adverse events directly related to the infusion of carbon monoxide islets were observed. Carbon monoxide islets showed significantly higher viability before transplantation. Subjects receiving carbon monoxide islets had less β-cell death, decreased CCL23, and increased CXCL12 levels at 1 or 3 days post transplantation compared with controls. Three in 10 (30%) of the carbon monoxide subjects and none of the control subjects were insulin independent. This pilot trial showed for the first time that harvesting human islets in carbon monoxide-saturated solutions is safe for total pancreatectomy and islet autotransplantation patients.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jingjing Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J. Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Colleen Cloud
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Stefanie Owzarski
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Betsy Shuford
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Tara Duke
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Louis Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Aaron Lesher
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | | | - Kevan C. Herold
- Department of Immunology, Yale University, New Haven, CT, USA
| | - Pamela Clark
- Department of Immunology, Yale University, New Haven, CT, USA
| | | | | | - Craig Crosson
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - David B. Adams
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Katherine A. Morgan
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
36
|
Noguchi H. Regulation of c-Jun NH 2-Terminal Kinase for Islet Transplantation. J Clin Med 2019; 8:jcm8111763. [PMID: 31652814 PMCID: PMC6912371 DOI: 10.3390/jcm8111763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Islet transplantation has been demonstrated to provide superior glycemic control with reduced glucose lability and hypoglycemic events compared with standard insulin therapy. However, the insulin independence rate after islet transplantation from one donor pancreas has remained low. The low frequency of islet grafting is dependent on poor islet recovery from donors and early islet loss during the first hours following grafting. The reduction in islet mass during pancreas preservation, islet isolation, and islet transplantation leads to β-cell death by apoptosis and the prerecruitment of intracellular death signaling pathways, such as c-Jun NH2-terminal kinase (JNK), which is one of the stress groups of mitogen-activated protein kinases (MAPKs). In this review, we show some of the most recent contributions to the advancement of knowledge of the JNK pathway and several possibilities for the treatment of diabetes using JNK inhibitors.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| |
Collapse
|
37
|
Coppin L, Sokal E, Stéphenne X. Thrombogenic Risk Induced by Intravascular Mesenchymal Stem Cell Therapy: Current Status and Future Perspectives. Cells 2019; 8:cells8101160. [PMID: 31569696 PMCID: PMC6829440 DOI: 10.3390/cells8101160] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are currently studied and used in numerous clinical trials. Nevertheless, some concerns have been raised regarding the safety of these infusions and the thrombogenic risk they induce. MSCs express procoagulant activity (PCA) linked to the expression of tissue factor (TF) that, when in contact with blood, initiates coagulation. Some even describe a dual activation of both the coagulation and the complement pathway, called Instant Blood-Mediated Inflammatory Reaction (IBMIR), explaining the disappointing results and low engraftment rates in clinical trials. However, nowadays, different approaches to modulate the PCA of MSCs and thus control the thrombogenic risk after cell infusion are being studied. This review summarizes both in vitro and in vivo studies on the PCA of MSC of various origins. It further emphasizes the crucial role of TF linked to the PCA of MSCs. Furthermore, optimization of MSC therapy protocols using different methods to control the PCA of MSCs are described.
