1
|
Haliyur R, Parkinson DH, Ma F, Xu J, Li Q, Huang Y, Tsoi LC, Bogle R, Liu J, Gudjonsson JE, Rao RC. Liquid Biopsy for Proliferative Diabetic Retinopathy: Single-Cell Transcriptomics of Human Vitreous Reveals Inflammatory T-Cell Signature. OPHTHALMOLOGY SCIENCE 2024; 4:100539. [PMID: 39220810 PMCID: PMC11365369 DOI: 10.1016/j.xops.2024.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 09/04/2024]
Abstract
Purpose Current therapies for proliferative diabetic retinopathy (PDR) do not specifically target VEGF-independent, cell-type-specific processes that lead to vision loss, such as inflammatory pathways. This study aimed to identify targetable cell types and corresponding signaling pathways by elucidating the single-cell landscape of the vitreous of patients with PDR. Design Case series. Subjects Vitreous and peripheral blood obtained from 5 adult patients (6 eyes) undergoing pars plana vitrectomy for vision-threatening PDR. Methods Single-cell RNA sequencing (scRNA-seq) was performed on vitreous cells obtained from diluted cassette washings during vitrectomy from 6 eyes and peripheral blood mononuclear cells (PBMCs, n = 5). Droplet-based scRNA-seq was performed using the Chromium 10x platform to obtain single-cell transcriptomes. Differences in tissue compartments were analyzed with gene ontology enrichment of differentially expressed genes and an unbiased ligand-receptor interaction analysis. Main Outcome Measures Single-cell transcriptomic profiles of vitreous and peripheral blood. Results Transcriptomes from 13 675 surgically harvested vitreous cells and 22 636 PBMCs were included. Clustering revealed 4 cell states consistently across all eyes with representative transcripts for T cells (CD2, CD3D, CD3E, and GZMA), B cells (CD79A, IGHM, MS4A1 (CD20), and HLA-DRA), myeloid cells (LYZ, CST3, AIF1, and IFI30), and neutrophils (BASP1, CXCR2, S100A8, and S100A9). Most vitreous cells were T cells (91.6%), unlike the peripheral blood (46.2%), whereas neutrophils in the vitreous were essentially absent. The full repertoire of adaptive T cells including CD4+, CD8+ and T regulatory cells (Treg) and innate immune system effectors (i.e., natural killer T cells) was present in the vitreous. Pathway analysis also demonstrated activation of CD4+ and CD8+ memory T cells and ligand-receptor interactions unique to the vitreous. Conclusions In the first single-cell transcriptomic characterization of human vitreous in a disease state, we show PDR vitreous is primarily composed of T cells, a critical component of adaptive immunity, with activity and proportions distinct from T cells within the peripheral blood, and neutrophils are essentially absent. These results demonstrate the feasibility of liquid vitreous biopsies via collection of otherwise discarded, diluted cassette washings during vitrectomy to gain mechanistic and therapeutic insights into human vitreoretinal disease. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Rachana Haliyur
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - David H. Parkinson
- Medical Scientist Training Program, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | - Feiyang Ma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jing Xu
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Qiang Li
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Yuanhao Huang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rachael Bogle
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rajesh C. Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan
- Section of Ophthalmology, Surgery Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
2
|
Yamaguchi M, Nakao S, Arima M, Little K, Singh A, Wada I, Kaizu Y, Zandi S, Garweg JG, Matoba T, Shiraishi W, Yamasaki R, Shibata K, Go Y, Ishibashi T, Uemura A, Stitt AW, Sonoda KH. Heterotypic macrophages/microglia differentially contribute to retinal ischaemia and neovascularisation. Diabetologia 2024; 67:2329-2345. [PMID: 38977459 DOI: 10.1007/s00125-024-06215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/30/2024] [Indexed: 07/10/2024]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is characterised by neuroinflammation that drives neuronal and vascular degenerative pathology, which in many individuals can lead to retinal ischaemia and neovascularisation. Infiltrating macrophages and activated retina-resident microglia have been implicated in the progression of diabetic retinopathy, although the distinct roles of these immune cells remain ill-defined. Our aim was to clarify the distinct roles of macrophages/microglia in the pathogenesis of proliferative ischaemic retinopathies. METHODS Murine oxygen-induced retinopathy is commonly used as a model of ischaemia-induced proliferative diabetic retinopathy (PDR). We evaluated the phenotype macrophages/microglia by immunostaining, quantitative real-time RT-PCR (qRT-PCR), flow cytometry and scRNA-seq analysis. In clinical imaging studies of diabetic retinopathy, we used optical coherence tomography (OCT) and OCT angiography. RESULTS Immunostaining, qRT-PCR and flow cytometry showed expression levels of M1-like macrophages/microglia markers (CD80, CD68 and nitric oxide synthase 2) and M2-like macrophages/microglia markers (CD206, CD163 and macrophage scavenger receptor 1) were upregulated in areas of retinal ischaemia and around neo-vessels, respectively. scRNA-seq analysis of the ischaemic retina revealed distinct ischaemia-related clusters of macrophages/microglia that express M1 markers as well as C-C chemokine receptor 2. Inhibition of Rho-kinase (ROCK) suppressed CCL2 expression and reduced CCR2-positive M1-like macrophages/microglia in areas of ischaemia. Furthermore, the area of retinal ischaemia was reduced by suppressing blood macrophage infiltration not only by ROCK inhibitor and monocyte chemoattractant protein-1 antibody but also by GdCl3. Clinical imaging studies of diabetic retinopathy using OCT indicated potential involvement of macrophages/microglia represented by hyperreflective foci in areas of reduced perfusion. CONCLUSIONS/INTERPRETATION These results collectively indicated that heterotypic macrophages/microglia differentially contribute to retinal ischaemia and neovascularisation in retinal vascular diseases including diabetic retinopathy. This adds important new information that could provide a basis for a more targeted, cell-specific therapeutic approach to prevent progression to sight-threatening PDR.
