1
|
Wu Y, Gong Y, Ma Y, Zhao Q, Fu R, Zhang X, Li Y, Zhi X. Effects of vitamin D status on cutaneous wound healing through modulation of EMT and ECM. J Nutr Biochem 2024; 134:109733. [PMID: 39127309 DOI: 10.1016/j.jnutbio.2024.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/07/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
To investigate the effects of vitamin D status on cutaneous wound healing, C57BL/6J mice were fed diets with different vitamin D levels or injected intraperitoneally with 1α,25(OH)2D3. Dorsal skin wounds were created and wound edge tissues were collected on days 4, 7, 11, and 14 postwounding. The proliferation and migration of HaCaT cells treated with shVDR or 1α,25(OH)2D3 were assessed. Vitamin D deficiency (VDD) decreased wound closure and might delay inflammatory response, shown by slower inflammatory cell infiltration, decreased IL6 and TNF expression in early phase followed by an increase later. VDD might postpone epithelial-mesenchymal transition (EMT), initially characterized by higher epithelial markers and lower mesenchymal markers, followed by opposite appearance later. Dietary vitamin D supplementation and 1α,25(OH)2D3 intervention tended to accelerate EMT. Regarding extracellular matrix (ECM), VDD appeared to reduce collagen deposition on day 4 and downregulated fibronectin, COL3A1, and MMP9 expression early, followed by an increase later, together with an initial increase and subsequent decrease in Timp1 mRNA expression. Dietary vitamin D intervention promoted fibronectin and MMP9 expression on day 4 and then downregulated their expression on day 14. TGFb1/SMAD2/3 signaling seemed to be downregulated by VDD and upregulated by 1α,25(OH)2D3. In vitro, partial inhibition of VDR by shVDR tended to inhibit HaCaT cell proliferation and migration, EMT, and TGFb1/SMAD2/3 signaling, whereas 1α,25(OH)2D3 appeared to generate opposite effects. In conclusion, VDD hindered cutaneous wound healing, potentially due to impaired inflammatory response, delayed EMT, decreased ECM, and inhibited TGFb1/SMAD2/3 pathway. Vitamin D and 1α,25(OH)2D3 tended to enhance EMT and ECM.
Collapse
Affiliation(s)
- Ying Wu
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yiting Gong
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yiming Ma
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Qiaofan Zhao
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ruyu Fu
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoming Zhang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ye Li
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xueyuan Zhi
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Hajj J, Sizemore B, Singh K. Impact of Epigenetics, Diet, and Nutrition-Related Pathologies on Wound Healing. Int J Mol Sci 2024; 25:10474. [PMID: 39408801 PMCID: PMC11476922 DOI: 10.3390/ijms251910474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic wounds pose a significant challenge to healthcare. Stemming from impaired wound healing, the consequences can be severe, ranging from amputation to mortality. This comprehensive review explores the multifaceted impact of chronic wounds in medicine and the roles that diet and nutritional pathologies play in the wound-healing process. It has been well established that an adequate diet is crucial to proper wound healing. Nutrients such as vitamin D, zinc, and amino acids play significant roles in cellular regeneration, immune functioning, and collagen synthesis and processing. Additionally, this review discusses how patients with chronic conditions like diabetes, obesity, and nutritional deficiencies result in the formation of chronic wounds. By integrating current research findings, this review highlights the significant impact of the genetic make-up of an individual on the risk of developing chronic wounds and the necessity for adequate personalized dietary interventions. Addressing the nutritional needs of individuals, especially those with chronic conditions, is essential for improving wound outcomes and overall patient care. With new developments in the field of genomics, there are unprecedented opportunities to develop targeted interventions that can precisely address the unique metabolic needs of individuals suffering from chronic wounds, thereby enhancing treatment effectiveness and patient outcomes.
