1
|
Biondi G, Marrano N, Borrelli A, Rella M, D’Oria R, Genchi VA, Caccioppoli C, Cignarelli A, Perrini S, Laviola L, Giorgino F, Natalicchio A. The p66 Shc Redox Protein and the Emerging Complications of Diabetes. Int J Mol Sci 2023; 25:108. [PMID: 38203279 PMCID: PMC10778847 DOI: 10.3390/ijms25010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disease, the prevalence of which is constantly increasing worldwide. It is often burdened by disabling comorbidities that reduce the quality and expectancy of life of the affected individuals. The traditional complications of diabetes are generally described as macrovascular complications (e.g., coronary heart disease, peripheral arterial disease, and stroke), and microvascular complications (e.g., diabetic kidney disease, retinopathy, and neuropathy). Recently, due to advances in diabetes management and the increased life expectancy of diabetic patients, a strong correlation between diabetes and other pathological conditions (such as liver diseases, cancer, neurodegenerative diseases, cognitive impairments, and sleep disorders) has emerged. Therefore, these comorbidities have been proposed as emerging complications of diabetes. P66Shc is a redox protein that plays a role in oxidative stress, apoptosis, glucose metabolism, and cellular aging. It can be regulated by various stressful stimuli typical of the diabetic milieu and is involved in various types of organ and tissue damage under diabetic conditions. Although its role in the pathogenesis of diabetes remains controversial, there is strong evidence regarding the involvement of p66Shc in the traditional complications of diabetes. In this review, we will summarize the evidence supporting the role of p66Shc in the pathogenesis of diabetes and its complications, focusing for the first time on the emerging complications of diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy (M.R.); (R.D.); (V.A.G.)
| | | |
Collapse
|
2
|
Miller B, Regner K, Sorokin A. p66Shc signaling does not contribute to tubular damage induced by renal ischemia-reperfusion injury in rat. Biochem Biophys Res Commun 2022; 603:69-74. [PMID: 35278882 PMCID: PMC8969123 DOI: 10.1016/j.bbrc.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/02/2022]
Abstract
Renal ischemia-reperfusion (IR) injury is one of the major causes of acute kidney injury and represents a significant risk factor for renal transplantation. The level of renal damage is influenced by the ischemic duration and is caused by excessive amounts of produced reactive oxygen species (ROS). Adaptor protein p66Shc is known to regulate cellular and organ's sensitivity to oxidative stress and to contribute significantly to mitochondrial production of hydrogen peroxide in stress conditions. Studies carried out in cultured renal cells suggest that p66Shc-mediated mitochondrial dysfunction and ROS production are responsible for renal ischemic injury. We used our genetically modified rats, which either lack p66Shc expression, or express p66Shc variant, which constitutively generates increased quantities of hydrogen peroxide, to evaluate potential contribution of p66Shc signaling to renal damage in ischemia reperfusion rat model. Analysis of outer medulla tubule damage revealed the lack of contribution of either p66Shc expression or its constitutive signaling to IR injury in rat model.
Collapse
|
3
|
Mousavi S, Khazeei Tabari MA, Bagheri A, Samieefar N, Shaterian N, Kelishadi R. The Role of p66Shc in Diabetes: A Comprehensive Review from Bench to Bedside. J Diabetes Res 2022; 2022:7703520. [PMID: 36465704 PMCID: PMC9715346 DOI: 10.1155/2022/7703520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
It is well-documented that diabetes is an inflammatory and oxidative disease, with an escalating global burden. Still, there is no definite treatment for diabetes or even prevention of its harmful complications. Therefore, understanding the molecular pathways associated with diabetes might help in finding a solution. p66Shc is a member of Shc family proteins, and it is considered as an oxidative stress sensor and regulator in cells. There are inconsistent data about the role of p66Shc in inducing diabetes, but accumulating evidence supports its role in the pathogenesis of diabetes-related complications, including macro and microangiopathies. There is growing hope that by understanding and targeting molecular pathways involved in this network, prevention of diabetes or its complications would be achievable. This review provides an overview about the role of p66Shc in the development of diabetes and its complications.