Collapse
Affiliation(s)
- Louise Coppin
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Etienne Sokal
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Xavier Stéphenne
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| |
Collapse
|
38
|
Wang J, Gou W, Kim DS, Strange C, Wang H. Clathrin-mediated Endocytosis of Alpha-1 Antitrypsin is Essential for its Protective Function in Islet Cell Survival. Am J Cancer Res 2019; 9:3940-3951. [PMID: 31281523 PMCID: PMC6587339 DOI: 10.7150/thno.31647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Cytokine-induced pancreatic β cell death plays a pivotal role in both type 1 and type 2 diabetes. Our previous study showed that alpha-1 antitrypsin (AAT) inhibits β cell death through the suppression of cytokine-induced c-Jun N-terminal kinase (JNK) activation in an islet transplantation model. The aim of this study was to further understand how AAT impacts β cells by studying AAT endocytosis in human islets and a βTC3 murine insulinoma cell line. Methods: In vitro, human islets and βTC3 cells were stimulated with cytokines in the presence or absence of chlorpromazine (CPZ), a drug that disrupts clathrin-mediated endocytosis. Western blot, real-time PCR and cell death ELISA were performed to investigate β cell death. The oxygen consumption rate (OCR) was measured on human islets. In vivo, islets were harvested from C57BL/6 donor mice treated with saline or human AAT and transplanted into the livers of syngeneic mice that had been rendered diabetic by streptozotocin (STZ). Islet graft survival and function were analyzed. Results: AAT was internalized by β cells in a time- and dose-dependent manner. AAT internalization was mediated by clathrin as treatment with CPZ, profoundly decreased AAT internalization, cytokine-induced JNK activation and the downstream upregulation of c-Jun mRNA expression. Similarly, addition of CPZ attenuated cytokine-induced caspase 9 cleavage (c-casp 9) and DNA fragmentation, which was suppressed by AAT. Treatment of donor mice with AAT produced AAT internalization in islets, and resulted in a higher percentage of recipients reaching normoglycemia after syngeneic intraportal islet transplantation. Conclusion: Our results suggest that AAT is internalized by β cells through clathrin-mediated endocytosis that leads to the suppression of caspase 9 activation. This process is required for the protective function of AAT in islets when challenged with proinflammatory cytokines or after islet transplantation.
Collapse
|
39
|
Rickels MR, Robertson RP. Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocr Rev 2019; 40:631-668. [PMID: 30541144 PMCID: PMC6424003 DOI: 10.1210/er.2018-00154] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic islet transplantation has become an established approach to β-cell replacement therapy for the treatment of insulin-deficient diabetes. Recent progress in techniques for islet isolation, islet culture, and peritransplant management of the islet transplant recipient has resulted in substantial improvements in metabolic and safety outcomes for patients. For patients requiring total or subtotal pancreatectomy for benign disease of the pancreas, isolation of islets from the diseased pancreas with intrahepatic transplantation of autologous islets can prevent or ameliorate postsurgical diabetes, and for patients previously experiencing painful recurrent acute or chronic pancreatitis, quality of life is substantially improved. For patients with type 1 diabetes or insulin-deficient forms of pancreatogenic (type 3c) diabetes, isolation of islets from a deceased donor pancreas with intrahepatic transplantation of allogeneic islets can ameliorate problematic hypoglycemia, stabilize glycemic lability, and maintain on-target glycemic control, consequently with improved quality of life, and often without the requirement for insulin therapy. Because the metabolic benefits are dependent on the numbers of islets transplanted that survive engraftment, recipients of autoislets are limited to receive the number of islets isolated from their own pancreas, whereas recipients of alloislets may receive islets isolated from more than one donor pancreas. The development of alternative sources of islet cells for transplantation, whether from autologous, allogeneic, or xenogeneic tissues, is an active area of investigation that promises to expand access and indications for islet transplantation in the future treatment of diabetes.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - R Paul Robertson
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Pacific Northwest Diabetes Research Institute, Seattle, Washington
| |
Collapse
|
40
|
Lee C, Dhawan A, Iansante V, Filippi C, Mitry R, Tang J, Walker S, Fernandez DaCosta R, Sinha S, Hughes RD, Koulmanda M, Fitzpatrick E. Improving engraftment of hepatocyte transplantation using alpha-1 antitrypsin as an immune modulator. J Mol Med (Berl) 2019; 97:563-577. [PMID: 30820592 PMCID: PMC6440943 DOI: 10.1007/s00109-019-01747-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/11/2023]
