1
|
Kelty TJ, Kerr NR, Chou CH, Shryack GE, Taylor CL, Krause AA, Knutson AR, Bunten J, Childs TE, Meers GM, Dashek RJ, Puchalska P, Crawford PA, Thyfault JP, Booth FW, Rector RS. Cognitive impairment caused by compromised hepatic ketogenesis is prevented by endurance exercise. J Physiol 2025. [PMID: 39808588 DOI: 10.1113/jp287573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Extensive research has demonstrated endurance exercise to be neuroprotective. Whether these neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. To investigate the role of hepatic ketone production on brain health during exercise, healthy 6-month-old female rats underwent viral knockdown of the rate-limiting enzyme in the liver that catalyses the first reaction in ketogenesis: 3-hydroxymethylglutaryl-CoA synthase 2 (HMGCS2). Rats were then subjected to either a bout of acute exercise or 4 weeks of chronic treadmill running (5 days/week) and cognitive behavioural testing. Acute exercise elevated ketone plasma concentration 1 h following exercise. Hepatic HMGCS2 knockdown, verified by protein expression, reduced ketone plasma concentration 1 h after acute exercise and 48 h after chronic exercise. Proteomic analysis and enrichment of the frontal cortex revealed hepatic HMGCS2 knockdown reduced markers of mitochondrial function 1 h after acute exercise. HMGCS2 knockdown significantly reduced state 3 complex I + II respiration in isolated mitochondria from the frontal cortex after chronic exercise. Spatial memory and protein markers of synaptic plasticity were significantly reduced by HMGCS2 knockdown. These deficiencies were prevented by chronic endurance exercise training. In summary, these are the first data to propose that hepatic ketogenesis is required to maintain cognition and mitochondrial function, irrespective of training status, and that endurance exercise can overcome neuropathology caused by insufficient hepatic ketogenesis. These results establish a mechanistic link between liver and brain health that enhance our understanding of how peripheral tissue metabolism influences brain health. KEY POINTS: Decades of literature demonstrate endurance exercise to be neuroprotective. Whether neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. This study provides the first set of data that suggest hepatic ketogenesis is required to maintain cognition, synaptic plasticity and mitochondrial function. These data indicate endurance exercise can protect against cognitive decline caused by compromised hepatic ketogenesis. These results establish a mechanistic link between liver and brain function, prompting further investigation of how hepatic metabolism influences brain health.
Collapse
Affiliation(s)
- Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Chih H Chou
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Grace E Shryack
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Christopher L Taylor
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Alexa A Krause
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Alexandra R Knutson
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Josh Bunten
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Tom E Childs
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Grace M Meers
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Ryan J Dashek
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter A Crawford
- Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - John P Thyfault
- Departments of Cellular Biology and Physiology and Internal Medicine-Division of Endocrinology, KU Diabetes Institute University of Kansas Medical Center, Kansas City, Kansas, USA
- Research Service, Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri-Columbia, Columbia, Missouri, USA
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
| |
Collapse
|
2
|
Chen J, Jian L, Guo Y, Tang C, Huang Z, Gao J. Liver Cell Mitophagy in Metabolic Dysfunction-Associated Steatotic Liver Disease and Liver Fibrosis. Antioxidants (Basel) 2024; 13:729. [PMID: 38929168 PMCID: PMC11200567 DOI: 10.3390/antiox13060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately one-third of the global population. MASLD and its advanced-stage liver fibrosis and cirrhosis are the leading causes of liver failure and liver-related death worldwide. Mitochondria are crucial organelles in liver cells for energy generation and the oxidative metabolism of fatty acids and carbohydrates. Recently, mitochondrial dysfunction in liver cells has been shown to play a vital role in the pathogenesis of MASLD and liver fibrosis. Mitophagy, a selective form of autophagy, removes and recycles impaired mitochondria. Although significant advances have been made in understanding mitophagy in liver diseases, adequate summaries concerning the contribution of liver cell mitophagy to MASLD and liver fibrosis are lacking. This review will clarify the mechanism of liver cell mitophagy in the development of MASLD and liver fibrosis, including in hepatocytes, macrophages, hepatic stellate cells, and liver sinusoidal endothelial cells. In addition, therapeutic strategies or compounds related to hepatic mitophagy are also summarized. In conclusion, mitophagy-related therapeutic strategies or compounds might be translational for the clinical treatment of MASLD and liver fibrosis.
