1
|
Zhang J, Dong X, Pang Q, Zhang A. Irisin Alleviates Cognitive Impairment by Inhibiting AhR/NF- κB-NLRP3-Mediated Pyroptosis of Hippocampal Neurons in Chronic Kidney Disease. Mediators Inflamm 2024; 2024:2662362. [PMID: 39698584 PMCID: PMC11655147 DOI: 10.1155/mi/2662362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction: Cognitive impairment is a vital complication of chronic kidney disease (CKD). The effect of irisin on CKD-induced cognitive impairment remains unclear. In the present study, we aimed to investigate the role of Irisin in mitigating cognitive impairment and explore the underlying mechanisms in CKD. Methods: A CKD mice model was established by adenine. Cognitive function was assessed via the novel object recognition (NOR). Interleukin-1β (IL-1β) levels were measured by enzyme-linked immunosorbent assay (ELISA), while pyroptosis-related protein expression was analyzed using western blotting. Results: Our data showed an upregulation of cell pyroptosis in hippocampus tissues of CKD mice, accompanied by significant cognitive impairment. Pyroptosis and cognitive impairment was both improved by Irisin treatment in vivo. Additionally, irisin markedly downregulated pyroptosis levels through aryl hydrocarbon receptor (AhR)/NF-κB p65 signaling in HT-22 cells pretreated with indoxyl sulfate (IS). In vitro experiments further confirmed that pyroptosis was inhibited by AhR and NF-κB p65 inhibitors. Conclusions: We first demonstrated that irisin alleviated cognitive impairment by inhibiting AhR/NF-κB-NLRP3-mediated pyroptosis of hippocampal neurons in CKD. Overall, irisin may have the potential to serve as a critical antipyroptotic agent for improving CKD-induced cognitive impairment.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Wang YT, Zheng SY, Jiang SD, Luo Y, Wu YX, Naranmandakh S, Li YS, Liu SG, Xiao WF. Irisin in degenerative musculoskeletal diseases: Functions in system and potential in therapy. Pharmacol Res 2024; 210:107480. [PMID: 39490914 DOI: 10.1016/j.phrs.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Degenerative musculoskeletal diseases are a class of diseases related to the gradual structural and functional deterioration of muscles, joints, and bones, including osteoarthritis (OA), osteoporosis (OP), sarcopenia (SP), and intervertebral disc degeneration (IDD). As the proportion of aging people around the world increases, degenerative musculoskeletal diseases not only have a multifaceted impact on patients, but also impose a huge burden on the medical industry in various countries. Therefore, it is crucial to find key regulatory factors and potential therapeutic targets. Recent studies have shown that irisin plays an important role in degenerative musculoskeletal diseases, suggesting that it may become a key molecule in the prevention and treatment of degenerative diseases of the musculoskeletal system. Therefore, this review provides a comprehensive description of the release and basic functions of irisin, and summarizes the role of irisin in OA, OP, SP, and IDD from a cellular and tissue perspective, providing comprehensive basis for clinical application. In addition, we summarized the many roles of irisin as a key information molecule in bone-muscle-adipose crosstalk and a regulatory molecule involved in inflammation, senescence, and cell death, and proposed the interesting possibility of irisin in degenerative musculoskeletal diseases.
Collapse
Affiliation(s)
- Yu-Tong Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-de Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shu-Guang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Yuan Q, Wang Y, Hu S, Cai Z, Jiang L, Huang Y. Role of microRNA in Diabetic Osteoporosis. Mol Biotechnol 2024:10.1007/s12033-024-01316-1. [PMID: 39609335 DOI: 10.1007/s12033-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Diabetic osteoporosis (DOP), a complication associated with diabetes mellitus (DM), is a metabolic bone disorder characterized by a reduction in bone mass per unit volume, impaired bone tissue microarchitecture, heightened bone fragility, and increased susceptibility to fractures. Individuals with diabetes exhibit a significantly greater incidence of osteoporosis and related fractures than those without diabetes. These fractures present a significant challenge in terms of the healing process and can result in severe consequences, including fatalities. MicroRNAs (miRNAs), a class of noncoding RNAs, play a pivotal role in numerous human diseases and are implicated in the pathogenesis of DOP. This review initially elucidates the essential role of miRNAs in the pathogenesis of DOP. Next, we emphasize the potential significance of miRNAs as valuable biomarkers for diagnosing DOP and predicting DOP-related fractures. Furthermore, we explore the involvement of miRNAs in managing DOP through various pathways, including conventional pharmaceutical interventions and exercise therapy. Importantly, miRNAs exhibit potential as targeted therapeutic agents for effectively treating DOP. Finally, we highlight the use of novel materials and exosomes for miRNA delivery, which has significant advantages in the treatment of DOP and overcomes the limitations associated with miRNA delivery.
Collapse
Affiliation(s)
- Qiong Yuan
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
- Department of Transfusion, Zigong First People's Hospital, Zigong, 643000, China
| | - Yuhan Wang
- Department of Clinical Laboratory, Luzhou Longmatan District People's Hospital, Luzhou, 646000, China
| | - Shan Hu
- Department of Transfusion, Guanghan People's Hospital, Deyang, 618300, China
| | - Zhi Cai
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
| | - Ling Jiang
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Liu Y, Gao L, Li M, Zhang W, Wang Y, Zhao J. High-Risk Analysis of Vertebral Compression Fractures With Type 2 Diabetes Mellitus: Site-Specific Volumetric Bone Mineral Density. Int J Endocrinol 2024; 2024:7150482. [PMID: 39633984 PMCID: PMC11617046 DOI: 10.1155/ije/7150482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024] Open
Abstract
Aims: To explore the distribution of site-specific volumetric bone mineral density (vBMD) and analyze the mechanism of vertebral compression fractures with type 2 diabetes mellitus (T2DM) subjects using quantitative computed tomography (QCT). Materials and Methods: 304 postmenopausal women without T2DM and 274 postmenopausal women with T2DM underwent QCT scan, and all divided into three age subgroups. L1 vertebra was segmented into nine zones based on the corresponding position to the human body. Results: Whether in the T2DM or non-T2DM of each age group, from the ventral to the dorsal side of L1 vertebra, the posterior third zones were the highest, and from the head to the foot of L1 vertebra, the middle third zones were the highest (p < 0.05). Global and most zonal vBMDs of T2DM were higher than those of non-T2DM in the age group of 50-59 years old, vBMD-mp of T2DM was higher in the age group of 60-59 years old, and vBMD-mm of T2DM was higher in the age group of 70-80 years old (p < 0.05). Zonal vBMDs in T2DM were higher than non-T2DM and the difference decreases with age especially in the upper third of L1 vertebra and the lower third of L1 vertebra. Conclusions: Vertebral compression fractures and the confusion between T2DM and vBMD may be all caused by the heterogeneous distribution of vBMDs. The higher risk of T2DM with vertebral compression fractures may be associated with the different loss rate of global and site-specific vBMD, independent of vBMD itself.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Imaging, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| | - Lei Gao
- Department of Medical Imaging, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| | - Min Li
- Department of Endocrinology, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| | - Wei Zhang
- Department of Medical Imaging, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| | - Yan Wang
- Department of Endocrinology, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| | - Jian Zhao
- Department of Medical Imaging, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
5
|
Zhang L, Peng Y, Kong Y, Zhang X, Li Z, Jia H. Circulating irisin levels in patients with sarcopenia: a systematic review and meta-analysis. Eur Geriatr Med 2024:10.1007/s41999-024-01097-5. [PMID: 39562482 DOI: 10.1007/s41999-024-01097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE During the aging process, a decrease in irisin levels is associated with numerous bone and muscle diseases. This study aims to provide evidence of circulating irisin levels in patients with sarcopenia. METHODS This systematic review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standard and the recommendations of the Cochrane Collaboration. A comprehensive search was conducted in PubMed, Embase, Web of Science databases, and other sources from their establishment until August 2023. The Review Manager software version 5.4 was used to calculate the standard mean difference (SMD). I2 statistics measured heterogeneity. RESULTS 12 studies involving 2133 participants who met the inclusion criteria were analyzed. We found that irisin levels were significantly lower in patients with sarcopenia (SMD: - 1.28; 95% CI - 1.65, - 0.90; I2 = 92% P < 0.001). Sensitivity analysis confirmed the robustness of this result. The correlation results showed that there was a positive correlation between the levels of circulating irisin and muscle mass (r value 0.62, 95% CI 0.31, 0.81; P < 0.001) and strength (r value 0.47, 95% CI 0.23, 0.66; P < 0.001), but no statistical correlation between irisin and muscle function (The P-values for gait speed and chair test time are 0.5523 and 0.1467, respectively). CONCLUSION No matter the study area, study design, blood samples, or diagnostic criteria, the concentration of circulating irisin in patients with sarcopenia was lower than that in the control group.