Collapse
Affiliation(s)
- Muneo Yamaguchi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Ophthalmology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
- Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Karis Little
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Aditi Singh
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Iori Wada
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Kaizu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Souska Zandi
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Justus G Garweg
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Wataru Shiraishi
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Shibata
- Department of Biology and Biochemistry, University of Yamaguchi, Ube, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Alan W Stitt
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Zhang Y, Zhou A. Macrophage activation contributes to diabetic retinopathy. J Mol Med (Berl) 2024; 102:585-597. [PMID: 38429382 DOI: 10.1007/s00109-024-02437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Diabetic retinopathy (DR) is recognized as a neurovascular complication of diabetes, and emerging evidence underscores the pivotal role of inflammation in its pathophysiology. Macrophage activation is increasingly acknowledged as a key contributor to the onset and progression of DR. Different populations of macrophages originating from distinct sources contribute to DR-associated inflammation. Retinal macrophages can be broadly categorized into two main groups based on their origin: intrinsic macrophages situated within the retina and vitreoretinal interface and macrophages derived from infiltrating monocytes. The former comprises microglia (MG), perivascular macrophages, and macrophage-like hyalocytes. Retinal MG, as the principal population of tissue-resident population of mononuclear phagocytes, exhibits high heterogeneity and plasticity while serving as a crucial connector between retinal capillaries and synapses. This makes MG actively involved in the pathological processes across various stages of DR. Activated hyalocytes also contribute to the pathological progression of advanced DR. Additionally, recruited monocytes, displaying rapid turnover in circulation, augment the population of retinal macrophages during DR pathogenesis, exerting pathogenic or protective effect based on different subtypes. In this review, we examine novel perspectives on macrophage biology based on recent studies elucidating the diversity of macrophage identity and function, as well as the mechanisms influencing macrophage behavior. These insights may pave the way for innovative therapeutic strategies in the management of DR.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Aiyi Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
4
|
Oncel D, Corradetti G, He Y, Ashrafkhorasani M, Nittala MG, Stambolian D, Pericak-Vance MA, Haines JL, Sadda SR. Assessment of intraretinal hyperreflective foci using multimodal imaging in eyes with age-related macular degeneration. Acta Ophthalmol 2024; 102:e126-e132. [PMID: 37199278 PMCID: PMC10656356 DOI: 10.1111/aos.15708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE This study aimed to investigate the correspondence between intraretinal hyperreflective foci (IHRF) identified on optical coherence tomography (OCT) B-scans with hyperpigmentation on colour fundus photography (CFP) or hyperreflectivity on infrared reflectance (IR) images in eyes with age-related macular degeneration (AMD). METHODS Flash CFP, IR images and OCT B-scans obtained at the same visit were evaluated. Individual IHRF identified on OCT B-scans were assessed for the qualitative presence or absence of a hypotransmission tail into the choroid. The corresponding IR image obtained at the time of OCT acquisition was analysed for the presence or absence of hyperreflectivity in this region. The IR images were manually registered to the CFP image, and CFP images were inspected for the presence or absence of hyperpigmentation at the location of IHRF. RESULTS From 122 eyes, a total of 494 IHRF were evaluated. For the primary analysis of qualitative presence or absence of hyperpigmentation on CFP and hyperreflectivity on IR at the locations corresponding to IHRF on OCT, 301 (61.0%) of the IHRFs demonstrated evidence of hyperpigmentation on CFP, while only 115 (23.3%) showed evidence of hyperreflectivity on IR. The qualitative determination of the presence or absence of an abnormality on CFP or IR were significantly different (p < 0.0001). 327 (66.2%) of the IHRF showed hypotransmission, and 80.4% of these IHRF showed hyperpigmentation on CFP, though only 23.9% (p < 0.0001) demonstrated hyperreflectivity on IR. CONCLUSIONS Less than two-thirds of IHRF evident on OCT manifest as hyperpigmentation on colour photos, though IHRF with posterior shadowing are more likely to be evident as pigment. IR imaging appears to be even more poorly sensitive for visualizing IHRF.
