1
|
Klyosova E, Azarova I, Petrukhina I, Khabibulin R, Polonikov A. The rs2341471-G/G genotype of activating transcription factor 6 (ATF6) is the risk factor of type 2 diabetes in subjects with obesity or overweight. Int J Obes (Lond) 2024; 48:1638-1649. [PMID: 39134692 DOI: 10.1038/s41366-024-01604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Numerous studies have demonstrated that the onset of type 2 diabetes (T2D) is linked to the reduction in ß-cell mass caused by apoptosis, a process initiated by endoplasmic reticulum (ER) stress. The aim of this study was to investigate the associations between single nucleotide polymorphisms (SNPs) in the ATF6 gene (activating transcription factor 6), a key sensor of ER stress, and T2D susceptibility. METHODS The study involved 3229 unrelated individuals, including 1569 patients with T2D and 1660 healthy controls from Central Russia. Four functionally significant intronic SNPs, namely rs931778, rs90559, rs2341471, and rs7517862, were genotyped using the MassARRAY-4 system. RESULTS The rs2341471-G/G genotype of ATF6 was found to be associated with an increased risk of T2D (OR = 1.61, 95% CI 1.37-1.90, PFDR < 0.0001). However, a BMI-stratified analysis showed that this genotype and haplotypes CGGA and TAGA are associated with T2D risk exclusively in subjects with obesity or overweight (PFDR < 0.05). Despite these patients being found to have higher consumption of high-carbohydrate and high-calorie diets compared to normal-weight individuals (P < 0.0001), the influence of the rs7517862 polymorphism on T2D risk was observed independently of these dietary habits. Functional SNP annotation revealed the following: (1) the rs2341471-G allele is associated with increased ATF6 expression; (2) the SNP is located in a region exhibiting enhancer activity epigenetically regulated in pancreatic islets; (3) the rs2341471-G was predicted to create binding sites for 18 activating transcription factors that are part of gene-regulatory networks controlling glucose metabolism and maintaining proteostasis. CONCLUSIONS The present study revealed, for the first time, a strong association between the rs2341471-G/G ATF6 genotype and an increased risk of type 2 diabetes in people with obesity or overweight, regardless of known dietary risk factors. Further research is needed to support the potential of silencing the ATF6 gene as a means for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Irina Petrukhina
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Ramis Khabibulin
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia.
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia.
| |
Collapse
|
2
|
Tong X, Yagan M, Hu R, Nevills S, Doss TD, Stein RW, Balamurugan AN, Gu G. Metabolic Stress Levels Influence the Ability of Myelin Transcription Factors to Regulate β-Cell Identity and Survival. Diabetes 2024; 73:1662-1672. [PMID: 39058602 PMCID: PMC11417441 DOI: 10.2337/db23-0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
A hallmark of type 2 diabetes (T2D) is endocrine islet β-cell failure, which can occur via cell dysfunction, loss of identity, and/or death. How each is induced remains largely unknown. We used mouse β-cells deficient for myelin transcription factors (Myt TFs; including Myt1, -2, and -3) to address this question. We previously reported that inactivating all three Myt genes in pancreatic progenitor cells (MytPancΔ) caused β-cell failure and late-onset diabetes in mice. Their lower expression in human β-cells is correlated with β-cell dysfunction, and single nucleotide polymorphisms in MYT2 and MYT3 are associated with a higher risk of T2D. We now show that these Myt TF-deficient postnatal β-cells also dedifferentiate by reactivating several progenitor markers. Intriguingly, mosaic Myt TF inactivation in only a portion of islet β-cells did not result in overt diabetes, but this created a condition where Myt TF-deficient β-cells remained alive while activating several markers of Ppy-expressing islet cells. By transplanting MytPancΔ islets into the anterior eye chambers of immune-compromised mice, we directly show that glycemic and obesity-related conditions influence cell fate, with euglycemia inducing several Ppy+ cell markers and hyperglycemia and insulin resistance inducing additional cell death. These findings suggest that the observed β-cell defects in T2D depend not only on their inherent genetic/epigenetic defects but also on the metabolic load. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Mahircan Yagan
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Ruiying Hu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Simone Nevills
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Teri D. Doss
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Appakalai N. Balamurugan
- Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH
| | - Guoqiang Gu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
3
|
Giovannetti M, Rodríguez-Palero MJ, Fabrizio P, Nicolle O, Bedet C, Michaux G, Witting M, Artal-Sanz M, Palladino F. SIN-3 transcriptional coregulator maintains mitochondrial homeostasis and polyamine flux. iScience 2024; 27:109789. [PMID: 38746662 PMCID: PMC11091686 DOI: 10.1016/j.isci.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Mitochondrial function relies on the coordinated transcription of mitochondrial and nuclear genomes to assemble respiratory chain complexes. Across species, the SIN3 coregulator influences mitochondrial functions, but how its loss impacts mitochondrial homeostasis and metabolism in the context of a whole organism is unknown. Exploring this link is important because SIN3 haploinsufficiency causes intellectual disability/autism syndromes and SIN3 plays a role in tumor biology. Here we show that loss of C. elegans SIN-3 results in transcriptional deregulation of mitochondrial- and nuclear-encoded mitochondrial genes, potentially leading to mito-nuclear imbalance. Consistent with impaired mitochondrial function, sin-3 mutants show extensive mitochondrial fragmentation by transmission electron microscopy (TEM) and in vivo imaging, and altered oxygen consumption. Metabolomic analysis of sin-3 mutant animals revealed a mitochondria stress signature and deregulation of methionine flux, resulting in decreased S-adenosyl methionine (SAM) and increased polyamine levels. Our results identify SIN3 as a key regulator of mitochondrial dynamics and metabolic flux, with important implications for human pathologies.