Collapse
Affiliation(s)
- John Hajj
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Brandon Sizemore
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
3
|
Chen S, Li Y, Song W, Cheng Y, Gao Y, Xie L, Huang M, Yan X. Insulin eye drops improve corneal wound healing in STZ-induced diabetic mice by regulating corneal inflammation and neuropeptide release. BMC Ophthalmol 2024; 24:155. [PMID: 38594682 PMCID: PMC11003036 DOI: 10.1186/s12886-024-03436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
INTRODUCTION In recent years, insulin eye drops have attracted increasing attention from researchers and ophthalmologists. The aim of this study was to investigate the efficacy and possible mechanism of action of insulin eye drops in diabetic mice with corneal wounds. METHODS A type 1 diabetes model was induced, and a corneal epithelial injury model of 2.5 mm was established. We used corneal fluorescein staining, hematoxylin-eosin (H-E) staining and the Cochet-Bonnet esthesiometer to examine the process of wound healing. Subsequently, the expression levels of Ki-67, IL-1β, β3-tubulin and neuropeptides, including substance P (SP) and calcitonin gene-related peptide (CGRP), were examined at 72 h after corneal injury. RESULTS Fluorescein staining demonstrated an acceleration of the recovery of corneal epithelial injury in diabetic mice compared with the saline treatment, which was further evidenced by the overexpression of Ki-67. Moreover, 72 h of insulin application attenuated the expression of inflammatory cytokines and neutrophil infiltration. Remarkably, the results demonstrated that topical insulin treatment enhanced the density of corneal epithelial nerves, as well as neuropeptide SP and CGRP release, in the healing cornea via immunofluorescence staining. CONCLUSIONS Our results indicated that insulin eye drops may accelerate corneal wound healing and decrease inflammatory responses in diabetic mice by promoting nerve regeneration and increasing levels of neuropeptides SP and CGRP.
Collapse
Affiliation(s)
- Shudi Chen
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Yingsi Li
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Wenjing Song
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Yuan Gao
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Luoying Xie
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Meiting Huang
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China.
| |
Collapse
|
4
|
Tang J, Lin Z, Liu X, Li B, Wu X, Lv J, Qi X, Lin S, Dai C, Li T. Analyzing the changing trend of corneal biomechanical properties under different influencing factors in T2DM patients. Sci Rep 2024; 14:8160. [PMID: 38589521 PMCID: PMC11001873 DOI: 10.1038/s41598-024-59005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
To analyze the changing trend of CH and CRF values under different influencing factors in T2DM patients. A total of 650 patients with T2DM were included. We discovered that the course of T2DM, smoking history, BMI, and FBG, DR, HbA1c, TC, TG, and LDL-C levels were common risk factors for T2DM, while HDL-C levels were a protective factor. Analyzing the CH and CRF values according to the course of diabetes, we discovered that as T2DM continued to persist, the values of CH and CRF gradually decreased. Moreover, with the increase in FBG levels and the accumulation of HbA1c, the values of CH and CRF gradually decreased. In addition, in patients with HbA1c (%) > 12, the values of CH and CRF decreased the most, falling by 1.85 ± 0.33 mmHg and 1.28 ± 0.69 mmHg, respectively. Compared with the non-DR group, the CH and CRF values gradually decreased in the mild-NPDR, moderate-NPDR, severe-NPDR and PDR groups, with the lowest CH and CRF values in the PDR group. In patients with T2DM, early measurement of corneal biomechanical properties to evaluate the change trend of CH and CRF values in different situations will help to identify and prevent diabetic keratopathy in a timely manner.
Collapse
Affiliation(s)
- Juan Tang
- Department of Endocrinology, Ziyang Central Hospital, Sichuan, China
| | - Zhiwu Lin
- Department of Cardiothoracic Surgery, Ziyang Central Hospital, Sichuan, China
| | - Xingde Liu
- Department of Ophthalmology, Ziyang Central Hospital, Sichuan, China
| | - Biao Li
- Department of Ophthalmology, Ziyang Central Hospital, Sichuan, China
| | - Xiaoli Wu
- Department of Ophthalmology, Ziyang Central Hospital, Sichuan, China
| | - Jing Lv
- Department of Orthopedics, Ziyang Central Hospital, Sichuan, China
| | - Xing Qi
- Department of Experimental Medicine, Ziyang Central Hospital, Sichuan, China
| | - Sheng Lin
- Department of Experimental Medicine, Ziyang Central Hospital, Sichuan, China
| | - Chuanqiang Dai
- Department of Orthopedics, Ziyang Central Hospital, Sichuan, China.
| | - Tao Li
- Department of Ophthalmology, Ziyang Central Hospital, Sichuan, China.
