1
|
Walker EC, Javati S, Todd EM, Matlam JP, Lin X, Bryant M, Krone E, Ramani R, Chandra P, Green TP, Anaya EP, Zhou JY, Alexander KA, Tong RS, Yuasi L, Boluarte S, Yang F, Greenberg L, Nerbonne JM, Greenberg MJ, Clemens RA, Philips JA, Wilson LD, Halabi CM, DeBosch BJ, Blyth CC, Druley TE, Kazura JW, Pomat WS, Morley SC. Novel coenzyme Q6 genetic variant increases susceptibility to pneumococcal disease. Nat Immunol 2024:10.1038/s41590-024-01998-4. [PMID: 39496954 DOI: 10.1038/s41590-024-01998-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024]
Abstract
Acute lower respiratory tract infection (ALRI) remains a major worldwide cause of childhood mortality, compelling innovation in prevention and treatment. Children in Papua New Guinea (PNG) experience profound morbidity from ALRI caused by Streptococcus pneumoniae. As a result of evolutionary divergence, the human PNG population exhibits profound genetic variation and diversity. To address unmet health needs of children in PNG, we tested whether genetic variants increased ALRI morbidity. Whole-exome sequencing of a pilot child cohort identified homozygosity for a novel single-nucleotide variant (SNV) in coenzyme Q6 (COQ6) in cases with ALRI. COQ6 encodes a mitochondrial enzyme essential for biosynthesis of ubiquinone, an electron acceptor in the electron transport chain. A significant association of SNV homozygosity with ALRI was replicated in an independent ALRI cohort (P = 0.036). Mice homozygous for homologous mouse variant Coq6 exhibited increased mortality after pneumococcal lung infection, confirming causality. Bone marrow chimeric mice further revealed that expression of variant Coq6 in recipient (that is, nonhematopoietic) tissues conferred increased mortality. Variant Coq6 maintained ubiquinone biosynthesis, while accelerating metabolic remodeling after pneumococcal challenge. Identification of this COQ6 variant provides a genetic basis for increased pneumonia susceptibility in PNG and establishes a previously unrecognized role for the enzyme COQ6 in regulating inflammatory-mediated metabolic remodeling.
Collapse
Affiliation(s)
- Emma C Walker
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Program in Immunology, Division of Biological and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah Javati
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Elizabeth M Todd
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - John-Paul Matlam
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Xue Lin
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle Bryant
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily Krone
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Rashmi Ramani
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Pallavi Chandra
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Taylor P Green
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Edgar P Anaya
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie Y Zhou
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine A Alexander
- Department of Pediatrics, Division of Hematology-Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - R Spencer Tong
- Department of Pediatrics, Division of Hematology-Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lapule Yuasi
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Sebastian Boluarte
- Department. of Pediatrics, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Fan Yang
- Department. of Pediatrics, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeanne M Nerbonne
- Departments of Developmental Biology and Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Regina A Clemens
- Department. of Pediatrics, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A Philips
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leslie D Wilson
- Division of Comparative Medicine, Research Animal Diagnostic Laboratory, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen M Halabi
- Department of Pediatrics, Division of Nephrology and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian J DeBosch
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher C Blyth
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute and School of Medicine, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Todd E Druley
- Department of Pediatrics, Division of Hematology-Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - William S Pomat
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute and School of Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Sharon Celeste Morley
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Program in Immunology, Division of Biological and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Dept. of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Thome T, Vugman NA, Stone LE, Wimberly K, Scali ST, Ryan TE. A tryptophan-derived uremic metabolite/Ahr/Pdk4 axis governs skeletal muscle mitochondrial energetics in chronic kidney disease. JCI Insight 2024; 9:e178372. [PMID: 38652558 PMCID: PMC11141944 DOI: 10.1172/jci.insight.178372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology and