Abstract
Abstract For patients with non-cirrhotic liver-based metabolic disorders, hepatocyte transplantation can be an effective treatment. However, long-term function of transplanted hepatocytes following infusion has not been achieved due to insufficient numbers of hepatocytes reaching the liver cell plates caused by activation of the instant blood-mediated inflammatory reaction (IBMIR). Our aim was to determine if the natural immune modulator, alpha-1 antitrypsin (AAT), could improve engraftment of transplanted hepatocytes and investigate its mechanism of action. A tubing loop model was used to analyse activation of the IBMIR when human hepatocytes were in contact with ABO-matched blood and 4 mg/ml AAT. Platelet and white cell counts, complement and cytokine expression were analysed. To determine if AAT could improve short-term engraftment, female rats underwent tail vein injection of AAT (120 mg/kg) or water (control) prior to the intrasplenic transplantation of 2 × 107 male hepatocytes. At 48 h and 1 week, livers were collected for analysis. In our loop model, human hepatocytes elicited a significant drop in platelet count with thrombus formation compared to controls. Loops containing AAT and hepatocytes showed no platelet consumption and no thrombus formation. Further, AAT treatment resulted in reduced IL-1β, IL-6 and IFN-γ and increased IL-1RA compared to untreated loops. In vivo, AAT significantly improved engraftment of rat hepatocytes compared to untreated at 48 h. AAT infusion may inhibit the IBMIR, thus improving short-term engraftment of donor hepatocytes and potentially improve the outcomes for patients with liver-based metabolic disease. Key messages • Alpha-1 antitrypsin (AAT) acts as an immune modulator to improve the efficacy of hepatocyte transplantation. • Treatment with AAT decreased thrombus formation and pro-inflammatory cytokine expression in a tubing loop model. • AAT significantly improved engraftment of donor hepatocytes within the first 48 h post transplantation. Electronic supplementary material The online version of this article (10.1007/s00109-019-01747-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Lee
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London, UK.
| | - Valeria Iansante
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Celine Filippi
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Ragai Mitry
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Joanne Tang
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Simon Walker
- Paediatric Liver, GI and Nutrition Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London, UK
| | - Raquel Fernandez DaCosta
- Paediatric Liver, GI and Nutrition Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London, UK
| | - Siddharth Sinha
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Robin D Hughes
- Dhawan Group at Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Maria Koulmanda
- Departments of Medicine and Surgery, The Transplant Institute, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Emer Fitzpatrick
- Paediatric Liver, GI and Nutrition Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London, UK.
| |
Collapse
|
41
|
A Novel Preservation Solution Containing a JNK Inhibitory Peptide Efficiently Improves Islet Yield for Porcine Islet Isolation. Transplantation 2019; 103:344-352. [DOI: 10.1097/tp.0000000000002555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Song S. Alpha-1 Antitrypsin Therapy for Autoimmune Disorders. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2018; 5:289-301. [PMID: 30723786 DOI: 10.15326/jcopdf.5.4.2018.0131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Autoimmune diseases are conditions caused by an over reactive immune system that attacks self-tissues and organs. Although the pathogenesis of autoimmune disease is complex and multi-factorial, inflammation is commonly involved. Therefore, anti-inflammatory therapies hold potential for the treatment of autoimmune diseases. However, long-term control of inflammation is challenging and most of the currently used drugs have side effects. Alpha-1 antitrypsin (AAT) is an anti-inflammatory protein with a well-known safety profile. The therapeutic potential of AAT has been tested in several autoimmune disease models. The first study using a recombinant adeno-associated viral (rAAV) vector showed that AAT gene transfer prevented the development of type 1 diabetes (T1D) in the non-obese diabetic (NOD) mouse model. Subsequent studies showed that treatment with AAT protein prevented and reversed type 1 diabetes. The beneficial effects of AAT treatment have also been observed in other autoimmune disease models such as rheumatoid arthritis and systemic lupus erythematosus. This paper reviews the therapeutic application of AAT and discusses possible mechanisms of action in various autoimmune diseases.