Collapse
Affiliation(s)
- Jiaxin Chen
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linge Jian
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangkun Guo
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyin Huang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Youcheng L, Xun W, Zhufeng C. Association between nonalcoholic fatty liver disease and erectile dysfunction among American Adults from the National Health and Nutrition Examination Survey: a cross-sectional study. Int J Impot Res 2024:10.1038/s41443-024-00914-6. [PMID: 38783042 DOI: 10.1038/s41443-024-00914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a pressing public health concern. NAFLD is recognized as a disease with systemic involvement. Erectile dysfunction is a prevalent condition among men. The study examined the relationship between NAFLD, assessed via U.S. Fatty Liver Index (USFLI), and erectile dysfunction. The study used cross-sectional data from the National Health and Nutrition Examination Survey conducted between 2001 and 2004 to examine the health of those over 20 years of age, collecting details on their erectile dysfunction, USFLI, and several other essential variables. A USFLI score equal to or exceeding 30 was chosen to diagnose NAFLD, while a USFLI score below 10 was utilized to exclude the presence of fatty liver. There were 3763 participants, with 29.1% (1095/3763) who experienced erectile dysfunction. After accounting for all potential covariates, USFLI was positively associated with erectile dysfunction (OR, 1.02; 95% CI, 1.02 ~ 1.03; P < 0.001). Compared with individuals with Q1 (USFLI < 10), the adjusted odds ratio values for USFLI and erectile dysfunction in Q2 (10 ≤ USFLI < 30) and Q3 (USFLI ≥ 30, NAFLD) were 1.84 (95% CI: 1.46 ~ 2.32, p < 0.001) and 2.18 (95% CI: 1.66 ~ 2.87, p < 0.001), respectively. The association USFLI and erectile dysfunction exhibited an L-shaped curve (nonlinear, P = 0.014). The odds ratio value of developing erectile dysfunction was 1.03 (95% CI: 1.021 ~ 1.04, P < 0.001) in participants with USFLI < 50.18. This study identified a positive correlation between USFLI and erectile dysfunction within the adult American population. Our findings imply that NAFLD might constitute an independent risk factor for erectile dysfunction.
Collapse
Affiliation(s)
- Lin Youcheng
- Shengli Clinical Medical College Surgical Teaching Office, Fujian Medical University, Fuzhou, China
- Department of Urology, Urology and Nephrology Medical Center, Fujian Provincial Hospital South Branch, Fuzhou, China
| | - Wu Xun
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Chen Zhufeng
- Department of Infectious diseases, Fujian Provincial Hospital South Branch, Fuzhou, China.
- Shengli Clinical Medical College Internal Medicine Teaching Office, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Venetos NM, Stomberski CT, Qian Z, Premont RT, Stamler JS. Activation of hepatic acetyl-CoA carboxylase by S-nitrosylation in response to diet. J Lipid Res 2024; 65:100542. [PMID: 38641009 PMCID: PMC11126798 DOI: 10.1016/j.jlr.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024] Open
Abstract
Nitric oxide (NO), produced primarily by nitric oxide synthase enzymes, is known to influence energy metabolism by stimulating fat uptake and oxidation. The effects of NO on de novo lipogenesis (DNL), however, are less clear. Here we demonstrate that hepatic expression of endothelial nitric oxide synthase is reduced following prolonged administration of a hypercaloric high-fat diet. This results in marked reduction in the amount of S-nitrosylation of liver proteins including notably acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in DNL. We further show that ACC S-nitrosylation markedly increases enzymatic activity. Diminished endothelial nitric oxide synthase expression and ACC S-nitrosylation may thus represent a physiological adaptation to caloric excess by constraining lipogenesis. Our findings demonstrate that S-nitrosylation of liver proteins is subject to dietary control and suggest that DNL is coupled to dietary and metabolic conditions through ACC S-nitrosylation.
Collapse
Affiliation(s)
- Nicholas M Venetos
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Colin T Stomberski
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Zhaoxia Qian
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Richard T Premont
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan S Stamler
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
5
|
Di Pasqua LG, Cagna M, Palladini G, Croce AC, Cadamuro M, Fabris L, Perlini S, Adorini L, Ferrigno A, Vairetti M. FXR agonists INT-787 and OCA increase RECK and inhibit liver steatosis and inflammation in diet-induced ob/ob mouse model of NASH. Liver Int 2024; 44:214-227. [PMID: 37904642 DOI: 10.1111/liv.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND AND AIMS We have previously shown in a model of hepatic ischaemia/reperfusion injury that the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) restores reversion-inducing-cysteine-rich protein with Kazal motifs (RECK), an inverse modulator of metalloproteases (MMPs) and inhibitor of the sheddases ADAM10 and ADAM17 involved in inflammation and fibrogenesis. Here, the effects of FXR agonists OCA and INT-787 on hepatic levels of RECK, MMPs, ADAM10 and ADAM17 were compared in a diet-induced ob/ob mouse model of non-alcoholic steatohepatitis (NASH). METHODS Lep ob/ob NASH mice fed a high-fat diet (HFD) or control diet (CD) for 9 weeks (wks) were treated with OCA or INT-787 0.05% dosed via HFD admixture (30 mg/kg/day) or HFD for further 12 wks. Serum alanine transaminase (ALT) and inflammatory cytokines, liver RECK, MMP-2 and MMP-9 activity as well as ADAM10, ADAM17, collagen deposition (Sirius red), hepatic stellate cell activation (α-SMA) and pCK+ reactive biliary cells were quantified. RESULTS Only INT-787 significantly reduced serum ALT, IL-1β and TGF-β. A downregulation of RECK expression and protein levels observed in HFD groups (at 9 and 21 wks) was counteracted by both OCA and INT-787. HFD induced a significant increase in liver MMP-2 and MMP-9; OCA administration reduced both MMP-2 and MMP-9 while INT-787 markedly reduced MMP-2 expression. OCA and INT-787 reduced both ADAM10 and ADAM17 expression and number of pCK+ cells. INT-787 was superior to OCA in decreasing collagen deposition and α-SMA levels. CONCLUSION INT-787 is superior to OCA in controlling specific cell types and clinically relevant anti-inflammatory and antifibrotic molecular mechanisms in NASH.