| | | | | | - Keon Wimberly
- Department of Applied Physiology and Kinesiology and
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, USA
- Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology and
- Center for Exercise Science and
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Kim Y, Li C, Gu C, Fang Y, Tycksen E, Puri A, Pietka TA, Sivapackiam J, Kidd K, Park SJ, Johnson BG, Kmoch S, Duffield JS, Bleyer AJ, Jackrel ME, Urano F, Sharma V, Lindahl M, Chen YM. MANF stimulates autophagy and restores mitochondrial homeostasis to treat autosomal dominant tubulointerstitial kidney disease in mice. Nat Commun 2023; 14:6493. [PMID: 37838725 PMCID: PMC10576802 DOI: 10.1038/s41467-023-42154-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/25/2023] [Indexed: 10/16/2023] Open
Abstract
Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD-UMOD), a leading hereditary kidney disease. There are no targeted therapies. In our generated mouse model recapitulating human ADTKD-UMOD carrying a leading UMOD mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are impaired, leading to cGAS-STING activation and tubular injury. Moreover, we demonstrate that inducible tubular overexpression of mesencephalic astrocyte-derived neurotrophic factor (MANF), a secreted endoplasmic reticulum protein, after the onset of disease stimulates autophagy/mitophagy, clears mutant UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, thus protecting kidney function in our ADTKD mouse model. Conversely, genetic ablation of MANF in the mutant thick ascending limb tubular cells worsens autophagy suppression and kidney fibrosis. Together, we have discovered MANF as a biotherapeutic protein and elucidated previously unknown mechanisms of MANF in the regulation of organelle homeostasis, which may have broad therapeutic applications to treat various proteinopathies.
Collapse
Affiliation(s)
- Yeawon Kim
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chuang Li
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chenjian Gu
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yili Fang
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Anuradhika Puri
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Terri A Pietka
- Nutrition and Geriatrics Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kendrah Kidd
- Section of Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Sun-Ji Park
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bryce G Johnson
- Pfizer Worldwide Research and Development, Inflammation & Immunology, Cambridge, MA, USA
| | - Stanislav Kmoch
- Section of Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Anthony J Bleyer
- Section of Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Fumihiko Urano
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, MO, USA
| | - Maria Lindahl
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ying Maggie Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Kim Y, Li C, Gu C, Tycksen E, Puri A, Pietka TA, Sivapackiam J, Fang Y, Kidd K, Park SJ, Johnson BG, Kmoch S, Duffield JS, Bleyer AJ, Jackrel ME, Urano F, Sharma V, Lindahl M, Chen YM. MANF stimulates autophagy and restores mitochondrial homeostasis to treat toxic proteinopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523171. [PMID: 36711449 PMCID: PMC9882049 DOI: 10.1101/2023.01.10.523171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD- UMOD ), one of the leading hereditary kidney diseases, and Alzheimer’s disease etc. There are no targeted therapies. ADTKD is also a genetic form of renal fibrosis and chronic kidney disease, which affects 500 million people worldwide. For the first time, in our newly generated mouse model recapitulating human ADTKD- UMOD carrying a leading UMOD deletion mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are severely impaired, leading to cGAS- STING activation and tubular injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel endoplasmic reticulum stress-regulated secreted protein. We provide the first study that inducible tubular overexpression of MANF after the onset of disease stimulates autophagy/mitophagy and clearance of the misfolded UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, resulting in protection of kidney function. Conversely, genetic ablation of endogenous MANF upregulated in the mutant mouse and human tubular cells worsens autophagy suppression and kidney fibrosis. Together, we discover MANF as a novel biotherapeutic protein and elucidate previously unknown mechanisms of MANF in regulating organelle homeostasis to treat ADTKD, which may have broad therapeutic application to treat various proteinopathies.