Collapse
Affiliation(s)
- Sihong Song
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville
| |
Collapse
|
43
|
Li X, Meng Q, Zhang L. The Fate of Allogeneic Pancreatic Islets following Intraportal Transplantation: Challenges and Solutions. J Immunol Res 2018; 2018:2424586. [PMID: 30345316 PMCID: PMC6174795 DOI: 10.1155/2018/2424586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet transplantation as a therapeutic option for type 1 diabetes mellitus is gaining widespread attention because this approach can restore physiological insulin secretion, minimize the risk of hypoglycemic unawareness, and reduce the risk of death due to severe hypoglycemia. However, there are many obstacles contributing to the early mass loss of the islets and progressive islet loss in the late stages of clinical islet transplantation, including hypoxia injury, instant blood-mediated inflammatory reactions, inflammatory cytokines, immune rejection, metabolic exhaustion, and immunosuppression-related toxicity that is detrimental to the islet allograft. Here, we discuss the fate of intrahepatic islets infused through the portal vein and propose potential interventions to promote islet allograft survival and improve long-term graft function.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Qiang Meng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Lei Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW We reviewed the current state of total pancreatectomy with islet autotransplantation (TPIAT) for chronic pancreatitis and recurrent acute pancreatitis (RAP). RECENT FINDINGS An increasing number of centers in the United States and internationally are performing TPIAT. In selected cases, TPIAT may be performed partially or entirely laparoscopically. Islet isolation is usually performed at the same center as the total pancreatectomy surgery, but new data suggest that diabetes outcomes may be nearly as good when a remote center is used for islet isolation. Ongoing clinical research is focused on patient and disease factors that predict success or failure to respond to TPIAT. Causes of persistent abdominal pain after TPIAT may include gastrointestinal dysmotility and central sensitization to pain. Several clinical trials are underway with anti-inflammatory or other islet protective strategies to better protect islets at the time of infusion and thereby improve the diabetes results of the procedure. SUMMARY In summary, there is an increasing body of literature emerging from multiple centers highlighting the benefits and persistent challenges of TPIAT for chronic pancreatitis and RAP. Ongoing study will be critical to optimizing the success of this procedure.
Collapse
|
45
|
|
46
|
Berger M, Liu M, Uknis ME, Koulmanda M. Alpha-1-antitrypsin in cell and organ transplantation. Am J Transplant 2018; 18:1589-1595. [PMID: 29607607 PMCID: PMC6055806 DOI: 10.1111/ajt.14756] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 01/25/2023]
Abstract
Limited availability of donor organs and risk of ischemia-reperfusion injury (IRI) seriously restrict organ transplantation. Therapeutics that can prevent or reduce IRI could potentially increase the number of transplants by increasing use of borderline organs and decreasing discards. Alpha-1 antitrypsin (AAT) is an acute phase reactant and serine protease inhibitor that limits inflammatory tissue damage. Purified plasma-derived AAT has been well tolerated in more than 30 years of use to prevent emphysema in AAT-deficient individuals. Accumulating evidence suggests that AAT has additional anti-inflammatory and tissue-protective effects including improving mitochondrial membrane stability, inhibiting apoptosis, inhibiting nuclear factor kappa B activation, modulating pro- vs anti-inflammatory cytokine balance, and promoting immunologic tolerance. Cell culture and animal studies have shown that AAT limits tissue injury and promotes cell and tissue survival. AAT can promote tolerance in animal models by downregulating early inflammation and favoring induction and stabilization of regulatory T cells. The diverse intracellular and immune-modulatory effects of AAT and its well-established tolerability in patients suggest that it might be useful in transplantation. Clinical trials, planned and/or in progress, should help determine whether the promise of the animal and cellular studies will be fulfilled by improving outcomes in human organ transplantation.