Collapse
Affiliation(s)
- Deniz Oncel
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Giulia Corradetti
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ye He
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Maryam Ashrafkhorasani
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Muneeswar Gupta Nittala
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Dwight Stambolian
- Ophthalmology and Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jonathan L. Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - SriniVas R. Sadda
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
5
|
Bisen JB, Heisel CJ, Duffy BV, Decker NL, Fukuyama H, Boughanem GO, Fawzi AA, Lavine JA. Association between macrophage-like cell density and ischemia metrics in diabetic eyes. Exp Eye Res 2023; 237:109703. [PMID: 38652673 PMCID: PMC11040107 DOI: 10.1016/j.exer.2023.109703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 04/25/2024]
Abstract
We previously showed that macrophage-like cells (MLCs) are increased in eyes with advanced diabetic retinopathy (DR). Here, we hypothesized that MLC density was correlated with ischemia using optical coherence tomography angiography (OCTA) and ultra-widefield fluorescein angiography (UWF-FA). Treatment-naïve diabetic eyes were prospectively imaged with repeated OCTA (average 5.3 scans per eye) and UWF-FA imaging. OCTA images were registered and averaged to generate a superficial capillary plexus (SCP), deep capillary plexus (DCP), and MLC slab. We calculated geometric perfusion deficit (GPD), vessel length density, and vessel density for the SCP and DCP. MLC density was quantified by two masked graders and averaged. Ischemia on UWF-FA was measured to generate a non-perfusion area (NPA) and index (NPI). Since MLC density was non-parametrically distributed, MLC density was correlated with ischemia metrics using Spearman correlations. Forty-five treatment-naïve eyes of 45 patients (59 ± 12 years of age; 56% female) were imaged. We included 6 eyes with no DR, 7 eyes with mild non-proliferative DR (NPDR), 22 moderate NPDR, 4 severe NPDR, and 6 PDR eyes. MLC density between graders was highly correlated (r = 0.9592, p < 0.0001). MLC density was correlated with DCP GPD (r = 0.296, p = 0.049), but no other OCTA ischemia metrics. MLC density was also correlated with UWF-FA NPA (r = 0.330, p = 0.035) and NPI (r = 0.332, p = 0.034). MLC density was correlated with total ischemia on UWF-FA and local DCP GPD. Since both UWF-FA and DCP non-perfusion are associated with higher risk for DR progression, MLC density could be another potential biomarker for DR progression.
Collapse
Affiliation(s)
- Jay B Bisen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Curtis J Heisel
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Brandon V Duffy
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Nicole L Decker
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hisashi Fukuyama
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ghazi O Boughanem
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amani A Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Pang J, Koh TJ. Proliferation of monocytes and macrophages in homeostasis, infection, injury, and disease. J Leukoc Biol 2023; 114:532-546. [PMID: 37555460 PMCID: PMC10673715 DOI: 10.1093/jleuko/qiad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Monocytes (Mo) and macrophages (Mφ) play important roles in the function of tissues, organs, and systems of all animals during homeostasis, infection, injury, and disease. For decades, conventional wisdom has dictated that Mo and Mφ are end-stage cells that do not proliferate and that Mφ accumulation in tissues is the result of infiltration of Mo from the blood and subsequent differentiation to Mφ. However, reports from the early 1900s to the present describe evidence of Mo and Mφ proliferation in different tissues and contexts. The purpose of this review is to summarize both historical and current evidence for the contribution of Mφ proliferation to their accumulation in different tissues during homeostasis, infection, injury, and disease. Mφ proliferate in different organs and tissues, including skin, peritoneum, lung, heart, aorta, kidney, liver, pancreas, brain, spinal cord, eye, adipose tissue, and uterus, and in different species including mouse, rat, rabbit, and human. Mφ can proliferate at different stages of differentiation with infiltrating Mo-like cells proliferating in certain inflammatory contexts (e.g. skin wounding, kidney injury, bladder and liver infection) and mature resident Mφ proliferating in other inflammatory contexts (e.g. nematode infection, acetaminophen liver injury) and during homeostasis. The pathways involved in stimulating Mφ proliferation also may be context dependent, with different cytokines and transcription factors implicated in different studies. Although Mφ are known to proliferate in health, injury, and disease, much remains to be learned about the regulation of Mφ proliferation in different contexts and its impact on the homeostasis, injury, and repair of different organs and tissues.