| |
Collapse
|
5
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. The Mechanism of Pyroptosis and Its Application Prospect in Diabetic Wound Healing. J Inflamm Res 2024; 17:1481-1501. [PMID: 38463193 PMCID: PMC10924950 DOI: 10.2147/jir.s448693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Pyroptosis defines a form of pro-inflammatory-dependent programmed cell death triggered by gasdermin proteins, which creates cytoplasmic pores and promotes the activation and accumulation of immune cells by releasing several pro-inflammatory mediators and immunogenic substances upon cell rupture. Pyroptosis comprises canonical (mediated by Caspase-1) and non-canonical (mediated by Caspase-4/5/11) molecular signaling pathways. Numerous studies have explored the contributory roles of inflammasome and pyroptosis in the progression of multiple pathological conditions such as tumors, nerve injury, inflammatory diseases and metabolic disorders. Accumulating evidence indicates that the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome results in the activation of pyroptosis and inflammation. Current evidence suggests that pyroptosis-dependent cell death plays a progressive role in the development of diabetic complications including diabetic wound healing (DWH) and diabetic foot ulcers (DFUs). This review presents a brief overview of the molecular mechanisms underlying pyroptosis and addresses the current research on pyroptosis-dependent signaling pathways in the context of DWH. In this review, we also present some prospective therapeutic compounds/agents that can target pyroptotic signaling pathways, which may serve as new strategies for the effective treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chuxiao Shao
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Peiwu Geng
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Shuanghu Wang
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Department of Wound Healing, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
6
|
Lu X, Chen Z, Lu J, Watsky MA. Effects of 1,25-Vitamin D3 and 24,25-Vitamin D3 on Corneal Nerve Regeneration in Diabetic Mice. Biomolecules 2023; 13:1754. [PMID: 38136625 PMCID: PMC10742127 DOI: 10.3390/biom13121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Corneal nerve homeostasis is essential for the functional integrity of the ocular surface. Vitamin D deficiency (VDD) and vitamin D receptor knockout (VDR KO) have been found to reduce corneal nerve density in diabetic mice. This is the first study to comprehensively examine the influence of vitamin D on nerve regeneration following corneal epithelial injury in diabetic mice. Corneal nerve regeneration was significantly retarded by diabetes, VDR KO, and VDD, and it was accelerated following topical 1,25 Vit D and 24,25 Vit D administration. Furthermore, topical 1,25 Vit D and 24,25 Vit D increased nerve growth factor, glial cell line-derived neurotropic factor, and neurotropin-3 protein expression, and it increased secretion of GDNF protein from human corneal epithelial cells. CD45+ cells and macrophage numbers were significantly decreased, and vitamin D increased CD45+ cell and macrophage recruitment in these wounded diabetic mouse corneas. The accelerated nerve regeneration observed in these corneas following topical 1,25 Vit D and 24,25 Vit D administration may be related to the vitamin D-stimulated expression, secretion of neurotrophic factors, and recruitment of immune cells.
Collapse
Affiliation(s)
- Xiaowen Lu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, CB-2901, Augusta, GA 30912, USA
| | | | | | - Mitchell A. Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, CB-2901, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Lu X, Chen Z, Lu J, Watsky M. Effects of Topical 1,25 and 24,25 Vitamin D on Diabetic, Vitamin D Deficient and Vitamin D Receptor Knockout Mouse Corneal Wound Healing. Biomolecules 2023; 13:1065. [PMID: 37509101 PMCID: PMC10377579 DOI: 10.3390/biom13071065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Delayed or prolonged corneal wound healing and non-healing corneas put patients at risk for ocular surface infections and subsequent stromal opacification, resulting in discomfort or visual loss. It is important to enhance corneal wound healing efficiency and quality. Vitamin D (Vit D) is both a hormone and a vitamin, and its insufficiency has been linked to immune disorders and diabetes. For this study, wound healing and recruitment of CD45+ cells into the wound area of normoglycemic and diabetic mice were examined following corneal epithelial debridement and treatment with 1,25-dihyroxyvitamin D (1,25 Vit D) or 24,25-dihydroxyvitamin D (24,25 Vit D). Treatment with topical 1,25-dihyroxyvitamin D (1,25 Vit D) resulted in significantly increased corneal wound healing rates of normoglycemic, diabetic and diabetic Vit D deficient mice. Furthermore, 24,25-dihydroxyvitamin D (24,25 Vit D) significantly increased corneal wound healing of diabetic Vit D deficient and Vit D receptor knockout (VDR KO) mice. In addition, CD45+ cell numbers were reduced in diabetic and VDR KO mouse corneas compared to normoglycemic mice, and 24,25 Vit D increased the recruitment of CD45+ cells to diabetic mouse corneas after epithelial debridement. CD45+ cells were found to infiltrate into the corneal basal epithelial layer after corneal epithelial debridement. Our data indicate that topical Vit D promotes corneal wound healing and further supports previous work that the Vit D corneal wound healing effect is not totally VDR-dependent.