Collapse
Affiliation(s)
- Laura G Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Marta Cagna
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Giuseppina Palladini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Internal Medicine Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna C Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Department of Internal Medicine, Liver Center and Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Stefano Perlini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Emergency Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Yamaguchi T, Shibata K, Hasumi K, Nobe K. Potent Efficacy of 3-Amino-4-hydroxy Benzoic Acid, a Small Molecule Having Anti-fibrotic Activity, in a Mouse Model of Non-alcoholic Steatohepatitis. Biol Pharm Bull 2024; 47:434-442. [PMID: 38369342 DOI: 10.1248/bpb.b23-00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Non-alcoholic steatohepatitis (NASH), which is on the rise due to the increasing obese population and changing lifestyles, causes fibrosis over time and carries the risk of progression to cirrhosis and hepatocellular carcinoma. However, there are no approved effective treatments for NASH. Recent studies suggest that increased lipid metabolism and reduced nitric oxide content are responsible for NASH; 3-amino-4-hydroxy benzoic acid (AHBA) was identified as an inhibitor for the phosphatase activity of soluble epoxy hydrolase, which in turn inhibits lipid metabolism and endothelial nitric oxide synthase activity. The aim of this study was to assess the efficacy of AHBA in a mouse model of NASH. NASH was induced in mice by streptozotocin administration and a high-fat diet loading. The efficacy of AHBA was determined by measuring liver function using serum and liver samples and conducting a morphological assessment. AHBA considerably attenuated the increase in the liver weight and alkaline phosphatase content, which occurred due to the progression of NASH. Hepatocellular steatosis, inflammatory cell infiltration, and hepatocellular ballooning of hepatocytes remained unaltered. In contrast, AHBA treatment significantly ameliorated the fibrotic alterations within liver tissue that were induced by the onset of NASH. These results demonstrate the potential of AHBA as a therapeutic pharmaceutical compound that can treat NASH.
Collapse
Affiliation(s)
- Tomoaki Yamaguchi
- Department of Pharmacology, Showa University Graduate School of Pharmacy
- Pharmacological Research Center, Showa University
| | - Keita Shibata
- Department of Pharmacology, Showa University Graduate School of Pharmacy
- Pharmacological Research Center, Showa University
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology
| | - Koji Nobe
- Department of Pharmacology, Showa University Graduate School of Pharmacy
- Pharmacological Research Center, Showa University
| |
Collapse
|
7
|
Kwanten W(WJ, Francque SM. The liver sinusoid in chronic liver disease: NAFLD and NASH. SINUSOIDAL CELLS IN LIVER DISEASES 2024:263-284. [DOI: 10.1016/b978-0-323-95262-0.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Mobasheri L, Ahadi M, Beheshti Namdar A, Alavi MS, Bemidinezhad A, Moshirian Farahi SM, Esmaeilizadeh M, Nikpasand N, Einafshar E, Ghorbani A. Pathophysiology of diabetic hepatopathy and molecular mechanisms underlying the hepatoprotective effects of phytochemicals. Biomed Pharmacother 2023; 167:115502. [PMID: 37734266 DOI: 10.1016/j.biopha.2023.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Patients with diabetes are at risk for liver disorders including glycogen hepatopathy, non-alcoholic fatty liver disease, cirrhosis, and hepatic fibrosis. The pathophysiological mechanisms behind diabetic hepatopathy are complex, some of them include fatty acid accumulation, increased reactive oxygen species, increased advanced glycation end-products, hyperactivity of polyol pathways, increased apoptosis and necrosis, and promotion of fibrosis. A growing number of studies have shown that herbal extracts and their active phytochemicals have antihyperglycemic properties and beneficial effects on diabetic complications. The current review, for the first time, focused on herbal agents that showed beneficial effects on diabetic hepatopathy. For example, animal studies have shown that Moringa oleifera and Morus alba improve liver function in both type-1 and type-2 diabetes. Also, evidence from clinical trials suggests that Boswellia serrata, Juglans regia, Melissa officinalis, Portulaca oleracea, Silybum marianum, Talapotaka Churna, and Urtica dioica reduce serum liver enzymes in diabetic patients. The main active ingredient of these plants to protect the liver seems to be phenolic compounds such as niazirin, chlorogenic acid, resveratrol, etc. Mechanisms responsible for the hepatoprotective activity of herbal agents include improving glucose metabolism, restoring adipokines levels, antioxidant defense, and anti-inflammatory activity. Several signaling pathways are involved in hepatoprotective effects of herbal agents in diabetes, such as phosphoinositide 3-kinase, adenosine monophosphate-activated protein kinase, mitogen-activated protein kinase, and c-Jun NH2-terminal kinase.