Collapse
Affiliation(s)
- Liangchuan Zhang
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yating Peng
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yuan Kong
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Xue Zhang
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Zetian Li
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Hong Jia
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China.
- Collaborating Center of the National Institute of Health Data Sciences of China, Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
6
|
Qiu R, Sun W, Su Y, Sun Z, Fan K, Liang Y, Lin X, Zhang Y. Irisin's emerging role in Parkinson's disease research: A review from molecular mechanisms to therapeutic prospects. Life Sci 2024; 357:123088. [PMID: 39357796 DOI: 10.1016/j.lfs.2024.123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by impaired motor function, is typically treated with medications and surgery. However, recent studies have validated physical exercise as an effective adjunct therapy, significantly improving both motor and non-motor symptoms in PD patients. Irisin, a myokine, has garnered increasing attention for its beneficial effects on the nervous system. Research has shown that irisin plays a crucial role in regulating metabolic balance, optimizing autophagy, maintaining mitochondrial quality, alleviating oxidative stress and neuroinflammation, and regulating cell death-all processes intricately linked to the pathogenesis of PD. This review examines the mechanisms through which irisin may counteract PD, provides insights into its biological effects, and considers its potential as a target for therapeutic strategies.
Collapse
Affiliation(s)
- Ruqing Qiu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Weilu Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yana Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangli Fan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yue Liang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyue Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Zhang X, Mao J, Shao L, Liu S, Zhou J, Mei M, Zhang Z. Screening of active components of melastoma dodecandrum lour. against diabetic osteoporosis using cell membrane chromatography-mass spectrometry. Front Pharmacol 2024; 15:1450154. [PMID: 39525628 PMCID: PMC11543422 DOI: 10.3389/fphar.2024.1450154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background Melastoma dodecandrum Lour. (MD), a traditional botanical drug known for its hypoglycemic, antioxidant, and anti-inflammatory properties, is commonly used to treat diabetes, osteoarthritis, and osteoporosis. However, its specific active components against diabetic osteoporosis remain unclear. Purpose This study aimed to identify the key active components in MD using cell membrane chromatography coupled with mass spectrometry and validate their effects in vitro. Methods An AGEs-induced osteoblast injury model was established. MTT assays measured cell viability, and ALP activity was assessed using a biochemical kit. Western blotting was employed to detect the expression levels of osteoblast-related proteins OCN and RUNX2 and the AGE receptor protein RAGE. ELISA was used to determine the levels of SOD, MDA, CAT, and GPx. PCR quantified TNF-α expression to evaluate the protective effects and potential mechanisms of MD. The AGEs-induced osteoblast cell membrane chromatography-mass spectrometry method facilitated the rapid identification of potentially active compounds based on their affinity for the osteoblast cell membrane. Cell experiments further validated the activity of the characteristic component isovitexin. Results MD significantly improved cell viability in AGEs-damaged osteoblasts, enhanced ALP, SOD, CAT, and GPx activities, reduced MDA levels, increased OCN and RUNX2 protein expression, and decreased TNF-α mRNA and RAGE protein expression. Cell membrane chromatography identified 20 chemical constituents, including 13 flavonoids, 4 organic acids, 1 phenylpropanoids, 1 terpenoids, and 1 alkaloid. Cell experiments have confirmed that isovitexin has significant protective activity against osteoblasts and can inhibit the expression of specific receptor RAGE on the osteoblast membrane, consistent with the effect of MD. Conclusion MD and its active component, isovitexin, provide protective effects against AGEs-induced osteoblast injury, offering a basis for subsequent drug development.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Pharmacy Department, Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- Zhejiang Provincial Key Laboratory of She Medicine Inheritance, Innovation, Development and Application of Traditional Chinese Medicine, Lishui, China
- Lishui She Medicine Inheritance, Innovation, Development and Application Key Laboratory of Traditional Chinese Medicine, Lishui, China
| | - Jiale Mao
- Pharmacy Department, Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- Zhejiang Provincial Key Laboratory of She Medicine Inheritance, Innovation, Development and Application of Traditional Chinese Medicine, Lishui, China
- Lishui She Medicine Inheritance, Innovation, Development and Application Key Laboratory of Traditional Chinese Medicine, Lishui, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Shao
- Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao Traditional Chinese Medicine Hospital, Qingdao, China
| | - Shuang Liu
- Pharmacy Department, Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- Zhejiang Provincial Key Laboratory of She Medicine Inheritance, Innovation, Development and Application of Traditional Chinese Medicine, Lishui, China
- Lishui She Medicine Inheritance, Innovation, Development and Application Key Laboratory of Traditional Chinese Medicine, Lishui, China
| | - Jiwang Zhou
- Pharmacy Department, Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Mingrong Mei
- Zhejiang Provincial Ethnic Hospital, Jingning, China
| | - Zunjing Zhang
- Pharmacy Department, Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| |
Collapse
|
8
|