Collapse
Affiliation(s)
- SeyedehFatemeh Mousavi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Mazandaran, Iran
- USERN Office, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Alireza Bagheri
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Noosha Samieefar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Shaterian
- Student Research Committee, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- USERN Office, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- USERN Office, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Hughes WE, Hockenberry J, Miller B, Sorokin A, Beyer AM. Modulation of p66Shc impairs cerebrovascular myogenic tone in low renin but not low nitric oxide models of systemic hypertension. Am J Physiol Heart Circ Physiol 2021; 321:H1096-H1102. [PMID: 34714691 PMCID: PMC8834231 DOI: 10.1152/ajpheart.00542.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022]
Abstract
Cerebral blood flow and perfusion are tightly maintained through autoregulation despite changes in transmural pressure. Oxidative stress impairs cerebral blood flow, precipitating cerebrovascular events. Phosphorylation of the adaptor protein p66Shc increases mitochondrial-derived oxidative stress. The effect of p66Shc gain or loss of function in nonhypertensive rats is unclear. We hypothesized that p66Shc gain of function would impair autoregulation of cerebral microcirculation under physiological and pathological conditions. Three previously established transgenic [salt-sensitive (SS) background] p66Shc rats were used, p66-Del/SS (express p66Shc with a nine-amino acid deletion), p66Shc-knockout (KO)/SS (frameshift premature termination codon), and p66Shc signaling and knock-in substitution of Ser36Ala (p66Shc-S36A)/SS (substitution of Ser36Ala). The p66Shc-Del were also bred on Sprague-Dawley (SD) backgrounds (p66-Del/SD), and a subset was exposed to a hypertensive stimulus [NG-nitro-l-arginine methyl ester (l-NAME)] for 4 wk. Active and passive diameters to increasing transmural pressure were measured and myogenic tone was calculated in all groups (SS and SD). Myogenic responses to increasing pressure were impaired in p66Shc-Del/SS rats relative to wild-type (WT)/SS and knock-in substitution of Ser36Ala (S36A; P < 0.05). p66-Del/SD rats did not demonstrate changes in active/passive diameters or myogenic tone relative to WT/SD but did demonstrate attenuated passive diameter responses to higher transmural pressure relative to p66-Del/SS. Four weeks of a hypertensive stimulus (l-NAME) did not alter active or passive diameter responses to increasing transmural pressure (P = 0.86-0.99), but increased myogenic responses relative to p66-Del/SD (P < 0.05). Collectively, we demonstrate the functional impact of p66Shc within the cerebral circulation and demonstrate that the genetic background of p66Shc rats largely drives changes in cerebrovascular function.NEW & NOTEWORTHY We demonstrate that the modulation of p66Shc signaling impairs cerebral artery myogenic tone in a low renin model of hypertension. This impairment is dependent upon the genetic background, as modulated p66Shc signaling in Sprague-Dawley rats does not impair cerebral artery myogenic tone.
Collapse
Affiliation(s)
- William E Hughes
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joe Hockenberry
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bradley Miller
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrey Sorokin
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andreas M Beyer
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
5
|
Ren C, Zhou X, Bao X, Zhang J, Tang J, Zhu Z, Zhang N, Bai Y, Xi Y, Zhang Q, Ma B. Dioscorea zingiberensis ameliorates diabetic nephropathy by inhibiting NLRP3 inflammasome and curbing the expression of p66Shc in high-fat diet/streptozotocin-induced diabetic mice. J Pharm Pharmacol 2021; 73:1218-1229. [PMID: 34061184 DOI: 10.1093/jpp/rgab053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a severe diabetic complication. Dioscorea zingiberensis (DZ) possesses excellent pharmacological properties with lower toxicity. The purpose of this study was to investigate the efficacy and mechanism of DZ in DN. METHODS DN was established by the high-fat diet combining intraperitoneal injection of streptozotocin in mice. The DZ (125 and 250 mg/kg/day) were intragastrical administered for 8 consecutive weeks. After treatment, blood, urine and kidney tissue were collected for biological detection, renal morphology, fibrosis and molecular mechanism research, respectively. KEY FINDINGS This study has shown that DZ significantly ameliorated kidney hypertrophy, renal structural damage and abnormal function of the kidney indicators (creatinine, urinary protein and blood urea nitrogen). Further molecular mechanism data suggested that the NLRP3/Cleaved-caspase-1 signal pathway was remarkably activated in DN, and DZ treatment reversed these changes, which indicated that it effectively attenuated inflammatory response caused by hyperglycaemia. In addition, DN inhibits hyperglycaemia-induced activation of oxidative stress by suppressing the expression of p66Shc proteins. CONCLUSIONS DZ could efficiently suppress oxidative stress and inflammatory responses to postpone the development of DN, and its mechanism might be related to inhibition of NLRP3 and p66Shc activities. Thus, DZ could be developed into a new therapeutic agent for DN.
