1
|
Bonnefond A, Semple RK. Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes. Diabetologia 2022; 65:1782-1795. [PMID: 35618782 PMCID: PMC9522735 DOI: 10.1007/s00125-022-05720-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 01/19/2023]
Abstract
Integration of genomic and other data has begun to stratify type 2 diabetes in prognostically meaningful ways, but this has yet to impact on mainstream diabetes practice. The subgroup of diabetes caused by single gene defects thus provides the best example to date of the vision of 'precision diabetes'. Monogenic diabetes may be divided into primary pancreatic beta cell failure, and primary insulin resistance. In both groups, clear examples of genotype-selective responses to therapy have been advanced. The benign trajectory of diabetes due to pathogenic GCK mutations, and the sulfonylurea-hyperresponsiveness conferred by activating KCNJ11 or ABCC8 mutations, or loss-of-function HNF1A or HNF4A mutations, often decisively guide clinical management. In monogenic insulin-resistant diabetes, subcutaneous leptin therapy is beneficial in some severe lipodystrophy. Increasing evidence also supports use of 'obesity therapies' in lipodystrophic people even without obesity. In beta cell diabetes the main challenge is now implementation of the precision diabetes vision at scale. In monogenic insulin-resistant diabetes genotype-specific benefits are proven in far fewer patients to date, although further genotype-targeted therapies are being evaluated. The conceptual paradigm established by the insulin-resistant subgroup with 'adipose failure' may have a wider influence on precision therapy for common type 2 diabetes, however. For all forms of monogenic diabetes, population-wide genome sequencing is currently forcing reappraisal of the importance assigned to pathogenic mutations when gene sequencing is uncoupled from prior suspicion of monogenic diabetes.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Université de Lille, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Activation of the insulin receptor by an insulin mimetic peptide. Nat Commun 2022; 13:5594. [PMID: 36151101 PMCID: PMC9508239 DOI: 10.1038/s41467-022-33274-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/09/2022] [Indexed: 01/21/2023] Open
Abstract
Insulin receptor (IR) signaling defects cause a variety of metabolic diseases including diabetes. Moreover, inherited mutations of the IR cause severe insulin resistance, leading to early morbidity and mortality with limited therapeutic options. A previously reported selective IR agonist without sequence homology to insulin, S597, activates IR and mimics insulin's action on glycemic control. To elucidate the mechanism of IR activation by S597, we determine cryo-EM structures of the mouse IR/S597 complex. Unlike the compact T-shaped active IR resulting from the binding of four insulins to two distinct sites, two S597 molecules induce and stabilize an extended T-shaped IR through the simultaneous binding to both the L1 domain of one protomer and the FnIII-1 domain of another. Importantly, S597 fully activates IR mutants that disrupt insulin binding or destabilize the insulin-induced compact T-shape, thus eliciting insulin-like signaling. S597 also selectively activates IR signaling among different tissues and triggers IR endocytosis in the liver. Overall, our structural and functional studies guide future efforts to develop insulin mimetics targeting insulin resistance caused by defects in insulin binding and stabilization of insulin-activated state of IR, demonstrating the potential of structure-based drug design for insulin-resistant diseases.
Collapse
|
3
|
Yinghao W, Qiaoli G, Guanfu L, Xiaoyun W, Xuanjun W, Jun S. 2'-O-Methylperlatolic Acid Enhances Insulin-Regulated Blood Glucose-Lowering Effect through Insulin Receptor Signaling Pathway. J Diabetes Res 2022; 2022:2042273. [PMID: 35502441 PMCID: PMC9056246 DOI: 10.1155/2022/2042273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Insulin receptor (InsR) sensitizers represent a new type of therapeutic agent for the treatment of diabetes, with 2'-O-methylperlatolic acid (2-O-M) being a potential InsR targeting drug. The purpose of this study was to determine whether 2-O-M functions as an activator of the insulin signaling pathway, regulating glucose hemostasis through the InsR and exerting a glucose-lowering effect in an animal model of diabetes. METHODS SPR-based analyses were used to detect the binding of different concentrations of 2-O-M to the InsR. The protein levels of IR-β, p-IR, AKT, and p-AKT in Hepa and C2C12 cell lines and liver and muscle tissues were determined by western blotting. Glucose uptake capacity was determined in C2C12 cells. Streptozotocin-induced diabetic mice were randomly divided into four groups: the control, insulin treated, 2-O-M treated, and combined insulin and 2-O-M treated. Mice were injected with 2-O-M or normal saline and the average blood glucose concentration after 120 min, and the serum levels of insulin, glucagon, and C-peptide were measured. Next, qRT-PCR was performed to detect the mRNA expression of genes involved in lipid and glucose metabolism in the liver and muscle tissues. RESULTS 2-O-M binds to the extracellular domain of the InsR. Moreover, combination treatment with 2-O-M and insulin resulted in significant activation of the insulin signaling pathway in vitro and significant stimulation of the glucose uptake capacity of C2C12 myotubes. In mice with streptozotocin-induced diabetes, 2-O-M significantly prolonged the blood glucose-lowering effect of insulin, significantly reduced the secretion of exogenous insulin, and reduced the blood glucose concentration in vivo. In addition, treatment with 2-O-M alone significantly enhanced the phosphorylation of AKT in muscle tissue, which enhanced glucose uptake in C2C12 myotubes. Further, 2-O-M significantly increased glucagon secretion and enhanced liver gluconeogenesis to prevent hypoglycemia. CONCLUSION 2-O-M enhances the hypoglycemic effect of insulin through the insulin signaling pathway and can be used as a complement to insulin. This synergetic effect may lower the required dose of insulin and protect β cells.