Collapse
Affiliation(s)
| | | | | | - Maria Koulmanda
- Transplant Institute at Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
47
|
Cabezas-Llobet N, Camprubí S, García B, Alberch J, Xifró X. Human alpha 1-antitrypsin protects neurons and glial cells against oxygen and glucose deprivation through inhibition of interleukins expression. Biochim Biophys Acta Gen Subj 2018; 1862:1852-1861. [PMID: 29857082 DOI: 10.1016/j.bbagen.2018.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Death due to cerebral stroke afflicts a large number of neuronal populations, including glial cells depending on the brain region affected. Drugs with a wide cellular range of protection are needed to develop effective therapies for stroke. Human alpha 1-antitrypsin (hAAT) is a serine proteinase inhibitor with potent anti-inflammatory, anti-apoptotic and immunoregulatory activities. This study aimed to test whether hAAT can protect different kind of neurons and glial cells after the oxygen and glucose deprivation (OGD). METHODS Addition of hAAT to mouse neuronal cortical, hippocampal and striatal cultures, as well as glial cultures, was performed 30 min after OGD induction and cell viability was assessed 24 h later. The expression of different apoptotic markers and several inflammatory parameters were assessed by immunoblotting and RT-PCR. RESULTS hAAT had a concentration-dependent survival effect in all neuronal cultures exposed to OGD, with a maximal effect at 1-2 mg/mL. The addition of hAAT at 1 mg/mL reduced the OGD-mediated necrotic and apoptotic death in all neuronal cultures. This neuroprotective activity of hAAT was associated with a decrease of cleaved caspase-3 and an increase of MAP2 levels. It was also associated with a reduction of pro-inflammatory cytokines protein levels and expression, increase of IL-10 protein levels and decrease of nuclear localization of nuclear factor-kappaB. Similar to neurons, addition of hAAT protected astrocytes and oligodendrocytes against OGD-induced cell death. CONCLUSIONS Human AAT protects neuronal and glial cells against OGD through interaction with cytokines. GENERAL SIGNIFICANCE Human AAT could be a good therapeutic neuroprotective candidate to treat ischemic stroke.
Collapse
Affiliation(s)
- Núria Cabezas-Llobet
- New Therapeutic Targets Group (TargetsLab), Departament de Ciències Mèdiques, Facultat de Medicina, Universitat de Girona, E-17071 Girona, Spain
| | | | | | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), E-08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Xavier Xifró
- New Therapeutic Targets Group (TargetsLab), Departament de Ciències Mèdiques, Facultat de Medicina, Universitat de Girona, E-17071 Girona, Spain; Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), E-08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
48
|
Ortiz G, Lopez ES, Salica JP, Potilinski C, Fernández Acquier M, Chuluyan E, Gallo JE. Alpha-1-antitrypsin ameliorates inflammation and neurodegeneration in the diabetic mouse retina. Exp Eye Res 2018; 174:29-39. [PMID: 29778740 DOI: 10.1016/j.exer.2018.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Abstract
Diabetic retinopathy (DR) is the most common cause of blindness in the working age population. Early events of DR are accompanied by neurodegeneration of the inner retina resulting in ganglion cell loss. These findings together with reduced retinal thickness are observed within the first weeks of experimental DR. Besides, an inflammatory process is triggered in DR in which the innate immune response plays a relevant role. Alpha 1 antitrypsin (AAT), an inhibitor of serine proteases, has shown anti-inflammatory properties in several diseases. We aimed at evaluating the use of AAT to prevent the early changes induced by DR. Diabetic AAT-treated mice showed a delay on ganglion cell loss and retinal thinning. These animals showed a markedly reduced inflammatory status. AAT was able to preserve systemic and retinal TNF-α level similar to that of control mice. Furthermore, retinal macrophages found in the AAT-treated diabetic mouse exhibited M2 profile (F4/80+CD206+) together with an anti-inflammatory microenvironment. We thus demonstrated that AAT-treated mice show less retinal neurodegenerative changes and have reduced levels of systemic and retinal TNF-α. Our results contribute to shed light on the use of AAT as a possible therapeutic option in DR.
Collapse
Affiliation(s)
- Gustavo Ortiz
- Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Avenida Presidente Perón 1500, Pilar, Buenos Aires, Argentina.
| | - Emiliano S Lopez
- Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Avenida Presidente Perón 1500, Pilar, Buenos Aires, Argentina.
| | - Juan P Salica
- Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Avenida Presidente Perón 1500, Pilar, Buenos Aires, Argentina.
| | - Constanza Potilinski
- Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Avenida Presidente Perón 1500, Pilar, Buenos Aires, Argentina.