Collapse
Affiliation(s)
- Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaowei Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Tang
- Jiangsu Huanghe Pharmaceutical Co., Ltd, Yancheng, People's Republic of China
| | - Zhiming Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
- School of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yu Bai
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Youli Xi
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Palygin O, Klemens CA, Isaeva E, Levchenko V, Spires DR, Dissanayake LV, Nikolaienko O, Ilatovskaya DV, Staruschenko A. Characterization of purinergic receptor 2 signaling in podocytes from diabetic kidneys. iScience 2021; 24:102528. [PMID: 34142040 PMCID: PMC8188476 DOI: 10.1016/j.isci.2021.102528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023] Open
Abstract
Growing evidence suggests that renal purinergic signaling undergoes significant remodeling during pathophysiological conditions such as diabetes. This study examined the renal P2 receptor profile and ATP-mediated calcium response from podocytes in glomeruli from kidneys with type 1 or type 2 diabetic kidney disease (DKD), using type 2 diabetic nephropathy (T2DN) rats and streptozotocin-injected Dahl salt-sensitive (type 1 diabetes) rats. A dramatic increase in the ATP-mediated intracellular calcium flux in podocytes was observed in both models. Pharmacological inhibition established that P2X4 and P2X7 are the major receptors contributing to the augmented ATP-mediated intracellular calcium signaling in diabetic podocytes. The transition in purinergic receptor composition from metabotropic to ionotropic may disrupt intracellular calcium homeostasis in podocytes resulting in their dysfunction and potentially further aggravating DKD progression. Diabetic podocytes have sustained intracellular Ca2+ signaling in response to ATP Podocyte purinergic receptor signaling is predominantly ionotropic in diabetes Both type 1 and 2 diabetic podocytes have similar purinergic receptor remodeling
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Denisha R Spires
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lashodya V Dissanayake
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Oksana Nikolaienko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| |
Collapse
|
7
|
p66Shc-mediated hydrogen peroxide production impairs nephrogenesis causing reduction of number of glomeruli. Life Sci 2021; 279:119661. [PMID: 34087282 DOI: 10.1016/j.lfs.2021.119661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 01/15/2023]
Abstract
AIMS Adaptor protein p66Shc, encoded by Shc1 gene, contributes to the pathogenesis of oxidative stress-related diseases. p66Shc ability to promote oxidative stress-related diseases requires phosphorylation of serine 36 residue (Ser36) and depends on translocation of p66Shc to the mitochondria. We tested the hypothesis that abnormal p66Shc-mediated reactive oxygen species (ROS) production could be critically involved in nephrons development during nephrogenesis. MAIN METHODS We have generated unique mutant rats (termed p66Shc-Del), which express endogenous p66Shc with a 9-amino acid deletion, and lack regulatory Ser36. H2O2 renal production was measured by enzymatic microelectrode biosensors. Nephron numbers in 3-5 weeks old p66Shc-Del rats were quantified using the acid maceration method. KEY FINDINGS p66Shc-Del rats, as wild type salt sensitive rats, display increased mean arterial blood pressure following chronic exposure to a high salt diet. In contrast to wild type rats, p66Shc-Del rats display increased H2O2 renal production and are characterized by a reduction in renal function. The number of glomeruli is significantly reduced in adult p66Shc-Del rats. SIGNIFICANCE Since low nephron number is an established risk factor for kidney disease and hypertension in humans and rodents, our data suggest that H2O2 renal production, caused by irregular signaling of p66Shc, could be critical in regulating nephrogenesis and that abnormal p66Shc signaling negatively impacts kidney development and renal function by increasing susceptibility to diabetic nephropathy and hypertension-induced nephropathy.
Collapse
|
8
|
ALTamimi JZ, AlFaris NA, Al-Farga AM, Alshammari GM, BinMowyna MN, Yahya MA. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p 66Shc axis and activation of FOXO-3a. J Nutr Biochem 2021; 87:108515. [PMID: 33017608 DOI: 10.1016/j.jnutbio.2020.108515] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
This study investigated if the nephroprotective effect of Curcumin in streptozotocin-induced type 1 diabetes mellitus (DM) in rats involves downregulation/inhibition of p66Shc and examined the underlying mechanisms. Rats were divided into 4 groups (n = 12/group) as control, control + Curcumin (100 mg/kg), T1DM, and T1DM + Curcumin. Curcumin was administered orally to control or diabetic rats for 12 weeks daily. As compared to diabetic rats, Curcumin didn't affect either plasma glucose or insulin levels but significantly reduced serum levels of urea, blood urea nitrogen, and creatinine, and concurrently reduced albumin/protein urea and increased creatinine clearance. It also prevented the damage in renal tubules and mitochondria, mesangial cell expansion, the thickness of the basement membrane. Mechanistically, Curcumin reduced mRNA and protein levels of collagen I/III and transforming growth factor- β-1 (TGF-β1), reduced inflammatory cytokines levels, improved markers of mitochondrial function, and suppressed the release of cytochrome-c and the activation of caspase-3. In the kidneys of both control and diabetic rats, Curcumin reduced the levels of reactive oxygen species (ROS), increased mRNA levels of manganese superoxide dismutase (MnSOD) and gamma-glutamyl ligase, increased glutathione (GSH) and protein levels of Bcl-2 and MnSOD, and increased the nuclear levels of nuclear factor2 (Nrf2) and FOXO-3a. Besides, Curcumin reduced the nuclear activity of the nuclear factor-kappa B (NF-κB), downregulated protein kinase CβII (PKCβII), NADPH oxidase, and p66Shc, and decreased the activation of p66Shc. In conclusion, Curcumin prevents kidney damage in diabetic rats by activating Nrf2, inhibiting Nf-κB, suppressing NADPH oxidase, and downregulating/inhibiting PKCβII/p66Shc axis.