Hu X, Wang W, Chen X, Kong C, Zhao X, Wang Z, Zhang H, Lu S. Trehalose Rescues Postmenopausal Osteoporosis Induced by Ovariectomy through Alleviating Osteoblast Pyroptosis via Promoting Autophagy. Biomedicines 2024; 12:2224. [PMID: 39457537 PMCID: PMC11505409 DOI: 10.3390/biomedicines12102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Osteoporosis, a prevalent bone metabolic disease, often requires long-term drug treatments that may lead to serious side effects. Trehalose, a natural disaccharide found in various organisms, has been shown to have a promoting effect on autophagy. However, whether trehalose can improve bone mass recovery in ovariectomized rats and its underlying mechanisms remains unclear. In this study, trehalose was administered to ovariectomized rats to evaluate its therapeutic potential for osteoporosis following ovariectomy. METHODS Micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) and immunohistochemical staining techniques were utilized to evaluate the impact of trehalose on osteoporosis induced by ovariectomy (OVX) in mice, both in imaging and histological dimensions. Furthermore, the influence of trehalose on osteoblastogenesis and functional activity was quantified through Alizarin Red S (ARS) staining and immunoblotting assays. RESULTS Trehalose effectively mitigated bone loss, elevated autophagy and suppressed pyroptosis in ovariectomized rats. Furthermore, 3-methyladenine diminished the protective effects of trehalose, particularly in promoting autophagy and inhibiting pyroptosis. CONCLUSIONS Trehalose demonstrates significant potential in treating osteoporosis by suppressing NLRP3 inflammasome-driven pyroptosis, primarily through autophagy promotion. This suggests that trehalose could be a promising, safer alternative treatment for osteoporosis.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Haojie Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
9
|
Zhao C, Wu Y, Zhu S, Liu H, Xu S. Irisin Protects Musculoskeletal Homeostasis via a Mitochondrial Quality Control Mechanism. Int J Mol Sci 2024; 25:10116. [PMID: 39337601 PMCID: PMC11431940 DOI: 10.3390/ijms251810116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Irisin, a myokine derived from fibronectin type III domain-containing 5 (FNDC5), is increasingly recognized for its protective role in musculoskeletal health through the modulation of mitochondrial quality control. This review synthesizes the current understanding of irisin's impact on mitochondrial biogenesis, dynamics, and autophagy in skeletal muscle, elucidating its capacity to bolster muscle strength, endurance, and resilience against oxidative-stress-induced muscle atrophy. The multifunctional nature of irisin extends to bone metabolism, where it promotes osteoblast proliferation and differentiation, offering a potential intervention for osteoporosis and other musculoskeletal disorders. Mitochondrial quality control is vital for cellular metabolism, particularly in energy-demanding tissues. Irisin's influence on this process is highlighted, suggesting its integral role in maintaining cellular homeostasis. The review also touches upon the regulatory mechanisms of irisin secretion, predominantly induced by exercise, and its systemic effects as an endocrine factor. While the therapeutic potential of irisin is promising, the need for standardized measurement techniques and further elucidation of its mechanisms in humans is acknowledged. The collective findings underscore the burgeoning interest in irisin as a keystone in musculoskeletal health and a candidate for future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Haiying Liu
- Department of Spinal Surgery, Peking University People’s Hospital, Peking University, Beijing 100871, China
| | - Shuai Xu
- Department of Spinal Surgery, Peking University People’s Hospital, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Zou Y, Tang X, Yang S, Chen Z, Liu B, Zhou Z, Peng X, Tang C. New insights into the function of the NLRP3 inflammasome in sarcopenia: mechanism and therapeutic strategies. Metabolism 2024; 158:155972. [PMID: 38972476 DOI: 10.1016/j.metabol.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Sarcopenia is one of the most common skeletal muscle disorders and is characterized by infirmity and disability. While extensive research has focused on elucidating the mechanisms underlying the progression of sarcopenia, further comprehensive insights into its pathogenesis are necessary to identify new preventive and therapeutic approaches. The involvement of inflammasomes in sarcopenia is widely recognized, with particular emphasis on the NLRP3 (NLR family pyrin domain containing 3) inflammasome. In this review, we aim to elucidate the underlying mechanisms of the NLRP3 inflammasome and its relevance in sarcopenia of various etiologies. Furthermore, we highlight interventions targeting the NLRP3 inflammasome in the context of sarcopenia and discuss the current limitations of our knowledge in this area.
Collapse
Affiliation(s)
- Yunyi Zou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiangbin Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Siyuan Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zhanglin Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Bin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zuoqiong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China.
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China.
| |
Collapse
|
11
|
Sasso GRDS, Cerri PS, Sasso-Cerri E, Simões MJ, Gil CD, Florencio-Silva R. Possible role of annexin A1/FPR2 pathway in COX2/NLRP3 inflammasome regulation in alveolar bone cells of estrogen-deficient female rats with diabetes mellitus. J Periodontol 2024; 95:749-763. [PMID: 37987258 DOI: 10.1002/jper.23-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Annexin A1 (ANXA1) and the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome play important roles in bone remodeling. However, expression profiles of these factors in bone cells under diabetes mellitus (DM) and estrogen-deficient conditions are poorly understood. This study investigated the immunoexpression of ANXA1 and its formyl peptide receptor 2 (FPR2), as well as NLRP3 inflammasome mediators, during remodeling of the alveolar process in diabetic and estrogen-deficient rats. METHODS Twenty adult female Wistar rats were divided into four groups (n = 5): Sham-operated (SHAM) and ovariectomized (OVX) rats received a vehicle solution, and SHAM and OVX rats were intraperitoneally administered 60 mg/kg/body weight (BW) of streptozotocin (STZ) to induce DM (SHAM-Di and OVX-Di groups). After 7 weeks, the rats were euthanized and their maxillae were fixed in phosphate-buffered 4% formaldehyde and embedded in paraffin. Sections were stained with hematoxylin/eosin (H&E) and picrosirius red or subjected to immunohistochemical detection of ANXA1, FPR2, NLRP3, interleukin-1β (IL-1β), and cyclooxygenase-2 (COX2). RESULTS Estrogen deficiency and DM were associated with deleterious effects in bone tissue, as evidenced by a lower number of osteocytes and higher number of empty lacunae in the SHAM-Di and OVX-Di groups compared to the nondiabetic groups. Both diabetic groups showed a smaller vascular area and weaker collagen fiber birefringence intensity in alveolar bone tissue. A significantly higher number of ANXA1/FPR2-positive osteoblasts, osteocytes, and osteoclasts was accompanied by a significantly higher number of these cells immunolabeled for COX2, NLRP3, and IL-1β in the diabetic and OVX groups, especially in both estrogen-deficient and diabetic rats. CONCLUSION These results indicate a possible role for the ANXA1/FPR2 pathway as a fine-tuning/anti-inflammatory regulator to counterbalance exacerbated COX2/NLRP3/IL-1β activation in bone cells during bone remodeling under estrogen deficiency and DM.