Collapse
Affiliation(s)
- Marina Giovannetti
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - María-Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Paola Fabrizio
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ophélie Nicolle
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Cécile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Grégoire Michaux
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Weihenstephan, Germany
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| |
Collapse
|
4
|
Weidemann BJ, Marcheva B, Kobayashi M, Omura C, Newman MV, Kobayashi Y, Waldeck NJ, Perelis M, Lantier L, McGuinness OP, Ramsey KM, Stein RW, Bass J. Repression of latent NF-κB enhancers by PDX1 regulates β cell functional heterogeneity. Cell Metab 2024; 36:90-102.e7. [PMID: 38171340 PMCID: PMC10793877 DOI: 10.1016/j.cmet.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/17/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Interactions between lineage-determining and activity-dependent transcription factors determine single-cell identity and function within multicellular tissues through incompletely known mechanisms. By assembling a single-cell atlas of chromatin state within human islets, we identified β cell subtypes governed by either high or low activity of the lineage-determining factor pancreatic duodenal homeobox-1 (PDX1). β cells with reduced PDX1 activity displayed increased chromatin accessibility at latent nuclear factor κB (NF-κB) enhancers. Pdx1 hypomorphic mice exhibited de-repression of NF-κB and impaired glucose tolerance at night. Three-dimensional analyses in tandem with chromatin immunoprecipitation (ChIP) sequencing revealed that PDX1 silences NF-κB at circadian and inflammatory enhancers through long-range chromatin contacts involving SIN3A. Conversely, Bmal1 ablation in β cells disrupted genome-wide PDX1 and NF-κB DNA binding. Finally, antagonizing the interleukin (IL)-1β receptor, an NF-κB target, improved insulin secretion in Pdx1 hypomorphic islets. Our studies reveal functional subtypes of single β cells defined by a gradient in PDX1 activity and identify NF-κB as a target for insulinotropic therapy.
Collapse
Affiliation(s)
- Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mikoto Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan J Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Louise Lantier
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Owen P McGuinness
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Soukar I, Amarasinghe A, Pile LA. Coordination of cross-talk between metabolism and epigenetic regulation by the SIN3 complex. Enzymes 2023; 53:33-68. [PMID: 37748836 DOI: 10.1016/bs.enz.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Post-translational modifications of histone proteins control the expression of genes. Metabolites from central and one-carbon metabolism act as donor moieties to modify histones and regulate gene expression. Thus, histone modification and gene regulation are connected to the metabolite status of the cell. Histone modifiers, such as the SIN3 complex, regulate genes involved in proliferation and metabolism. The SIN3 complex contains a histone deacetylase and a histone demethylase, which regulate the chromatin landscape and gene expression. In this chapter, we review the cross-talk between metabolic pathways that produce donor moieties, and epigenetic complexes regulating proliferation and metabolic genes. This cross-talk between gene regulation and metabolism is tightly controlled, and disruption of this cross-talk leads to metabolic diseases. We discuss promising therapeutics that directly regulate histone modifiers, and can affect the metabolic status of the cell, alleviating some metabolic diseases.
Collapse
Affiliation(s)
- Imad Soukar
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anjalie Amarasinghe
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
6
|
Lutter D, Sachs S, Walter M, Kerege A, Perreault L, Kahn DE, Wolide AD, Kleinert M, Bergman BC, Hofmann SM. Skeletal muscle and intermuscular adipose tissue gene expression profiling identifies new biomarkers with prognostic significance for insulin resistance progression and intervention response. Diabetologia 2023; 66:873-883. [PMID: 36790478 PMCID: PMC10036433 DOI: 10.1007/s00125-023-05874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/06/2022] [Indexed: 02/16/2023]
Abstract
AIMS/HYPOTHESIS Although insulin resistance often leads to type 2 diabetes mellitus, its early stages are often unrecognised, thus reducing the probability of successful prevention and intervention. Moreover, treatment efficacy is affected by the genetics of the individual. We used gene expression profiles from a cross-sectional study to identify potential candidate genes for the prediction of diabetes risk and intervention response. METHODS Using a multivariate regression model, we linked gene expression profiles of human skeletal muscle and intermuscular adipose tissue (IMAT) to fasting glucose levels and glucose infusion rate. Based on the expression patterns of the top predictive genes, we characterised and compared individual gene expression with clinical classifications using k-nearest neighbour clustering. The predictive potential of the candidate genes identified was validated using muscle gene expression data from a longitudinal intervention study. RESULTS We found that genes with a strong association with clinical measures clustered into three distinct expression patterns. Their predictive values for insulin resistance varied substantially between skeletal muscle and IMAT. Moreover, we discovered that individual gene expression-based classifications may differ from classifications based predominantly on clinical variables, indicating that participant stratification may be imprecise if only clinical variables are used for classification. Of the 15 top candidate genes, ST3GAL2, AASS, ARF1 and the transcription factor SIN3A are novel candidates for predicting a refined diabetes risk and intervention response. CONCLUSION/INTERPRETATION Our results confirm that disease progression and successful intervention depend on individual gene expression states. We anticipate that our findings may lead to a better understanding and prediction of individual diabetes risk and may help to develop individualised intervention strategies.