Collapse
Affiliation(s)
| | | | | | - Mitchell Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Cui Z, Liao K, Li S, Gu J, Wang Y, Ding C, Guo Y, Chan HF, Ma JH, Tang S, Chen J. LM22B-10 promotes corneal nerve regeneration through in vitro 3D co-culture model and in vivo corneal injury model. Acta Biomater 2022; 146:159-176. [PMID: 35562005 DOI: 10.1016/j.actbio.2022.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/01/2022]
Abstract
Corneal nerve wounding often causes abnormalities in the cornea and even blindness in severe cases. In this study, we construct a dorsal root ganglion-corneal stromal cell (DRG-CSC, DS) co-culture 3D model to explore the mechanism of corneal nerve regeneration. Firstly, this model consists of DRG collagen grafts sandwiched by orthogonally stacked and orderly arranged CSC-laden plastic compressed collagen. Nerve bundles extend into the entire corneal stroma within 14 days, and they also have orthogonal patterns. This nerve prevents CSCs from apoptosis in the serum withdrawal medium. The conditioned medium (CM) for CSCs in collagen scaffolds contains NT-3, IL-6, and other factors. Among them, NT-3 notably promotes the activation of ERK-CREB in the DRG, leading to the growth of nerve bundles, and IL-6 induces the upregulation of anti-apoptotic genes. Then, LM22B-10, an activator of the NT-3 receptor TrkB/TrkC, can also activate ERK-CREB to enhance nerve growth. After administering LM22B-10 eye drops to regular and diabetic mice with corneal wounding, LM22B-10 significantly improves the healing speed of the corneal epithelium, corneal sensitivity, and corneal nerve density. Overall, the DS co-culture model provides a promising platform and tools for the exploration of corneal physiological and pathological mechanisms, as well as the verification of drug effects in vitro. Meanwhile, we confirm that LM22B-10, as a non-peptide small molecule, has future potential in nerve wound repair. STATEMENT OF SIGNIFICANCE: The cornea accounts for most of the refractive power of the eye. Corneal nerves play an important role in maintaining corneal homeostasis. Once the corneal nerves are damaged, the corneal epithelium and stroma develop lesions. However, the mechanism of the interaction between corneal nerves and corneal cells is still not fully understood. Here, we construct a corneal stroma-nerve co-culture in vitro model and reveal that NT-3 expressed by stromal cells promotes nerve growth by activating the ERK-CREB pathway in nerves. LM22B-10, an activator of NT-3 receptors, can also induce nerve growth in vitro. Moreover, it is used as eye drops to enhance corneal epithelial wound healing, corneal nerve sensitivity and density of nerve plexus in corneal nerve wounding model in vivo.