Collapse
Affiliation(s)
- Jozaa Z ALTamimi
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nora A AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Ammar M Al-Farga
- Biochemistry Department, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed A Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Mir HA, Ali R, Mushtaq U, Khanday FA. Structure-functional implications of longevity protein p66Shc in health and disease. Ageing Res Rev 2020; 63:101139. [PMID: 32795504 DOI: 10.1016/j.arr.2020.101139] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
ShcA (Src homologous- collagen homologue), family of adapter proteins, consists of three isoforms which integrate and transduce external stimuli to different signaling networks. ShcA family consists of p46Shc, p52Shc and p66Shc isoforms, characterized by having multiple protein-lipid and protein-protein interaction domains implying their functional diversity. Among the three isoforms p66Shc is structurally different containing an additional CH2 domain which attributes to its dual functionality in cell growth, mediating both cell proliferation and apoptosis. Besides, p66Shc is also involved in different biological processes including reactive oxygen species (ROS) production, cell migration, ageing, cytoskeletal reorganization and cell adhesion. Moreover, the interplay between p66Shc and ROS is implicated in the pathology of various dreadful diseases. Accordingly, here we discuss the recent structural aspects of all ShcA adaptor proteins but are highlighting the case of p66Shc as model isoform. Furthermore, this review insights the role of p66Shc in progression of chronic age-related diseases like neuro diseases, metabolic disorders (non-alcoholic fatty liver, obesity, diabetes, cardiovascular diseases, vascular endothelial dysfunction) and cancer in relation to ROS. We finally conclude that p66Shc might act as a valuable biomarker for the prognosis of these diseases and could be used as a potential therapeutic target.
Collapse
|
10
|
P66Shc and vascular endothelial function. Biosci Rep 2019; 39:BSR20182134. [PMID: 30918103 PMCID: PMC6488855 DOI: 10.1042/bsr20182134] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
Dysfunctional endothelium is an early change in vasculature known to be associated with atherosclerosis. Among many regulators of vascular endothelial function, p66Shc has consistently been shown to mediate endothelial dysfunction. Over more than three decades of active research in the field of the physiological function of p66Shc, regulation of vascular endothelial functions has emerged as one of the most robust effects in a broad range of pathological conditions including hyperlipidemia, diabetes, and aging. A significant understanding has been developed with respect to the molecular signaling regulating the oxidative function of p66Shc in endothelial cells and its targets and regulators. In addition, novel regulatory modifications of p66Shc controlling its oxidative function, subcellular distribution, and stability have also been reported. This review will focus on summarizing the molecular signaling regulating the oxidative function of p66Shc and its role in vascular endothelium.
Collapse
|
11
|
Spires D, Manis AD, Staruschenko A. Ion channels and transporters in diabetic kidney disease. CURRENT TOPICS IN MEMBRANES 2019; 83:353-396. [PMID: 31196609 PMCID: PMC6815098 DOI: 10.1016/bs.ctm.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 1 and 2 diabetes mellitus are major medical epidemics affecting millions of patients worldwide. Diabetes mellitus is the leading cause of diabetic kidney disease (DKD), which is the most common cause of end-stage renal disease (ESRD). DKD is associated with significant changes in renal hemodynamics and electrolyte transport. Alterations in renal ion transport triggered by pathophysiological conditions in diabetes can exacerbate hypertension, accelerate renal injury, and are integral to the development of DKD. Renal ion transporters and electrolyte homeostasis play a fundamental role in functional changes and injury to the kidney during DKD. With the large number of ion transporters involved in DKD, understanding the roles of individual transporters as well as the complex cascades through which they interact is essential in the development of effective treatments for patients suffering from this disease. This chapter aims to gather current knowledge of the major renal ion transporters with altered expression and activity under diabetic conditions, and provide a comprehensive overview of their interactions and collective functions in DKD.
Collapse
Affiliation(s)
- Denisha Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anna D Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States; Clement J. Zablocki VA Medical Center, Milwaukee, WI, United States.
| |
Collapse
|