Collapse
Affiliation(s)
- Jingbo Pang
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612-7246, United States
| | - Timothy J Koh
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612-7246, United States
| |
Collapse
|
7
|
Hammer SS, Dorweiler TF, McFarland D, Adu-Agyeiwaah Y, Mast N, El-Darzi N, Fortmann SD, Nooti S, Agrawal DK, Pikuleva IA, Abela GS, Grant MB, Busik JV. Cholesterol crystal formation is a unifying pathogenic mechanism in the development of diabetic retinopathy. Diabetologia 2023; 66:1705-1718. [PMID: 37311879 PMCID: PMC10390399 DOI: 10.1007/s00125-023-05949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/18/2023] [Indexed: 06/15/2023]
Abstract
AIMS/HYPOTHESIS Hyper-reflective crystalline deposits found in retinal lesions have been suggested to predict the progression of diabetic retinopathy, but the nature of these structures remains unknown. METHODS Scanning electron microscopy and immunohistochemistry were used to identify cholesterol crystals (CCs) in human donor, pig and mouse tissue. The effects of CCs were analysed in bovine retinal endothelial cells in vitro and in db/db mice in vivo using quantitative RT-PCR, bulk RNA sequencing, and cell death and permeability assays. Cholesterol homeostasis was determined using 2H2O and 2H7-cholesterol. RESULTS We identified hyper-reflective crystalline deposits in human diabetic retina as CCs. Similarly, CCs were found in the retina of a diabetic mouse model and a high-cholesterol diet-fed pig model. Cell culture studies demonstrated that treatment of retinal cells with CCs can recapitulate all major pathogenic mechanisms leading to diabetic retinopathy, including inflammation, cell death and breakdown of the blood-retinal barrier. Fibrates, statins and α-cyclodextrin effectively dissolved CCs present in in vitro models of diabetic retinopathy, and prevented CC-induced endothelial pathology. Treatment of a diabetic mouse model with α-cyclodextrin reduced cholesterol levels and CC formation in the retina, and prevented diabetic retinopathy. CONCLUSIONS/INTERPRETATION We established that cholesterol accumulation and CC formation are a unifying pathogenic mechanism in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Tim F Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Delaney McFarland
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Yvonne Adu-Agyeiwaah
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Seth D Fortmann
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sunil Nooti
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - George S Abela
- Department of Medicine, Michigan State University, East Lansing, MI, USA
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Liu Z, Gan S, Fu L, Xu Y, Wang S, Zhang G, Pan D, Tao L, Shen X. 1,8-Cineole ameliorates diabetic retinopathy by inhibiting retinal pigment epithelium ferroptosis via PPAR-γ/TXNIP pathways. Biomed Pharmacother 2023; 164:114978. [PMID: 37271074 DOI: 10.1016/j.biopha.2023.114978] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
1,8-Cineole, the main component of volatile oil in aromatic plants, has diverse pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer properties. Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus (DM). Here, we investigated the protective effect of 1,8-cineole on DR and found that 1,8-cineole treatment could alter the expression of several genes in both high glucose (HG)-induced ARPE-19 cells and retinal tissues of DM mice, as well as inhibit ferroptosis. Subsequent investigations into the molecular mechanisms underlying this inhibition revealed that expression of thioredoxin-interacting protein (TXNIP) was significantly upregulated while that of peroxisome proliferator-activated receptor γ (PPAR-γ) was significantly downregulated in HG-induced ARPE-19 cells, and treatment with 1,8-cineole could effectively reverse these changes. Treatment with a PPAR-γ pharmacological agonist (rosiglitazone), alone or combined with 1,8-cineole, significantly inhibited the transcription of TXNIP and ferroptosis in HG-induced ARPE-19 cells. Conversely, pretreatment with GW9662, a PPAR-γ inhibitor, upregulated the transcription and expression of TXNIP in HG-induced ARPE-19 cells; 1,8-cineole failed to reverse this upregulated expression. To explore these relationships, we constructed a PPAR-γ adenovirus shRNA to elucidate the effect of 1,8-cineole on the negative regulation of TXNIP by PPAR-γ. Taken together, the present findings indicate that HG-induced ferroptosis in retinal tissue plays an essential role in the pathogenesis of DR, which can be ameliorated by 1,8-cineole.
Collapse
Affiliation(s)
- Zhangnian Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shiquan Gan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lingyun Fu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Guangqiong Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Di Pan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China.
| |
Collapse
|