Collapse
Affiliation(s)
- Gisela Rodrigues Da Silva Sasso
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| | - Paulo Sérgio Cerri
- School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Estela Sasso-Cerri
- School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Manuel Jesus Simões
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| | - Rinaldo Florencio-Silva
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| |
Collapse
|
12
|
Hu X, Wang Z, Wang W, Cui P, Kong C, Chen X, Lu S. Irisin as an agent for protecting against osteoporosis: A review of the current mechanisms and pathways. J Adv Res 2024; 62:175-186. [PMID: 37669714 PMCID: PMC11331170 DOI: 10.1016/j.jare.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Osteoporosis is recognized as a skeletal disorder characterized by diminished bone tissue quality and density. Regular physical exercise is widely acknowledged to preserve and enhance bone health, but the detailed molecular mechanisms involved remain unclear. Irisin, a factor derived from muscle during exercise, influences bone and muscle. Since its discovery in 2012, irisin has been found to promote bone growth and reduce bone resorption, establishing a tangible link between muscle exertion and bone health. Consequently, the mechanism by which irisin prevents osteoporosis have attracted significant scientific interest. AIM OF THE REVIEW This study aims to elucidate the multifaceted relationship between exercise, irisin, and bone health. Focusing on irisin, a muscle-derived factor released during exercise, we seek to understand its role in promoting bone growth and inhibiting resorption. Through a review of current research article on irisin in osteoporosis, Our review provides a deep dive into existing research on influence of irisin in osteoporosis, exploring its interaction with pivotal signaling pathways and its impact on various cell death mechanisms and inflammation. We aim to uncover the molecular underpinnings of how irisin, secreted during exercise, can serve as a therapeutic strategy for osteoporosis. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Irisin, secreted during exercise, plays a vital role in bridging muscle function to bone health. It not only promotes bone growth but also inhibits bone resorption. Specifically, Irisin fosters osteoblast proliferation, differentiation, and mineralization predominantly through the ERK, p38, and AMPK signaling pathways. Concurrently, it regulates osteoclast differentiation and maturation via the JNK, Wnt/β-catenin and RANKL/RANK/OPG signaling pathways. This review further delves into the profound significance of irisin in osteoporosis and its involvement in diverse cellular death mechanisms, including apoptosis, autophagy, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
13
|
Abstract
Clinical studies revealed a relationship between osteoporosis and sarcopenia. Based on this background, crosstalk between muscle and bone has emerged as a novel research field in the past decade. Among the interactions that occur between muscle and bone, humoral factors, such as osteokines and myokines, affect distant muscles and bones, respectively. Recent studies proposed several important myokines that have an impact on bone, such as myostatin and irisin. Signaling by these myokines has potential as a target for drug development and biomarkers for exercise. Mechanical stress, endocrine disorders, and chronic kidney disease partly affect bone through various myokines in crosstalk between muscle and bone. Moreover, the involvement of extracellular vesicles from bone or muscle as communication tools in the interactions between muscle and bone was recently proposed. Further clinical studies are needed to clarify the significance of myokine regulation under physiological and pathophysiological states in humans.
Collapse
Affiliation(s)
- Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
14
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2024:S2090-1232(24)00247-9. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
15
|
Chen T, Jin L, Li J, Liu Y. Pyroptosis mediates osteoporosis via the inflammation immune microenvironment. Front Immunol 2024; 15:1371463. [PMID: 38895114 PMCID: PMC11184911 DOI: 10.3389/fimmu.2024.1371463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoporosis represents a systemic imbalance in bone metabolism, augmenting the susceptibility to fractures among patients and emerging as a notable mortality determinant in the elderly population. It has evolved into a worldwide concern impacting the physical well-being of the elderly, imposing a substantial burden on both human society and the economy. Presently, the precise pathogenesis of osteoporosis remains inadequately characterized and necessitates further exploration. The advancement of osteoporosis is typically linked to the initiation of an inflammatory response. Cells in an inflammatory environment can cause inflammatory death including pyroptosis. Pyroptosis is a recently identified form of programmed cell death with inflammatory properties, mediated by the caspase and gasdermin families. It is regarded as the most inflammatory form of cell death in contemporary medical research. Under the influence of diverse cytokines, macrophages, and other immune cells may undergo pyroptosis, releasing inflammatory factors, such as IL-1β and IL-18. Numerous lines of evidence highlight the pivotal role of pyroptosis in the pathogenesis of inflammatory diseases, including cancer, intestinal disorders, hepatic conditions, and cutaneous ailments. Osteoporosis progression is frequently associated with inflammation; hence, pyroptosis may also play a role in the pathogenesis of osteoporosis to a certain extent, making it a potential target for treatment. This paper has provided a comprehensive summary of pertinent research concerning pyroptosis and its impact on osteoporosis. The notion proposing that pyroptosis mediates osteoporosis via the inflammatory immune microenvironment is advanced, and we subsequently investigate potential targets for treating osteoporosis through the modulation of pyroptosis.
Collapse
Affiliation(s)
- Te Chen
- Division of Joint Surgery, Department of Orthopaedics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Linyu Jin
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingyi Li
- Division of Joint Surgery, Department of Orthopaedics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yikai Liu
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
16
|
Chai S, Yang Y, Wei L, Cao Y, Ma J, Zheng X, Teng J, Qin N. Luteolin rescues postmenopausal osteoporosis elicited by OVX through alleviating osteoblast pyroptosis via activating PI3K-AKT signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155516. [PMID: 38547625 DOI: 10.1016/j.phymed.2024.155516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Recently, osteoblast pyroptosis has been proposed as a potential pathogenic mechanism underlying osteoporosis, although this remains to be confirmed. Luteolin (Lut), a flavonoid phytochemical, plays a critical role in the anti-osteoporosis effects of many traditional Chinese medicine prescriptions. However, its protective impact on osteoblasts in postmenopausal osteoporosis (PMOP) has not been elucidated. PURPOSE This research aimed to determine the effect of Lut in ameliorating PMOP by alleviating osteoblast pyroptosis and sustaining osteogenesis. STUDY DESIGN This research was designed to investigate the novel mechanism of Lut in alleviating PMOP both in cell and animal models. METHODS Ovariectomy-induced PMOP models were established in mice with/without daily gavaged of 10 or 20 mg/kg body weight Lut. The impact of Lut on bone microstructure, metabolism and oxidative stress was evaluated with 0.104 mg/kg body weight Estradiol Valerate Tablets daily gavaged as positive control. Network pharmacological analysis and molecular docking were employed to investigate the mechanisms of Lut in PMOP treatment. Subsequently, the impacts of Lut on the PI3K/AKT axis, oxidative stress, mitochondria, and osteoblast pyroptosis were assessed. In vitro, cultured MC3T3-E1(14) cells were exposed to H2O2 with/without Lut to examine its effects on the PI3K/AKT signaling pathway, osteogenic differentiation, mitochondrial function, and osteoblast pyroptosis. RESULTS Our findings demonstrated that 20 mg/kg Lut, similar to the positive control drug, effectively reduced systemic bone loss and oxidative stress, and enhanced bone metabolism induced by ovariectomy. Network pharmacological analysis and molecular docking indicated that the PI3K/AKT axis was a potential target, with oxidative stress response and nuclear membrane function being key mechanisms. Consequently, the effects of Lut on the PI3K/AKT axis and pyroptosis were investigated. In vivo data revealed that the PI3K/AKT axis was deactivated following ovariectomy, and Lut restored the phosphorylation of key proteins, thereby reactivating the axis. Additionally, Lut alleviated osteoblast pyroptosis and mitochondrial abnormalities induced by ovariectomy. In vitro, Lut intervention mitigated the inhibition of the PI3K/AKT axis and osteogenesis, as well as H2O2-induced pyroptosis. Furthermore, Lut attenuated ROS accumulation and mitochondrial dysfunction. The effects of Lut, including osteogenesis restoration, anti-pyroptosis, and mitochondrial maintenance, were all reversed with LY294002 (a PI3K/AKT pathway inhibitor). CONCLUSION In summary, Lut could improve mitochondrial dysfunction, alleviate GSDME-mediated pyroptosis and maintain osteogenesis via activating the PI3K/AKT axis, offering a new therapeutic strategy for PMOP.