Collapse
Affiliation(s)
- Dominik Lutter
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Stephan Sachs
- Institute for Diabetes and Regeneration (IDR-H), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marc Walter
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Regeneration (IDR-H), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Anna Kerege
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Leigh Perreault
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Darcy E Kahn
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amare D Wolide
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München (TUM), Munich, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Drug Development Unit, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Group of Muscle Physiology and Metabolism, German Institute of Human Nutrition, Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Bryan C Bergman
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Institute for Diabetes and Regeneration (IDR-H), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
7
|
Bartolomé A, Ravussin Y, Yu J, Ferrante AW, Pajvani UB. An Overfeeding-Induced Obesity Mouse Model Reveals Necessity for Sin3a in Postnatal Peak β-Cell Mass Acquisition. Diabetes 2022; 71:2395-2401. [PMID: 35944274 PMCID: PMC9630089 DOI: 10.2337/db22-0306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/30/2022] [Indexed: 01/25/2023]
Abstract
The increase of functional β-cell mass is paramount to maintaining glucose homeostasis in the setting of systemic insulin resistance and/or augmented metabolic load. Understanding compensatory mechanisms that allow β-cell mass adaptation may allow for the discovery of therapeutically actionable control nodes. In this study, we report the rapid and robust β-cell hyperplasic effect in a mouse model of overfeeding-induced obesity (OIO) based on direct gastric caloric infusion. By performing RNA sequencing in islets isolated from OIO mice, we identified Sin3a as a novel transcriptional regulator of β-cell mass adaptation. β-Cell-specific Sin3a knockout animals showed profound diabetes due to defective acquisition of postnatal β-cell mass. These findings reveal a novel regulatory pathway in β-cell proliferation and validate OIO as a model for discovery of other mechanistic determinants of β-cell adaptation.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | | | | | - Utpal B. Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
8
|
Bao K, Cui Z, Wang H, Xiao H, Li T, Kong X, Liu T. Pseudotime Ordering Single-Cell Transcriptomic of β Cells Pancreatic Islets in Health and Type 2 Diabetes. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:199-210. [PMID: 36939754 PMCID: PMC9590480 DOI: 10.1007/s43657-021-00024-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
β cells are defined by the ability to produce and secret insulin. Recent studies have evaluated that human pancreatic β cells are heterogeneous and demonstrated the transcript alterations of β cell subpopulation in diabetes. Single-cell RNA sequence (scRNA-seq) analysis helps us to refine the cell types signatures and understand the role of the β cells during metabolic challenges and diseases. Here, we construct the pseudotime trajectory of β cells from publicly available scRNA-seq data in health and type 2 diabetes (T2D) based on highly dispersed and highly expressed genes using Monocle2. We identified three major states including 1) Normal branch, 2) Obesity-like branch and 3) T2D-like branch based on biomarker genes and genes that give rise to bifurcation in the trajectory. β cell function-maintain-related genes, insulin expression-related genes, and T2D-related genes enriched in three branches, respectively. Continuous pseudotime spectrum might suggest that β cells transition among different states. The application of pseudotime analysis is conducted to clarify the different cell states, providing novel insights into the pathology of β cells in T2D. Supplementary Information The online version contains supplementary material is available at 10.1007/s43657-021-00024-z.
Collapse
Affiliation(s)
- Kaixuan Bao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203 China
| | - Zhicheng Cui
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438 China
| | - Hui Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200433 China
| | - Hui Xiao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203 China
| | - Ting Li
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203 China
| | - Xingxing Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438 China
| | - Tiemin Liu
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438 China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200433 China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
9
|
Theis A, Singer RA, Garofalo D, Paul A, Narayana A, Sussel L. Groucho co-repressor proteins regulate β cell development and proliferation by repressing Foxa1 in the developing mouse pancreas. Development 2021; 148:dev.192401. [PMID: 33658226 DOI: 10.1242/dev.192401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for β cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4 Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential β cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced β cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.
Collapse
Affiliation(s)
- Alexandra Theis
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ruth A Singer
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY 10032, USA
| | - Diana Garofalo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Alexander Paul
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.,Graduate program in Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Anila Narayana
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lori Sussel
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA .,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|