Collapse
Affiliation(s)
- Leila Mobasheri
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Ahadi
- Department of Gastroenterology and Hepatology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahdi Esmaeilizadeh
- Innovative Medical Research Center, Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Niloofar Nikpasand
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Einafshar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Gong H, Zhong H, Xu HM, Liu XC, Li LP, Zhang DK. Insight into increased risk of portal vein thrombosis in nonalcoholic fatty liver disease. Eur J Intern Med 2023; 114:23-34. [PMID: 37330315 DOI: 10.1016/j.ejim.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the leading chronic liver diseases with increased morbidity and mortality rates for extrahepatic diseases (including cardiovascular disease, portal vein thrombosis, etc.). There is an increased risk of thrombosis in both the portal and systemic circulation in patients with NAFLD, independent of traditional liver cirrhosis. However, increased portal pressure, the most critical factor, is frequently observed in NAFLD patients, predisposing them to portal vein thrombosis (PVT). It has been reported that there is an 8.5% incidence of PVT among patients with non-cirrhotic NAFLD in a prospective cohort study. Based on the prothrombotic status of NAFLD itself, patients combined with cirrhosis may accelerate the development of PVT and lead to a poor prognosis. Moreover, PVT has been shown to complicate the procedure and adversely affect the outcome during liver transplantation surgery. NAFLD is in a prothrombotic state, and its underlying mechanisms have not been fully understood so far. Particularly noteworthy is that gastroenterologists currently overlook the higher risk of PVT in NAFLD. We investigate the pathogenesis of NAFLD complicated with PVT from the perspective of primary, secondary, and tertiary hemostasis, and also summarize relevant studies in humans. Some treatment options that may affect NAFLD and its PVT are also explored to improve patient-oriented outcomes.
Collapse
Affiliation(s)
- Hang Gong
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Huang Zhong
- Department of Gastroenterology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| | - Hui-Mei Xu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiong-Chang Liu
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, Gansu Province, China
| | - Liang-Ping Li
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan Province, China.
| | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|
10
|
Kerr NR, Kelty TJ, Mao X, Childs TE, Kline DD, Rector RS, Booth FW. Selective breeding for physical inactivity produces cognitive deficits via altered hippocampal mitochondrial and synaptic function. Front Aging Neurosci 2023; 15:1147420. [PMID: 37077501 PMCID: PMC10106691 DOI: 10.3389/fnagi.2023.1147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Physical inactivity is the 4th leading cause of death globally and has been shown to significantly increase the risk for developing Alzheimer's Disease (AD). Recent work has demonstrated that exercise prior to breeding produces heritable benefits to the brains of offspring, suggesting that the physical activity status of previous generations could play an important role in one's brain health and their subsequent risk for neurodegenerative diseases. Thus, our study aimed to test the hypothesis that selective breeding for physical inactivity, or for high physical activity, preference produces heritable deficits and enhancements to brain health, respectively. To evaluate this hypothesis, male and female sedentary Low Voluntary Runners (LVR), wild type (WT), and High Voluntary Runner (HVR) rats underwent cognitive behavioral testing, analysis of hippocampal neurogenesis and mitochondrial respiration, and molecular analysis of the dentate gyrus. These analyses revealed that selecting for physical inactivity preference has produced major detriments to cognition, brain mitochondrial respiration, and neurogenesis in female LVR while female HVR display enhancements in brain glucose metabolism and hippocampal size. On the contrary, male LVR and HVR showed very few differences in these parameters relative to WT. Overall, we provide evidence that selective breeding for physical inactivity has a heritable and detrimental effect on brain health and that the female brain appears to be more susceptible to these effects. This emphasizes the importance of remaining physically active as chronic intergenerational physical inactivity likely increases susceptibility to neurodegenerative diseases for both the inactive individual and their offspring.