Collapse
Affiliation(s)
- Shuang Chai
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Yanbing Yang
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Liwei Wei
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Yuju Cao
- Zhengzhou Traditional Chinese Medicine (TCM) Traumatology Hospital, Zhengzhou, 450016, Henan Province, China
| | - Jiangtao Ma
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Xuxia Zheng
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Junyan Teng
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China
| | - Na Qin
- Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), 450016, Henan Province, China.
| |
Collapse
|
17
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
18
|
Du ZY, Zhu HL, Chang W, Zhang YF, Ling Q, Wang KW, Zhang J, Zhang QB, Kan XL, Wang QN, Wang H, Zhou Y. Maternal prednisone exposure during pregnancy elevates susceptibility to osteoporosis in female offspring: The role of mitophagy/FNDC5 alteration in skeletal muscle. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133997. [PMID: 38508115 DOI: 10.1016/j.jhazmat.2024.133997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Maternal exposure to glucocorticoids has been associated with adverse outcomes in offspring. However, the consequences and mechanisms of gestational exposure to prednisone on susceptibility to osteoporosis in the offspring remain unclear. Here, we found that gestational prednisone exposure enhanced susceptibility to osteoporosis in adult mouse offspring. In a further exploration of myogenic mechanisms, results showed that gestational prednisone exposure down-regulated FNDC5/irisin protein expression and activation of OPTN-dependent mitophagy in skeletal muscle of adult offspring. Additional experiments elucidated that activated mitophagy significantly inhibited the expression of FNDC5/irisin in skeletal muscle cells. Likewise, we observed delayed fetal bone development, downregulated FNDC5/irisin expression, and activated mitophagy in fetal skeletal muscle upon gestational prednisone exposure. In addition, an elevated total m6A level was observed in fetal skeletal muscle after gestational prednisone exposure. Finally, gestational supplementation with S-adenosylhomocysteine (SAH), an inhibitor of m6A activity, attenuated mitophagy and restored FNDC5/irisin expression in fetal skeletal muscle, which in turn reversed fetal bone development. Overall, these data indicate that gestational prednisone exposure increases m6A modification, activates mitophagy, and decreases FNDC5/irisin expression in skeletal muscle, thus elevating osteoporosis susceptibility in adult offspring. Our results provide a new perspective on the earlier prevention and treatment of fetal-derived osteoporosis.
Collapse
Affiliation(s)
- Zun-Yu Du
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua-Long Zhu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Wei Chang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu-Feng Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Qing Ling
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Kai-Wen Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Jin Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiu-Li Kan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qu-Nan Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
19
|
Yang Z, Xu J, Kang T, Chen X, Zhou C. The Impact of NLRP3 Inflammasome on Osteoblasts and Osteogenic Differentiation: A Literature Review. J Inflamm Res 2024; 17:2639-2653. [PMID: 38707958 PMCID: PMC11067939 DOI: 10.2147/jir.s457927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoblasts (OBs), which are a crucial type of bone cells, derive from bone marrow mesenchymal stem cells (MSCs). Accumulating evidence suggests inflammatory cytokines can inhibit the differentiation and proliferation of OBs, as well as interfere with their ability to synthesize bone matrix, under inflammatory conditions. NLRP3 inflammasome is closely associated with cellular pyroptosis, which can lead to excessive release of pro-inflammatory cytokines, causing tissue damage and inflammatory responses, however, the comprehensive roles of NLRP3 inflammasome in OBs and their differentiation have not been fully elucidated, making targeting NLRP3 inflammasome approaches to treat diseases related to OBs uncertain. In this review, we provide a summary of NLRP3 inflammasome activation and its impact on OBs. We highlight the significant roles of NLRP3 inflammasome in regulating OBs differentiation and function. Furthermore, current available strategies to affect OBs function and osteogenic differentiation targeting NLRP3 inflammasome are listed and analyzed. Finally, through the prospective discussion, we seek to provide novel insights into the crucial role of NLRP3 inflammasome in diseases related to OBs and offer valuable information for devising treatment strategies.
Collapse
Affiliation(s)
- Ziyuan Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Jiaan Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Chengcong Zhou
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
20
|
Li Z, Wang B, Wang R, Zhang Z, Xiong J, Wang X, Ma Y, Han L. Identification of PKM2 as a pyroptosis-related key gene aggravates senile osteoporosis via the NLRP3/Caspase-1/GSDMD signaling pathway. Int J Biochem Cell Biol 2024; 169:106537. [PMID: 38342404 DOI: 10.1016/j.biocel.2024.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUNDS Senile osteoporosis-alternatively labeled as skeletal aging-encompasses age-induced bone deterioration and loss of bone microarchitecture. Recent studies have indicated a potential association between senile osteoporosis and chronic systemic inflammation, and pyroptosis in bone marrow-derived mesenchymal stem cells is speculated to contribute to bone loss and osteoporosis. Therefore, targeting pyroptosis in stem cells may be a potential therapeutic strategy for treating osteoporosis. METHODS Initially, we conducted bioinformatics analysis to screen the GEO databases to identify the key gene associated with pyroptosis in senile osteoporosis. Next, we analyzed the relationship between altered proteins and clinical data. In vitro experiments were then performed to explore whether the downregulation of PKM2 expression could inhibit pyroptosis. Additionally, an aging-related mouse model of osteoporosis was established to validate the efficacy of a PKM2 inhibitor in alleviating osteoporosis progression. RESULTS We identified PKM2 as a key gene implicated in pyroptosis in senile osteoporosis patients through bioinformatics analysis. Further analyses of bone marrow and stem cells demonstrated significant PKM2 overexpression in senile osteoporosis patients. Silencing PKM2 expression inhibited pyroptosis in senile stem cells, of which the osteogenesis potential and angiogenic function were also primarily promoted. Moreover, the results in vivo demonstrated that administering PKM2 inhibitors suppressed pyroptosis in senile osteoporosis mice and mitigated senile osteoporosis progression. CONCLUSION Our study uncovered PKM2, a key pyroptosis marker of bone marrow mesenchymal stem cells in senile osteoporosis. Shikonin, a PKM2 inhibitor, was then identified as a potential drug candidate for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruoyu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Zhang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Xiong
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ma
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lizhi Han
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Anhui Key Laboratory of Tissue Transformation, Bengbu Medical College, Bengbu 233000, Anhui Province, China.