Collapse
|
5
|
Zhang Q, Lu J, Lei L, Li G, Liang H, Zhang J, Li Y, Lu X, Zhang X, Chen Y, Pan J, Chen Y, Lin X, Li X, Zhou S, An S, Xiu J. Nomogram to predict rapid kidney function decline in population at risk of cardiovascular disease. BMC Nephrol 2022; 23:62. [PMID: 35144580 PMCID: PMC8830119 DOI: 10.1186/s12882-022-02696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To develop a reliable model to predict rapid kidney function decline (RKFD) among population at risk of cardiovascular disease. METHODS In this retrospective study, key monitoring residents including the elderly, and patients with hypertension or diabetes of China National Basic Public Health Service who underwent community annual physical examinations from January 2015 to December 2020 were included. Healthy records were extracted from regional chronic disease management platform. RKFD was defined as the reduction of estimated glomerular filtration rate (eGFR) ≥ 40% during follow-up period. The entire cohort were randomly assigned to a development cohort and a validation cohort in a 2:1 ratio. Cox regression analysis was used to identify the independent predictors. A nomogram was established based on the development cohort. The concordance index (C-index) and calibration plots were calculated. Decision curve analysis was applied to evaluate the clinical utility. RESULTS A total of 8455 subjects were included. During the median follow-up period of 3.72 years, the incidence of RKFD was 11.96% (n = 1011), 11.98% (n = 676) and 11.92% (n = 335) in the entire cohort, development cohort and validation cohort, respectively. Age, eGFR, hemoglobin, systolic blood pressure, and diabetes were identified as predictors for RKFD. Good discriminating performance was observed in both the development (C-index, 0.73) and the validation (C-index, 0.71) cohorts, and the AUCs for predicting 5-years RKFD was 0.763 and 0.740 in the development and the validation cohort, respectively. Decision curve analysis further confirmed the clinical utility of the nomogram. CONCLUSIONS Our nomogram based on five readily accessible variables (age, eGFR, hemoglobin, systolic blood pressure, and diabetes) is a useful tool to identify high risk patients for RKFD among population at risk of cardiovascular disease in primary care. Whereas, further external validations are needed before clinical generalization.
Collapse
Affiliation(s)
- Qiuxia Zhang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Junyan Lu
- Department of Cardiology, Zhengcheng Branch of Nanfang Hospital, Zengcheng District, Guangzhou, China
| | - Li Lei
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Guodong Li
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hongbin Liang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jingyi Zhang
- Community Health Service Center, Zengjiang Avenue, Zengcheng District, Guangzhou, China
| | - Yun Li
- Department of Public health, Xintang Hospital, Zengcheng District, Guangzhou, China
| | - Xiangqi Lu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xinlu Zhang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yaode Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jiazhi Pan
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yejia Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xinxin Lin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaobo Li
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shiyu Zhou
- Department of Biostatistics, School of Public Health, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shengli An
- Department of Biostatistics, School of Public Health, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Jiancheng Xiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Zhao Y, Song P, Zhu C, Zhang L, Chen X, Zhang H, Han P, Ding W, Niu J, Zhao J, Shao X, Zhang L, Yu C, Xu J, Fang C, Guo Q. Relationship between physical performance and mild cognitive impairment in elderly hemodialysis patients is modified by the presence of diabetes: A multicenter cross-sectional study. Front Endocrinol (Lausanne) 2022; 13:897728. [PMID: 36157461 PMCID: PMC9501887 DOI: 10.3389/fendo.2022.897728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The purpose of this study was to observe the relationship between physical performance and mild cognitive impairment (MCI) in the presence or absence of type 2 diabetes in elderly hemodialysis patients. METHODS In this multicenter cross-sectional study, 396 clinically stable and aged ≥60 years hemodialysis patients (255 men; mean age: 68.3 ± 5.9 years) were included from seven dialysis units in Shanghai, China. The Chinese version of the Modified Mini-Mental State Examination (MMSE) and the Instrumental Activities of Daily Living (IADL) scale were utilized to assess MCI. The performance-based assessments consisted of three physical tests, grip strength (GS), Timed Up and Go Test (TUGT), and 4-m walking test, which respectively represent muscle strength, mobility, and walking speed (WS). Logistic regression and multivariate linear regression were used for analysis. RESULTS Hemodialysis patients with diabetes had a high prevalence of MCI (20.6%). The odds ratio (OR) of MCI for the interacted items [(TUGT) * (diabetes) and (WS) * (diabetes)] was significant (p < 0.05). In diabetes patients, TUGT was positively associated with MCI, and WS was negatively associated with MCI after adjusting covariates [OR = 0.129; 95% confidence interval (CI) = 0.028-0.704, p = 0.021]. However, no significant association was found between physical performance and MCI in the non-diabetes hemodialysis patients (p > 0.05). Further analysis showed that TUGT was negatively associated with attention and calculation and language. WS was positively associated with recall and language in diabetic hemodialysis patients. CONCLUSIONS Physical performance was associated with MCI in diabetic hemodialysis patients rather than the non-diabetes group. Whether increasing mobility or WS can positively influence MCI in individuals with type 2 diabetes requires further study.