Collapse
Affiliation(s)
- Nathan R. Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Taylor J. Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Xuansong Mao
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Thomas E. Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Frank W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Yang Z, Wang L. Current, emerging, and potential therapies for non-alcoholic steatohepatitis. Front Pharmacol 2023; 14:1152042. [PMID: 37063264 PMCID: PMC10097909 DOI: 10.3389/fphar.2023.1152042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been identified as the most common chronic liver disease worldwide, with a growing incidence. NAFLD is considered the hepatic manifestation of a metabolic syndrome that emerges from multiple factors (e.g., oxidative stress, metabolic disorders, endoplasmic reticulum stress, cell death, and inflammation). Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, has been reported to be a leading cause of cirrhosis and hepatic carcinoma, and it is progressing rapidly. Since there is no approved pharmacotherapy for NASH, a considerable number of therapeutic targets have emerged with the deepening of the research on NASH pathogenesis. In this study, the therapeutic potential and properties of regulating metabolism, the gut microbiome, antioxidant, microRNA, inhibiting apoptosis, targeting ferroptosis, and stem cell-based therapy in NASH are reviewed and evaluated. Since the single-drug treatment of NASH is affected by individual heterogeneous responses and side effects, it is imperative to precisely carry out targeted therapy with low toxicity. Lastly, targeted therapeutic agent delivery based on exosomes is proposed in this study, such that drugs with different mechanisms can be incorporated to generate high-efficiency and low-toxicity individualized medicine.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
12
|
Chaabani R, Bejaoui M, Ben Jeddou I, Zaouali MA, Haouas Z, Belgacem S, Peralta C, Ben Abdennebi H. Effect of the Non-steroidal Anti-inflammatory Drug Diclofenac on Ischemia-Reperfusion Injury in Rat Liver: A Nitric Oxide-Dependent Mechanism. Inflammation 2023:10.1007/s10753-023-01802-9. [PMID: 36933163 DOI: 10.1007/s10753-023-01802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Ischemia/reperfusion injury (IRI) is an inevitable complication of liver surgery and transplantation. The purpose of this study was to examine the beneficial effects of diclofenac on hepatic IRI and the mechanism behind it. Wistar rats' livers were subjected to warm ischemia for 60 min followed by 24 h of reperfusion. Diclofenac was administered intravenously 15 min before ischemia at 10, 20, and 40 mg/kg body weight. To determine the mechanism of diclofenac protection, the NOS inhibitor L-Nitro-arginine methyl ester (L-NAME) was administered intravenously 10 min after diclofenac injection (40 mg/kg). Liver injury was evaluated by aminotransferases (ALT and AST) activities and histopathological analysis. Oxidative stress parameters (SOD, GPX, MPO, GSH, MDA, and PSH) were also determined. Then, eNOS gene transcription and p-eNOS and iNOS protein expressions were evaluated. The transcription factors PPAR-γ and NF-κB in addition to the regulatory protein IκBα were also investigated. Finally, the gene expression levels of inflammatory (COX-2, IL-6, IL-1β, IL-18, TNF-α, HMGB-1, and TLR-4) and apoptosis (Bcl-2 and Bax) markers were measured. Diclofenac, at the optimal dose of 40 mg/kg, decreased liver injury and maintained histological integrity. It also reduced oxidative stress, inflammation, and apoptosis. Its mechanism of action essentially depended on eNOS activation rather than COX-2 inhibition, since pre-treatment with L-NAME abolished all the protective effects of diclofenac. To our knowledge, this is the first study demonstrating that diclofenac protects rat liver against warm IRI through the induction of NO-dependent pathway. Diclofenac reduced oxidative balance, attenuated the activation of the subsequent pro-inflammatory response and decreased cellular and tissue damage. Therefore, diclofenac could be a promising molecule for the prevention of liver IRI.
Collapse
Affiliation(s)
- Roua Chaabani
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Mohamed Bejaoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia.
| | - Ikram Ben Jeddou
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Zohra Haouas
- Laboratory of Histology, Embryology and Cytogenetics (LR18ES40), Faculty of Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Sameh Belgacem
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (LR12ES08), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Carmen Peralta
- Instituto de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Campus Casanova, Casanova 143, 08036, Barcelona, Spain
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| |
Collapse
|
13
|
Mitochondria-Targeted Triphenylphosphonium-Hydroxytyrosol Prevents Lipotoxicity-Induced Endothelial Injury by Enhancing Mitochondrial Function and Redox Balance via Promoting FoxO1 and Nrf2 Nuclear Translocation and Suppressing Inflammation via Inhibiting p38/NF-кB Pathway. Antioxidants (Basel) 2023; 12:antiox12010175. [PMID: 36671037 PMCID: PMC9854738 DOI: 10.3390/antiox12010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Hyperlipidemia results in endothelial dysfunction, which is intimately associated with disturbed mitochondrial homeostasis, and is a real risk factor for cardiovascular diseases (CVDs). Triphenylphosphonium (TPP+)-HT, constructed by linking a mitochondrial-targeting moiety TPP+ to hydroxytyrosol (HT), enters the cell and accumulates in mitochondria and is thus an important candidate drug for preventing hyperlipidemia-induced endothelial injury. In the present study, we found that TPP-HT has a better anti-inflammatory effect than HT. In vivo, TPP-HT significantly prevented hyperlipidemia-induced adverse changes in the serological lipid panel, as well as endothelial and mitochondrial dysfunction of the thoracic aorta. Similarly, in vitro, TPP-HT exhibited similar protective effects in palmitate (PA)-induced endothelial dysfunction, particularly enhanced expression of the mitochondrial ETC complex II, recovered FoxO1 expression in PA-injured human aorta endothelial cells (HAECs) and promoted FoxO1 nuclear translocation. We further demonstrated that FoxO1 plays a pivotal role in regulating ATP production in the presence of TPP-HT by using the siFoxO1 knockdown technique. Simultaneously, TPP-HT enhanced Nrf2 nuclear translocation, consistent with the in vivo findings of immunofluorescence, and the antioxidant effect of TPP-HT was almost entirely blocked by siNrf2. Concomitantly, TPP-HT’s anti-inflammatory effects in the current study were primarily mediated via the p38 MAPK/NF-κB signaling pathway in addition to the FoxO1 and Nrf2 pathways. In brief, our findings suggest that mitochondria-targeted TPP-HT prevents lipotoxicity induced endothelial dysfunction by enhancing mitochondrial function and redox balance by promoting FoxO1 and Nrf2 nuclear translocation.