Collapse
|
9
|
Ting DSJ, Mohammed I, Lakshminarayanan R, Beuerman RW, Dua HS. Host Defense Peptides at the Ocular Surface: Roles in Health and Major Diseases, and Therapeutic Potentials. Front Med (Lausanne) 2022; 9:835843. [PMID: 35783647 PMCID: PMC9243558 DOI: 10.3389/fmed.2022.835843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Sight is arguably the most important sense in human. Being constantly exposed to the environmental stress, irritants and pathogens, the ocular surface – a specialized functional and anatomical unit composed of tear film, conjunctival and corneal epithelium, lacrimal glands, meibomian glands, and nasolacrimal drainage apparatus – serves as a crucial front-line defense of the eye. Host defense peptides (HDPs), also known as antimicrobial peptides, are evolutionarily conserved molecular components of innate immunity that are found in all classes of life. Since the first discovery of lysozyme in 1922, a wide range of HDPs have been identified at the ocular surface. In addition to their antimicrobial activity, HDPs are increasingly recognized for their wide array of biological functions, including anti-biofilm, immunomodulation, wound healing, and anti-cancer properties. In this review, we provide an updated review on: (1) spectrum and expression of HDPs at the ocular surface; (2) participation of HDPs in ocular surface diseases/conditions such as infectious keratitis, conjunctivitis, dry eye disease, keratoconus, allergic eye disease, rosacea keratitis, and post-ocular surgery; (3) HDPs that are currently in the development pipeline for treatment of ocular diseases and infections; and (4) future potential of HDP-based clinical pharmacotherapy for ocular diseases.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
- *Correspondence: Darren Shu Jeng Ting
| | - Imran Mohammed
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Roger W. Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Harminder S. Dua
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
10
|
Wang Y, Wan L, Zhang Z, Li J, Qu M, Zhou Q. Topical calcitriol application promotes diabetic corneal wound healing and reinnervation through inhibiting NLRP3 inflammasome activation. Exp Eye Res 2021; 209:108668. [PMID: 34144035 DOI: 10.1016/j.exer.2021.108668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022]
Abstract
Vitamin D (VD) deficiency delays corneal wound healing in those with diabetes, which cannot be rescued with supplemental diet. Here, we employed topical calcitriol application to evaluate its efficiency in corneal wound healing and reinnervation in diabetic mice. Type 1 diabetic mice were topically administrated calcitriol, or subconjunctivally injected with NLRP3 antagonist MCC950 or IL-1β blocking antibody after epithelial debridement. Serum VD levels, corneal epithelial defect, corneal sensation and nerve density, NLRP3 inflammasome activation, neutrophil infiltration, macrophage phenotypes, and gene expressions were examined. Compared with those of normal mice, diabetic mice showed reduced serum VD levels. Topical calcitriol application promoted corneal wound healing and nerve regeneration, as well as sensation recovery in diabetic mice. Moreover, calcitriol ameliorated neutrophil infiltration and promoted the M1-to-M2 macrophage transition, accompanied by suppressed overactivation of the NLRP3 inflammasome. Treatment with NLRP3 antagonist or IL-1β blockage demonstrated similar improvements as those of topical calcitriol application. Additionally, calcitriol administration upregulated desmosomal and hemidesmosomal gene expression in the diabetic cornea. In conclusion, topical calcitriol application promotes corneal wound healing and reinnervation during diabetes, which may be related to the suppression of the overactivation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yidi Wang
- Medical College, Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Luqin Wan
- Medical College, Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Jing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Mingli Qu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
11
|
Lu X, Chen Z, Watsky MA. Effects of 1,25 and 24,25 Vitamin D on Corneal Fibroblast VDR and Vitamin D Metabolizing and Catabolizing Enzymes. Curr Eye Res 2021; 46:1271-1282. [PMID: 33535006 DOI: 10.1080/02713683.2021.1884726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose: To investigate the effects of 1,25-Vit D3 and 24,25-Vit D3 on corneal fibroblast expression of the vitamin D-associated enzymes CYP27B1 and CYP24A1 and the roles of the vitamin D receptor (VDR) and protein disulfide isomerase, family A, member 3 (Pdia3) in these cells.Methods: CYP24A1, CYP27B1, VDR, and Pdia3 expression in corneas was detected using immunohistochemistry. Western blotting was used to measure protein expression in human and mouse fibroblasts, including VDR KO mouse cells, treated with 1,25-Vit D3 (20 nM) and 24,25-Vit D3 (100 nM). The Pdia3 inhibitor LOC14 was used to explore the role of Pdia3 as a Vit D3 receptor in these cells.Results: CYP24A1, CYP27B1, VDR, and Pdia3 were all expressed in mouse and human corneal fibroblasts. 1,25-Vit D3 significantly increased VDR expression in human and mouse fibroblasts. 1,25-Vit D3 and 24,25-VitD3 significantly increased CYP24A1 and CYP27B1 expression level in human, VDR WT mouse, and VDR KO mouse corneal fibroblasts. CYP24A1 and CYP27B1 expression was unchanged in VDR KO mouse fibroblasts treated with 1,25-Vit D3 or 24,25-Vit D3 plus LOC14. Human fibroblast VDR, CYP24A1, and CYP27B1 expression were unaffected by LOC14.Conclusions: Vitamin D metabolic enzymes, VDR, and Pdia3 are all expressed in mouse and human corneal fibroblasts. 1,25-Vit D3 modulates fibroblast vitamin D enzymes through both the VDR and Pdia3 pathways in a species-dependent manner. 24,25-Vit D3 can increase expression of fibroblast CYP24A1 and CYP27B1 in the absence of VDR and is likely involved in fibroblast regulation independent of 1,25-Vit D3 or VDR.