Collapse
Affiliation(s)
- Yinjiao Zhao
- Jiangwan Hospital of Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Peiyu Song
- Jiangwan Hospital of Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Chan Zhu
- Jiangwan Hospital of Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Lingyun Zhang
- Jiangwan Hospital of Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Xiaoyu Chen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Zhang
- Jiangwan Hospital of Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Peipei Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wei Ding
- Department of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianying Niu
- Department of Nephrology, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Junli Zhao
- Department of Nephrology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiang Shao
- Department of Nephrology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, China
| | - Liming Zhang
- Department of Nephrology, Zhabei Central Hospital of Jingan District, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Xu
- Department of Nephrology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Chenghu Fang
- Jiangwan Hospital of Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Qi Guo
- Jiangwan Hospital of Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Qi Guo,
| |
Collapse
|
7
|
Davis BL, Tiell SM, McMillan GR, Goss LP, Crafton JW. Simple model of arch support: Relevance to Charcot Neuroarthropathy. Clin Biomech (Bristol, Avon) 2021; 87:105403. [PMID: 34091194 PMCID: PMC8316300 DOI: 10.1016/j.clinbiomech.2021.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Charcot neuropathy is a common complication resulting from poorly controlled diabetes and peripheral neuropathy leading to the collapse, and ultimately the breakdown, of the midfoot. Mechanically, it is likely that a compromised arch support in this, or any other patient group that experiences foot flattening, would be associated with slippage at the distal and proximal interface regions of the plantar surface of the foot and the adjacent support surface. This slippage, although difficult to quantify with standard motion capture systems used in a gait laboratory, could potentially be assessed with systems for monitoring interface shear stresses. However, before investing in such systems, a correlation between arch flattening and interface shear stresses needs to be verified. METHODS For this purpose, a sagittal plane model of a foot was developed using a multi-body dynamics package (MSC Adams). This model mimicked a subject swaying back and forth, and was constructed to show the dependence of interface stresses on altered arch support. FINDINGS The model's predictions matched typical FootSTEPS data: lengthening of the arch of 1-2 mm, sway oscillations of 0.22-0.33 s and frictional force differences (calcaneus relative to forefoot) of 60 N. Of clinical relevance, when the stiffness of the plantar spring (representing aponeurosis and intrinsic muscles) was reduced by 10%, the frictional force difference increased by about 6.5%. INTERPRETATION The clinical implications of this study are that, while arch lengthening of less than 2 mm might be difficult to measure reliably in a gait lab, using shear sensors under the forefoot and hindfoot should allow arch support to be assessed in a repeatable manner.
Collapse
Affiliation(s)
- B L Davis
- Cleveland State University, WH 305 I, Washkewicz Hall, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| | - S M Tiell
- The University of Akron, 302 East Buchtel Avenue, Akron, OH 44325, USA
| | - G R McMillan
- Innovative Scientific Solutions Inc., 7610 McEwen Road, Dayton, OH 45459, USA
| | - L P Goss
- Innovative Scientific Solutions Inc., 7610 McEwen Road, Dayton, OH 45459, USA
| | - J W Crafton
- Innovative Scientific Solutions Inc., 7610 McEwen Road, Dayton, OH 45459, USA
| |
Collapse
|