| | | | - Eduardo Chuluyan
- Centro de Estudios Farmacológicos y Botánicos, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Juan E Gallo
- Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Avenida Presidente Perón 1500, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
49
|
Lior Y, Zaretsky M, Ochayon DE, Lotysh D, Baranovski BM, Schuster R, Guttman O, Aharoni A, Lewis EC. Point Mutation of a Non-Elastase-Binding Site in Human α1-Antitrypsin Alters Its Anti-Inflammatory Properties. Front Immunol 2018; 9:759. [PMID: 29780379 PMCID: PMC5946014 DOI: 10.3389/fimmu.2018.00759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction Human α1-antitrypsin (hAAT) is a 394-amino acid long anti-inflammatory, neutrophil elastase inhibitor, which binds elastase via a sequence-specific molecular protrusion (reactive center loop, RCL; positions 357-366). hAAT formulations that lack protease inhibition were shown to maintain their anti-inflammatory activities, suggesting that some attributes of the molecule may reside in extra-RCL segments. Here, we compare the protease-inhibitory and anti-inflammatory profiles of an extra-RCL mutation (cys232pro) and two intra-RCL mutations (pro357cys, pro357ala), to naïve [wild-type (WT)] recombinant hAAT, in vitro, and in vivo. Methods His-tag recombinant point-mutated hAAT constructs were expressed in HEK-293F cells. Purified proteins were evaluated for elastase inhibition, and their anti-inflammatory activities were assessed using several cell-types: RAW264.7 cells, mouse bone marrow-derived macrophages, and primary peritoneal macrophages. The pharmacokinetics of the recombinant variants and their effect on LPS-induced peritonitis were determined in vivo. Results Compared to WT and to RCL-mutated hAAT variants, cys232pro exhibited superior anti-inflammatory activities, as well as a longer circulating half-life, despite all three mutated forms of hAAT lacking anti-elastase activity. TNFα expression and its proteolytic membranal shedding were differently affected by the variants; specifically, cys232pro and pro357cys altered supernatant and serum TNFα dynamics without suppressing transcription or shedding. Conclusion Our data suggest that the anti-inflammatory profile of hAAT extends beyond direct RCL regions. Such regions might be relevant for the elaboration of hAAT formulations, as well as hAAT-based drugs, with enhanced anti-inflammatory attributes.
Collapse
Affiliation(s)
- Yotam Lior
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Mariana Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev and National Institute for Biotechnology, Be'er Sheva, Israel
| | - David E Ochayon
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Diana Lotysh
- Department of Life Sciences, Ben-Gurion University of the Negev and National Institute for Biotechnology, Be'er Sheva, Israel
| | - Boris M Baranovski
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Ronen Schuster
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Ofer Guttman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev and National Institute for Biotechnology, Be'er Sheva, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
50
|
Kim DS, Song L, Wang J, Wu H, Gu G, Sugi Y, Li Z, Wang H. GRP94 Is an Essential Regulator of Pancreatic β-Cell Development, Mass, and Function in Male Mice. Endocrinology 2018; 159:1062-1073. [PMID: 29272356 PMCID: PMC5793778 DOI: 10.1210/en.2017-00685] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022]
Abstract
Deficiencies in pancreatic β-cell mass contribute to both type 1 and type 2 diabetes. We investigated the role of the glucose-regulated protein (GRP) 94, an endoplasmic reticulum protein abundantly expressed in the pancreatic acini and islets, in β-cell development, survival, and function. We used a conditional knockout (KO) mouse in which the GRP94 gene, Hsp90b1, was specifically deleted in pancreatic and duodenal homeobox 1 (Pdx1)-expressing cells. These Hsp90b1 flox/flox;Pdx1Cre KO mice exhibited pancreatic hypoplasia at embryonic day (E) 16.5 to E18.5 and had significantly reduced β-cell mass at 4 weeks after birth. Further mechanistic studies showed that deletion of GRP94 reduced β-cell proliferation with increased cell apoptosis in both Pdx1+ endocrine progenitor cells and differentiated β cells. Although Hsp90b1 flox/flox;Pdx1Cre KO mice remained euglycemic at 8 weeks of age, they exhibited impaired glucose tolerance. In aggregate, these findings indicate that GRP94 is an essential regulator of pancreatic β-cell development, mass, and function.
Collapse
Affiliation(s)
- Do-sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lili Song
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jingjing Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hongju Wu
- Department of Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235
| | - Yukiko Sugi
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Zihai Li
- Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|