Collapse
|
14
|
Moore MP, Cunningham RP, Meers GM, Johnson SA, Wheeler AA, Ganga RR, Spencer NM, Pitt JB, Diaz-Arias A, Swi AIA, Hammoud GM, Ibdah JA, Parks EJ, Rector RS. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology 2022; 76:1452-1465. [PMID: 35000203 PMCID: PMC9270503 DOI: 10.1002/hep.32324] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS NAFLD and its more-advanced form, steatohepatitis (NASH), is associated with obesity and is an independent risk factor for cardiovascular, liver-related, and all-cause mortality. Available human data examining hepatic mitochondrial fatty acid oxidation (FAO) and hepatic mitochondrial turnover in NAFLD and NASH are scant. APPROACH AND RESULTS To investigate this relationship, liver biopsies were obtained from patients with obesity undergoing bariatric surgery and data clustered into four groups based on hepatic histopathological classification: Control (CTRL; no disease); NAFL (steatosis only); Borderline-NASH (steatosis with lobular inflammation or hepatocellular ballooning); and Definite-NASH (D-NASH; steatosis, lobular inflammation, and hepatocellular ballooning). Hepatic mitochondrial complete FAO to CO2 and the rate-limiting enzyme in β-oxidation (β-hydroxyacyl-CoA dehydrogenase activity) were reduced by ~40%-50% with D-NASH compared with CTRL. This corresponded with increased hepatic mitochondrial reactive oxygen species production, as well as dramatic reductions in markers of mitochondrial biogenesis, autophagy, mitophagy, fission, and fusion in NAFL and NASH. CONCLUSIONS These findings suggest that compromised hepatic FAO and mitochondrial turnover are intimately linked to increasing NAFLD severity in patients with obesity.
Collapse
Affiliation(s)
- Mary P. Moore
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO, USA, 65201
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA, 65211
| | - Rory P. Cunningham
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO, USA, 65201
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA, 65211
| | - Grace M. Meers
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO, USA, 65201
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA, 65211
| | - Sarah A. Johnson
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO, USA, 65201
- Department of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia MO, USA, 65211
| | - Andrew A. Wheeler
- Department of Surgery, University of Missouri, Columbia MO, USA, 65211
| | - Rama R. Ganga
- Department of Surgery, University of Missouri, Columbia MO, USA, 65211
| | - Nicole M. Spencer
- Department of Surgery, University of Missouri, Columbia MO, USA, 65211
| | - James B. Pitt
- Department of Surgery, University of Missouri, Columbia MO, USA, 65211
| | | | - Ahmed I. A. Swi
- Department of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia MO, USA, 65211
| | - Ghassan M. Hammoud
- Department of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia MO, USA, 65211
| | - Jamal A. Ibdah
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO, USA, 65201
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA, 65211
- Department of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia MO, USA, 65211
| | - Elizabeth J. Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA, 65211
- Department of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia MO, USA, 65211
| | - R. Scott Rector
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO, USA, 65201
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA, 65211
- Department of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia MO, USA, 65211
| |
Collapse
|
15
|
Zhang S, Sun S, Wei X, Zhang M, Chen Y, Mao X, Chen G, Liu C. Short-term moderate caloric restriction in a high-fat diet alleviates obesity via AMPK/SIRT1 signaling in white adipocytes and liver. Food Nutr Res 2022; 66:7909. [PMID: 35721807 PMCID: PMC9180121 DOI: 10.29219/fnr.v66.7909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Background Obesity is a growing problem for public health worldwide. Calorie restriction (CR) is a safety and effective life intervention to defend against obesity. Short-term moderate CR may be a more favorable strategy against this pathology. However, the mechanisms behind the effects of CR remain to be clarified. Increased energy expenditure in the liver and brown adipose tissue could potentially be manipulated to modulate and improve metabolism in obesity. Moreover, nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin-1 (SIRT1) and AMP-activated protein kinase (AMPK) are well-characterized metabolic modulators. We aim to explore the anti-obesity effects of short-term moderate CR by improving energy metabolism via the SIRT1/AMPK pathway in white adipocytes and liver in a mouse model of obesity. Methods Male C57BL/6 mice were randomized into two groups receiving either a standard or a high-fat diet (HFD) for 8 weeks to induce obesity. The HFD-induced obese mice were further randomized into two groups: HFD group or CR group (received 75% of the food eaten by HFD group). Their energy metabolism, white adipose tissue (WAT) contents, hepatic fat deposition, the expression of AMPK, SIRT1, peroxisome proliferators γ-activated receptor coactivator-1α (PGC-1α), nuclear factor kappa B (NF-κB), endothelial nitric oxide synthase (eNOS) in WAT, and hepatic tissues were determined. Results After 4 weeks, body weight, total serum cholesterol, fasting blood glucose, and insulin levels were significantly lower in the CR group. Moreover, CR ameliorated hepatocyte steatosis, attenuated white adipogenesis, and increased energy expenditure and expressions of SIRT1, PGC-1α, and phosphorylated AMPK in subcutaneous WAT and the hepatic tissues. In addition, CR reduced the protein levels of NF-κB and increased the eNOS expression. Conclusion Short-term moderate CR decreases obesity, increases the thermogenesis, and inhibits inflammation in a mouse model of obesity, probably via the activation of the AMPK/SIRT1 pathway in WAT and liver.