| |
Collapse
|
21
|
Dong Q, Han Z, Gao M, Tian L. FNDC5/irisin ameliorates bone loss of type 1 diabetes by suppressing endoplasmic reticulum stress‑mediated ferroptosis. J Orthop Surg Res 2024; 19:205. [PMID: 38555440 PMCID: PMC10981808 DOI: 10.1186/s13018-024-04701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Ferroptosis is known to play a crucial role in diabetic osteopathy. However, key genes and molecular mechanisms remain largely unclear. This study aimed to identify a crucial ferroptosis-related differentially expressed gene (FR-DEG) in diabetic osteopathy and investigate its potential mechanism. METHODS We identified fibronectin type III domain-containing protein 5 (FNDC5)/irisin as an essential FR-DEG in diabetic osteopathy using the Ferroptosis Database (FerrDb) and GSE189112 dataset. Initially, a diabetic mouse model was induced by intraperitoneal injection of streptozotocin (STZ), followed by intraperitoneal injection of irisin. MC3T3-E1 cells treated with high glucose (HG) were used as an in vitro model. FNDC5 overexpression plasmid was used to explore underlying mechanisms in vitro experiments. Femurs were collected for micro-CT scan, histomorphometry, and immunohistochemical analysis. Peripheral serum was collected for ELISA analysis. Cell viability was assessed using a CCK-8 kit. The levels of glutathione (GSH), malondialdehyde (MDA), iron, reactive oxygen species (ROS), and lipid ROS were detected by the corresponding kits. Mitochondria ultrastructure was observed through transmission electron microscopy (TEM). Finally, mRNA and protein expressions were examined by quantitative real-time PCR (qRT-PCR) and western blot analysis. RESULTS The expression of FNDC5 was found to be significantly decreased in both in vivo and in vitro models. Treatment with irisin significantly suppressed ferroptosis and improved bone loss. This was demonstrated by reduced lipid peroxidation and iron overload, increased antioxidant capability, as well as the inhibition of the ferroptosis pathway in bone tissues. Furthermore, in vitro studies demonstrated that FNDC5 overexpression significantly improved HG-induced ferroptosis and promoted osteogenesis. Mechanistic investigations revealed that FNDC5 overexpression mitigated ferroptosis in osteoblasts by inhibiting the eukaryotic initiation factor 2 alpha (eIF2α)/activated transcription factor 4 (ATF4)/C/EBP-homologous protein (CHOP) pathway. CONCLUSIONS Collectively, our study uncovered the important role of FNDC5/irisin in regulating ferroptosis of diabetic osteopathy, which might be a potential therapeutic target.
Collapse
Affiliation(s)
- Qianqian Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Clinical Research Center for Metabolic Disease, Gansu Province, Lanzhou, 730000, China
| | - Ziqi Han
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Clinical Research Center for Metabolic Disease, Gansu Province, Lanzhou, 730000, China
| | - Mingdong Gao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- Clinical Research Center for Metabolic Disease, Gansu Province, Lanzhou, 730000, China
- Department of Pediatrics, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Limin Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Clinical Research Center for Metabolic Disease, Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
22
|
Cao Y, Jin Z, Xi Y, Cheng J, Fang Z, Zhao Q, Weng J, Zhu J, Tang Y, Zhang Z, Jiang H. Roles of ferroptosis in type 1 diabetes induced spermatogenic dysfunction. Free Radic Biol Med 2024; 214:193-205. [PMID: 38369075 DOI: 10.1016/j.freeradbiomed.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Diabetes mellitus (DM) is a widespread metabolic disease presenting with various complications, including spermatogenic dysfunction. However, the underlying mechanisms are still unclear. Ferroptosis, a novel type of programmed cell death, is associated with much metabolic diseases. Here, we investigated the role of ferroptosis in spermatogenic dysfunction of streptozotocin (STZ)-induced type 1 diabetic mice (diabetic mice), high glucose (HG)-treated GC-2 cells (HG cells) as well as testicular tissues of diabetic patients. We found an accumulation of iron, elevated malondialdehyde level and reduced glutathione level in the testis tissues of diabetic mice and HG cells. Histological examination showed a decrease in spermatogenic cells and spermatids within the seminiferous tubules as well as mitochondrial shrinkage in the testis tissues of diabetic mice. Ferrostatin-1 (Fer-1), the inhibitor of ferroptosis, mitigated ferroptosis-associated iron overload, lipid peroxidation accumulation and spermatogenic dysfunction of diabetic mice. Furthermore, we observed a downregulation of GPX4, FTL and SLC7A11 in diabetic mice and HG cells. Fer-1 treatment and GPX4 overexpression counteracted the effects of HG on cell viability, reactive oxygen species, lipid peroxidation and glutathione via inhibition of ferroptosis. Moreover, we found an elevation of ferroptosis in testicular tissues of diabetic patients. Taken together, our results identify the crucial role of ferroptosis in diabetic spermatogenic dysfunction and ferroptosis may be a promising therapeutic target to improve spermatogenesis in diabetic patients.
Collapse
Affiliation(s)
- Yalei Cao
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zirun Jin
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Yu Xi
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Jianxing Cheng
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zishui Fang
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Qiancheng Zhao
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Jiaming Weng
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Jun Zhu
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Yanlin Tang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.
| | - Hui Jiang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China; Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
23
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
24
|
Lu L, Shao Y, Xiong X, Ma J, Zhai M, Lu G, Jiang L, Jin P, Tang J, Yang J, Liu Y, Duan W, Liu J. Irisin improves diabetic cardiomyopathy-induced cardiac remodeling by regulating GSDMD-mediated pyroptosis through MITOL/STING signaling. Biomed Pharmacother 2024; 171:116007. [PMID: 38171238 DOI: 10.1016/j.biopha.2023.116007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM). However, the mechanisms underlying DCM-induced cardiac injury remain unclear. Recently, the role of cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) signaling and pyroptosis in DCM has been investigated. Based on our previous results, this study was designed to examine the impact of irisin, mitochondrial ubiquitin ligase (MITOL/MARCH5), and cGAS/STING signaling in DCM-induced cardiac dysfunction and the effect of gasdermin D (GSDMD)-dependent pyroptosis. High-fat diet-induced mice and H9c2 cells were used for cardiac geometry and function or pyroptosis-related biomarker assessment at the end of the experiments. Here, we show that DCM impairs cardiac function by increasing cardiac fibrosis and GSDMD-dependent pyroptosis, including the activation of MITOL and cGAS/STING signaling. Our results confirmed that the protective role of irisin and MITOL was partially offset by the activation of cGAS/STING signaling. We also demonstrated that GSDMD-dependent pyroptosis plays a pivotal role in the pathological process of DCM pathogenesis. Our results indicate that irisin treatment protects against DCM injury, mitochondrial homeostasis, and pyroptosis through MITOL upregulation.