Collapse
Affiliation(s)
- Xiaowen Lu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhong Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Mitchell A Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
12
|
Hou Y, Xin M, Li Q, Wu X. Glycyrrhizin micelle as a genistein nanocarrier: Synergistically promoting corneal epithelial wound healing through blockage of the HMGB1 signaling pathway in diabetic mice. Exp Eye Res 2021; 204:108454. [PMID: 33497689 DOI: 10.1016/j.exer.2021.108454] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to explore the feasibility of targeting the HMGB1 signaling pathway to treat diabetic keratopathy with a dipotassium glycyrrhizinate-based micelle ophthalmic solution encapsulating genistein (DG-Gen), and to evaluate whether these dipotassium glycyrrhizinate (DG) micelles could synergistically enhance the therapeutic effect of encapsulated genistein (Gen). An optimized DG-Gen ophthalmic solution was fabricated with a Gen/DG weight of ratio 1:15, and this formulation featured an encapsulation efficiency of 98.96 ± 0.82%, and an average particle size of 29.50 ± 2.05 nm. The DG-Gen ophthalmic solution was observed to have good in vivo ocular tolerance and excellent in vivo corneal permeation, and to remarkably improve in vitro antioxidant activity. Ocular topical application of the DG-Gen ophthalmic solution significantly prompted corneal re-epithelialization and nerve regeneration in diabetic mice, and this efficacy might be due to the inhibition of HMGB1 signaling through down-regulation of HMGB1 and its receptors RAGE and TLR4, as well as inflammatory factor interleukin (IL)-6 and IL-1β. In conclusion, these data showed that HMGB1 signaling is a potential regulation target for the treatment of diabetic keratopathy, and novel DG-micelle formulation encapsulating active agents such as Gen could synergistically cause blockage of HMGB1 signaling to prompt diabetic corneal and nerve wound healing.
Collapse
Affiliation(s)
- Yuzhen Hou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meng Xin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Qiqi Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
13
|
Kundu G, D'Souza S, Lalgudi VG, Arora V, Chhabra A, Deshpande K, Shetty R. Photorefractive keratectomy (PRK) Prediction, Examination, tReatment, Follow-up, Evaluation, Chronic Treatment (PERFECT) protocol - A new algorithmic approach for managing post PRK haze. Indian J Ophthalmol 2020; 68:2950-2955. [PMID: 33229676 PMCID: PMC7857001 DOI: 10.4103/ijo.ijo_2623_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose The aim of this study was to discuss the possible risk factors predisposing to post photorefractive keratectomy (PRK) haze formation and develop and validate a risk scoring system, so that this could be applied to our clinical practice as an algorithmic approach. Methods Study was divided into 2 arms, in the retrospective arm we looked at 238 eyes of patients undergoing PRK where certain presumed risk factors from literature and clinical experience were identified and statistical significance of association was studied in the development of corneal haze. The risk scoring system was applied to the 450 eyes in the prospective arm for validation. This was then used to formulate an algorithmic approach to manage post-PRK haze. Results 22 out of 238 eyes in the retrospective arm developed haze where risk factors such as contact lens intolerance, altered tear film break up time, meibomian gland drop out and vitamin d levels were significantly associated with post-PRK haze (p < 0.05) and these factors were identified in the prospective arm. Treatment of these modifiable factors led to a significant reduction in post-PRK haze. Conclusion Thus identifying and treating risk factors of haze in patients undergoing PRK could improve surgical outcomes and patient satisfaction.
Collapse
Affiliation(s)
- Gairik Kundu
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | - Sharon D'Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | | | | | - Aishwarya Chhabra
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | | | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| |
Collapse
|