Collapse
Affiliation(s)
- Shaohong Zhang
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Geriatrics, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Shuoshuo Sun
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Wei
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengxiao Zhang
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Geriatrics, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
| | - Yu Chen
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodong Mao
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guofang Chen
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Liu
- Endocrinology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Li T, Wang H, Dong S, Liang M, Ma J, Jiang X, Yu W. Protective effects of maslinic acid on high fat diet-induced liver injury in mice. Life Sci 2022; 301:120634. [PMID: 35568228 DOI: 10.1016/j.lfs.2022.120634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022]
Abstract
AIMS Due to the prevalence of high-fat diets and lack of exercise, diseases related to nutrient metabolism such as nonalcoholic fatty liver disease (NAFLD) have become one of the reasons causes endangering human liver health. Maslinic acid (MA) is a pentacyclic triterpenoid acid that is abundant in fruits such as hawthorn and jujube. In this study, we investigated the effect of MA on NAFLD to inform the development of dietary supplements for the treatment and prevention of NAFLD. MATERIALS AND METHODS The NAFLD model was established by feeding mice a high-fat diet (HFD). HEPG2 cells were treated with oleic acid and used as a cell culture model. Testing kits, haematoxylin and eosin staining, oil red O staining, western blotting, and immunofluorescence were performed with in vivo and in vitro experiments. KEY FINDINGS The current study revealed that MA significantly reduced liver weight, body weight and serum lipid levels, and protected against liver steatosis and injury induced by a HFD. MA increased the expression of Beclin1, ATG1, and Bcl-2 mRNA and protein while decreasing the expression of TNF-α and IL-1β, caspase-3 and Bax mRNA and protein. Beclin1, and ATG1 were obviously increased, and the mRNA and protein expression of TNF-α and IL-1β were obviously reduced, the mRNA and protein expression of Caspase-3 and Bax were obviously reduced, and the mRNA and protein expression of Bax were obviously increased by MA. SIGNIFICANCE MA reduces the content of fat in the liver cells of NAFLD mice through lipophagy activitiy and reduces inflammation and apoptosis injury.
Collapse
Affiliation(s)
- Tianqi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Meng Liang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - XiaoWen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Cunningham RP, Moore MP, Dashek RJ, Meers GM, Jepkemoi V, Takahashi T, Vieira-Potter VJ, Kanaley JA, Booth FW, Rector RS. Hepatocyte-specific eNOS deletion impairs exercise-induced adaptations in hepatic mitochondrial function and autophagy. Obesity (Silver Spring) 2022; 30:1066-1078. [PMID: 35357089 PMCID: PMC9050943 DOI: 10.1002/oby.23414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Endothelial nitric oxide synthase (eNOS) is a potential mediator of exercise-induced hepatic mitochondrial adaptations. METHODS Here, male and female hepatocyte-specific eNOS knockout (eNOShep-/- ) and intact hepatic eNOS (eNOSfl/fl ) mice performed voluntary wheel-running exercise (EX) or remained in sedentary cage conditions for 10 weeks. RESULTS EX resolved the exacerbated hepatic steatosis in eNOShep-/- male mice. Elevated hydrogen peroxide emission (~50% higher in eNOShep-/- vs. eNOSfl/fl mice) was completely ablated with EX. Interestingly, EX increased [1-14 C] palmitate oxidation in eNOSfl/fl male mice, but this was blunted in the eNOShep-/- male mice. eNOShep-/- mice had lower markers of the energy sensors AMP-activated protein kinase (AMPK)/phospho- (p)AMPK and mammalian target of rapamycin (mTOR) and p-mTOR, as well as the autophagy initiators serine/threonine-protein kinase ULK1 and pULK1, compared with eNOSfl/fl mice. Females showed elevated electron transport chain protein content and markers of mitochondrial biogenesis (transcription factor A, mitochondrial, peroxisome proliferator-activated receptor-gamma coactivator 1α). CONCLUSIONS Collectively, this study demonstrates for the first time, to the authors' knowledge, the requirement of eNOS in hepatocytes in the EX-induced increases in hepatic fatty acid oxidation in male mice. Deletion of eNOS in hepatocytes also appears to impair the energy-sensing ability of the cell and inhibit the activation of the autophagy initiating factor ULK1. These data uncover the important and novel role of hepatocyte eNOS in EX-induced hepatic mitochondrial adaptations.