Collapse
Affiliation(s)
- Linhe Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yalan Shao
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiang Xiong
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Cardiothoracic Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guofang Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
25
|
Yu Y, Ma M, Li C, Dang Q, Lei H, Wang G, Su J, Li Y. Irisin mitigates rheumatoid arthritis by suppressing mitochondrial fission via inhibiting YAP-Drp1 signaling pathway. Int Immunopharmacol 2024; 127:111443. [PMID: 38154212 DOI: 10.1016/j.intimp.2023.111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Irisin is a hormone-like factor secreted by muscle cells and produced by cleavage of the membrane protein fibronectin type III domain protein 5 (FNDC5), which exerts anti-inflammatory and anti-proliferative effects. However, the effects and the underlying mechanisms of irisin in rheumatoid arthritis (RA) are still unclear. METHOD Collagen-induced arthritis (CIA) model was induced in DBA/1 mice and then treated with irisin. Arthritis index, paw thickness, weight, number of affected paws, serum inflammatory factors and related pathological tests were measured. RA fibroblast-like synoviocytes (RA-FLSs) were pretreated with IL-1β and irisin, and the migration, proliferation, invasion, oxidative stress and mitochondrial related function of RA-FLSs were detected. RESULTS Irisin significantly improved arthritis symptoms in CIA mice, as indicated by reduced arthritis index, alleviated paw thickness, decreased the number of affected paws and inhibited release of inflammatory factors. Irisin alleviated joint destruction, FLSs proliferation and the expression of YES-associated protein (YAP) and mitochondrial dynamic related protein 1 (Drp1) in the FLSs of CIA mice. In vitro experiment, irisin inhibited the proliferation, migration and invasion of RA-FLSs and improved oxidative stress induced by IL-1β, thereby restraining the pathogenic transformation of RA-FLSs. Mechanically, irisin suppressed the nuclear translocation of YAP, in turn, could reduce the synthesis of Drp1 protein and inhibit the mitochondrial fission of RA-FLSs, which was reversed by YAP agonists. Therefore, irisin has a protective effect on RA. CONCLUSION Irisin inhibits the proliferation, migration, invasion and inflammatory response of RA-FLSs by inhibiting the YAP-Drp1 signaling pathway, which implies a potential therapeutic effect on RA.
Collapse
Affiliation(s)
- Yongmei Yu
- Department of Rheumatology and Immunology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Meican Ma
- Department of Rheumatology and Immunology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Chunyan Li
- Department of Rheumatology and Immunology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Qiujie Dang
- Department of Rheumatology and Immunology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Hongwei Lei
- Department of Rheumatology and Immunology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Gang Wang
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China; Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| | - Jianling Su
- Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, PR China.
| | - Yang Li
- Department of Rheumatology and Immunology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China; Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, PR China.
| |
Collapse
|
26
|
Wang C, Hu Y, Liang F. Text Mining and Drug Discovery Analysis: A Comprehensive Approach to Investigate Diabetes-Induced Osteoporosis. Int J Med Sci 2024; 21:464-473. [PMID: 38250601 PMCID: PMC10797669 DOI: 10.7150/ijms.90829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose: Osteoporosis (OP) and diabetes are prevalent diseases in orthopedic and endocrinology departments, with OP potentially arising as a complication of diabetes. However, the mechanism underlying diabetes-induced osteoporosis (DOP) remains enigmatic, and drug discovery in this domain is restricted, hindering research into the DOP's etiology and treatment. With the ultimate goal of preventing OP in diabetic patients, the objective of this study is to mine the genes and pathways linked to DOP using bioinformatics and databases. Method: The present study employed text mining as the initial approach to retrieve genes commonly associated with diabetes and OP. Subsequently, functional annotation was conducted to investigate the roles and functionalities. In order to explore the interactions between proteins relevant to DOP, we constructed protein-protein interaction (PPI) networks. Furthermore, to obtain key genes and candidate drugs for DOP treatment, we conducted drug-gene interaction (DGI) analysis, complemented by a thorough examination of transcriptional factors (TFs)-miRNA co-regulation. Results: The results through text mining revealed 110 genes that are commonly associated with both diabetes and OP. Subsequent enrichment analysis narrowed down the list to 95 symbols that were involved in PPI analysis. After DGI analysis, we identified 7 genes targeted by 11 drugs, which represent candidates for treating DOP. Conclusion: This study unveils ANDECALIXIMAB, SILTUXIMAB, OLOKIZUMAB, SECUKINUMAB, and IXEKIZUMAB as promising potential drugs for DOP treatment, demonstrating the significance of utilizing text mining and pathway analysis to investigate disease mechanisms and explore existing therapeutic options.
Collapse
Affiliation(s)
| | - Yihe Hu
- ✉ Corresponding author: Feng Liang, . Yihe Hu,
| | - Feng Liang
- ✉ Corresponding author: Feng Liang, . Yihe Hu,
| |
Collapse
|
27
|
Cai Z, Li Y, Bai L, Xu J, Liu Z, Zhang T, Gao S, Lin Y. Tetrahedral Framework Nucleic Acids Based Small Interfering RNA Targeting Receptor for Advanced Glycation End Products for Diabetic Complications Treatment. ACS NANO 2023; 17:22668-22683. [PMID: 37751401 DOI: 10.1021/acsnano.3c06999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Complications arising from diabetes can threaten multiple organs. Advanced glycation end products (AGEs) play a significant role in inducing these complications. Highly processed diets and hyperglycemia facilitate the accumulation of AGEs in the body. Interaction between AGEs and their main receptor (RAGE) initiates the transmission of intracellular inflammatory and cell death signals, which ultimately lead to complications. To counter AGEs-induced damage, we developed an siRNA-binding tetrahedral framework nucleic acids (TDN) system, termed Tsi, which combines the potent cell membrane penetrability and serum stability of TDN with the gene-targeting specificity of siRNA-RAGE. Tsi effectively and persistently downregulates the expression of RAGE, thereby suppressing inflammation by blocking the NF-κB pathway as well as exhibiting antioxidant functions. Furthermore, Tsi regulates the pyroptosis state of macrophages via the NLRP3/caspase-1 axis, which inhibits the spread of cell death signals and maintains homeostasis. This is of great significance for the synergistic treatment strategy for systemic complications in patients with refractory hyperglycemia. In summary, this study describes a nanomedicine that targets the RAGE and suppresses AGE-induced inflammation. This nucleic acid drug holds long-lasting efficacy and is independent of lowering hyperglycemia, which provides a strategy for the treatment of diabetic complications and age-related diseases.