Collapse
Affiliation(s)
- Wang Yinghao
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming, China
- Department of Science, Yunnan Agricultural University, Kunming, China
| | - Guan Qiaoli
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming, China
| | - Liu Guanfu
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming, China
| | - Wu Xiaoyun
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming, China
- Department of Science, Yunnan Agricultural University, Kunming, China
| | - Wang Xuanjun
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming, China
- Department of Science, Yunnan Agricultural University, Kunming, China
| | - Sheng Jun
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Scientific Observing and Experimental Station of Tea Resources and Processing in Yunnan, Ministry of Agriculture, Kunming, China
| |
Collapse
|
4
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Barh D, Aljabali AA, Tambuwala MM, Tiwari S, Serrano-Aroca Á, Alzahrani KJ, Silva Andrade B, Azevedo V, Ganguly NK, Lundstrom K. Predicting COVID-19-Comorbidity Pathway Crosstalk-Based Targets and Drugs: Towards Personalized COVID-19 Management. Biomedicines 2021; 9:556. [PMID: 34067609 PMCID: PMC8156524 DOI: 10.3390/biomedicines9050556] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
It is well established that pre-existing comorbid conditions such as hypertension, diabetes, obesity, cardiovascular diseases (CVDs), chronic kidney diseases (CKDs), cancers, and chronic obstructive pulmonary disease (COPD) are associated with increased severity and fatality of COVID-19. The increased death from COVID-19 is due to the unavailability of a gold standard therapeutic and, more importantly, the lack of understanding of how the comorbid conditions and COVID-19 interact at the molecular level, so that personalized management strategies can be adopted. Here, using multi-omics data sets and bioinformatics strategy, we identified the pathway crosstalk between COVID-19 and diabetes, hypertension, CVDs, CKDs, and cancers. Further, shared pathways and hub gene-based targets for COVID-19 and its associated specific and combination of comorbid conditions are also predicted towards developing personalized management strategies. The approved drugs for most of these identified targets are also provided towards drug repurposing. Literature supports the involvement of our identified shared pathways in pathogenesis of COVID-19 and development of the specific comorbid condition of interest. Similarly, shared pathways- and hub gene-based targets are also found to have potential implementations in managing COVID-19 patients. However, the identified targets and drugs need further careful evaluation for their repurposing towards personalized treatment of COVID-19 cases having pre-existing specific comorbid conditions we have considered in this analysis. The method applied here may also be helpful in identifying common pathway components and targets in other disease-disease interactions too.
Collapse
Affiliation(s)
- Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.T.); (V.A.)
| | - Alaa A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK;
| | - Sandeep Tiwari
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.T.); (V.A.)
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié 45206-190, Brazil;
| | - Vasco Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.T.); (V.A.)
| | - Nirmal Kumar Ganguly
- National Institute of Immunology, Aruna Asaf Ali Marg, Jawaharlal Nehru University, New Delhi 110067, India;
- Institute of Liver and Biliary Science, New Delhi 110070, India
- Policy Center for Biomedical Research, Translational Health Science & Technology Institute, Faridabad 121001, India
| | | |
Collapse
|
6
|
Chai XL, Pan Q, Zhang ZQ, Tian CY, Yu T, Yang R. Effect and Signaling Pathways of Nelumbinis Folium in the Treatment of Hyperlipidemia Assessed by Network Pharmacology. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/2311-8571.328619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|