Collapse
Affiliation(s)
- Rory P. Cunningham
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri 65212, USA
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Mary P. Moore
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri 65212, USA
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Ryan J. Dashek
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri 65212, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Grace M. Meers
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri 65212, USA
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Vivien Jepkemoi
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri 65212, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | - Jill A. Kanaley
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Frank W. Booth
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - R. Scott Rector
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri 65212, USA
- Departments of Medicine-Division of Gastroenterology and Hepatology
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Soares RN, Ramirez-Perez FI, Cabral-Amador FJ, Morales-Quinones M, Foote CA, Ghiarone T, Sharma N, Power G, Smith JA, Rector RS, Martinez-Lemus LA, Padilla J, Manrique-Acevedo C. SGLT2 inhibition attenuates arterial dysfunction and decreases vascular F-actin content and expression of proteins associated with oxidative stress in aged mice. GeroScience 2022; 44:1657-1675. [PMID: 35426600 PMCID: PMC9213629 DOI: 10.1007/s11357-022-00563-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Aging of the vasculature is characterized by endothelial dysfunction and arterial stiffening, two key events in the pathogenesis of cardiovascular disease (CVD). Treatment with sodium glucose transporter 2 (SGLT2) inhibitors is now known to decrease cardiovascular morbidity and mortality in type 2 diabetes. However, whether SGLT2 inhibition attenuates vascular aging is unknown. We first confirmed in a cohort of adult subjects that aging is associated with impaired endothelial function and increased arterial stiffness and that these two variables are inversely correlated. Next, we investigated whether SGLT2 inhibition with empagliflozin (Empa) ameliorates endothelial dysfunction and reduces arterial stiffness in aged mice with confirmed vascular dysfunction. Specifically, we assessed mesenteric artery endothelial function and stiffness (via flow-mediated dilation and pressure myography mechanical responses, respectively) and aortic stiffness (in vivo via pulse wave velocity and ex vivo via atomic force microscopy) in Empa-treated (14 mg/kg/day for 6 weeks) and control 80-week-old C57BL/6 J male mice. We report that Empa-treated mice exhibited improved mesenteric endothelial function compared with control, in parallel with reduced mesenteric artery and aortic stiffness. Additionally, Empa-treated mice had greater vascular endothelial nitric oxide synthase activation, lower phosphorylated cofilin, and filamentous actin content, with downregulation of pathways involved in production of reactive oxygen species. Our findings demonstrate that Empa improves endothelial function and reduces arterial stiffness in a preclinical model of aging, making SGLT2 inhibition a potential therapeutic alternative to reduce the progression of CVD in older individuals.
Collapse
Affiliation(s)
| | | | | | | | - Christopher A. Foote
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO USA
| | - Thaysa Ghiarone
- Department of Medicine, University of Missouri, Columbia, MO USA
| | - Neekun Sharma
- Department of Medicine, University of Missouri, Columbia, MO USA
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA
| | - James A. Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA ,Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO USA ,Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO USA
| | - Luis A. Martinez-Lemus
- Department of Medicine, University of Missouri, Columbia, MO USA ,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA ,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA
| | - Camila Manrique-Acevedo
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA ,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, MO USA
| |
Collapse
|
19
|
Yu S, Sun L, Jiang J, He X, Zhou Q. Common variants in AGR1 genes contributed to the risk and traits of cirrhotic cardiomyopathy in Han Chinese population. Biomark Med 2022; 16:331-340. [PMID: 35234520 DOI: 10.2217/bmm-2021-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to determine the association between polymorphisms of the ARG1 gene and the risk and traits of cirrhotic cardiomyopathy (CCM). Methods: A total of 468 CCM and 1012 cirrhosis patients were enrolled, and 12 single-nucleotide polymorphisms (SNPs) in the ARG1 gene were genotyped. Differences in genotype, allele and haplotype frequencies of the SNPs between the CCM and cirrhosis groups were analyzed by chi-square test. Correlations of the genotypes of SNPs and representative traits of liver and heart function were performed using linear regression analysis. Results: SNPs rs2781666 and rs2781667 were associated with the risk of CCM in both dominant and additive inheritance models. The GG genotype frequency of rs2781666 and CC genotype frequency of rs2781667 were lower in the CCM group than in the cirrhosis group. The G-C haplotype frequency of the block consisting of rs2781666 and rs2781667 was higher and the T-T haplotype frequency was lower in CCM patients than in cirrhosis patients. SNP rs2781666 was associated with the alanine transaminase level, and rs2781667 was associated with the ARG1 level and left atrial diameter. Conclusion: SNPs rs2781666 and rs2781667 in the ARG1 gene were associated with susceptibility to and traits of CCM in the Han Chinese population.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Lei Sun
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Xin He
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| |
Collapse
|