Collapse
Affiliation(s)
- Zhengwen Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Long Bai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jiangshan Xu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
28
|
Li M, Shi X, Wu Y, Qi B, Zhang C, Wang B, Zhang B, Xu Y. Pmepa1 knockdown alleviates SpA-induced pyroptosis and osteogenic differentiation inhibition of hBMSCs via p38MAPK/NLRP3 axis. Int Immunopharmacol 2023; 124:110843. [PMID: 37634444 DOI: 10.1016/j.intimp.2023.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Osteomyelitis is a refractory bone infectious disease, which usually results in progressive bone destruction and bone loss. The invasion of pathogens and subsequent inflammatory response could damage bone marrow mesenchymal stem cells (BMSCs) and inhibit osteogenic differentiation, and finally aggravate uncontrolled bone remodeling in osteomyelitis by affecting bone formation. Exploring the mechanisms of BMSCs injury and osteogenic differentiation inhibition may would help us to find potential therapeutic targets. METHOD Firstly, staphylococcal protein A (SpA)-treated human bone marrow mesenchymal stem cells (hBMSCs) were used to construct cell models of osteomyelitis. Secondly, transcriptome sequencing was performed to screen differentially expressed genes and then verified the expression of target genes. Next, in vitro experiments were conducted to explore the functions and mechanisms of prostate transmembrane protein androgen induced 1 (Pmepa1) in SpA-treated hBMSCs. Finally, the rat model of osteomyelitis was established to provide an auxiliary validation of the in vitro experimental results. RESULTS We found that SpA treatment induced inflammatory injury and inhibited osteogenic differentiation in hBMSCs, then the transcriptome sequencing and further detection results showed that Pmepa1 was significantly upregulated in this process. Functionally, Pmepa1 knockdown alleviated inflammatory injury and promoted osteogenic differentiation in SpA-treated hBMSCs. Among them, it was demonstrated that Pmepa1 knockdown exerted cytoprotective effects by alleviating pyroptosis of SpA-infected hBMSCs. Furthermore, recovery experiments revealed that Pmepa1 knockdown reversed SpA-mediated adverse effects by downregulating the p38MAPK/NLRP3 axis. Finally, the detection results of rat femoral osteomyelitis showed that the expression of Pmepa1 was up-regulated, and the expression trends of other indicators including p38MAPK, NLRP3, and caspase-1 were also consistent with the in vitro model. CONCLUSION Pmepa1 knockdown alleviates SpA-induced pyroptosis and inhibition of osteogenic differentiation in hBMSCs by downregulating p38MAPK/NLRP3 signaling axis. Modulating the expression of Pmepa1 may be a potential strategy to ameliorate osteomyelitis.
Collapse
Affiliation(s)
- Mingjun Li
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangwen Shi
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yipeng Wu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Baochuang Qi
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Chaoqun Zhang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Bin Wang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Bihuan Zhang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China.
| |
Collapse
|
29
|
Fu F, Luo H, Du Y, Chen Y, Tian K, Pan J, Li J, Wang N, Bao R, Jin H, Tong P, Ruan H, Wu C. AR/PCC herb pair inhibits osteoblast pyroptosis to alleviate diabetes-related osteoporosis by activating Nrf2/Keap1 pathway. J Cell Mol Med 2023; 27:3601-3613. [PMID: 37621124 PMCID: PMC10660633 DOI: 10.1111/jcmm.17928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Osteoporosis is a prevalent complication of diabetes, characterized by systemic metabolic impairment of bone mass and microarchitecture, particularly in the spine. Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex (AR/PCC) herb pair has been extensively employed in Traditional Chinese Medicine to manage diabetes; however, its potential to ameliorate diabetic osteoporosis (DOP) has remained obscure. Herein, we explored the protective efficacy of AR/PCC herb pair against DOP using a streptozotocin (STZ)-induced rat diabetic model. Our data showed that AR/PCC could effectively reduce the elevated fasting blood glucose and reverse the osteoporotic phenotype of diabetic rats, resulting in significant improvements in vertebral trabecular area percentage, trabecular thickness and trabecular number, while reducing trabecular separation. Specifically, AR/PCC herb pair improved impaired osteogenesis, nerve ingrowth and angiogenesis. More importantly, it could mitigate the aberrant activation of osteoblast pyroptosis in the vertebral bodies of diabetic rats by reducing increased expressions of Nlrp3, Asc, Caspase1, Gsdmd and IL-1β. Mechanistically, AR/PCC activated antioxidant pathway through the upregulation of the antioxidant response protein Nrf2, while concurrently decreasing its negative feedback regulator Keap1. Collectively, our in vivo findings demonstrate that AR/PCC can inhibit osteoblast pyroptosis and alleviate STZ-induced rat DOP, suggesting its potential as a therapeutic agent for mitigating DOP.
Collapse
Affiliation(s)
- Fangda Fu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yu Du
- The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuying Chen
- The Fourth Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Kun Tian
- Department of OrthopaedicsThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Jin Pan
- Department of Architecture, School of ArchitectureChina Academy of ArtHangzhouChina
| | - Jian Li
- Department of OrthopaedicsHangzhou Ninth People's HospitalHangzhouChina
| | - Nani Wang
- Department of MedicineZhejiang Academy of Traditional Chinese MedicineHangzhouChina
| | - Ronghua Bao
- Hangzhou Fuyang Hospital of TCM Orthopedics and TraumatologyHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Peijian Tong
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Hongfeng Ruan
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Chengliang Wu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| |
Collapse
|
30
|
Hou Q, Song R, Zhao X, Yang C, Feng Y. Lower circulating irisin levels in type 2 diabetes mellitus patients with chronic complications: A meta-analysis. Heliyon 2023; 9:e21859. [PMID: 38027674 PMCID: PMC10658327 DOI: 10.1016/j.heliyon.2023.e21859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The aim of this study was to provide evidence of the differences in circulating irisin levels between type 2 diabetes mellitus (T2DM) patients with and without chronic complications. Methods We performed a meta-analysis to compare circulating irisin levels between different groups. Literature search was conducted in PubMed, Cochrane Library, Embase, WanFang, and China National Knowledge Infrastructure databases from inception through December 2022. Random effects model and standard mean difference (SMD) was used to calculate the pooled outcomes with 95 % confidence intervals (CIs). Results Forty-two studies that matched the inclusion criteria were analyzed. Circulating irisin levels were significantly lower in T2DM patients with chronic complications than those in T2DM patients without chronic complications (SMD: -1.43; 95 % CI: -1.76 to -1.09; p < 0.00001) and healthy control group (SMD: -2.40; 95 % CI: -3.02 to -1.77; p < 0.00001). Moreover, irisin levels further decrease with the aggravation of complications in T2DM patients with diabetic nephropathy or diabetic retinopathy. Conclusion Compared with T2DM patients without chronic complications, T2DM patients with chronic complications had lower circulating irisin levels. In addition, irisin levels were negatively correlated with the severity of chronic complications.
Collapse
Affiliation(s)
- Qiaoyu Hou
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
- Department of Pharmacy, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, China
| | - Rongjing Song
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Xuecheng Zhao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
31
|
Li N, Zhang L, Wang X, Zhou Y, Gong L. Exploring exercise-driven inhibition of pyroptosis: novel insights into treating diabetes mellitus and its complications. Front Endocrinol (Lausanne) 2023; 14:1230646. [PMID: 37859981 PMCID: PMC10582706 DOI: 10.3389/fendo.2023.1230646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetes mellitus (DM) and its complications are important, worldwide public health issues, exerting detrimental effects on human health and diminishing both quality of life and lifespan. Pyroptosis, as a new form of programmed cell death, plays a critical role in DM and its complications. Exercise has been shown to be an effective treatment for improving insulin sensitivity or preventing DM. However, the molecular mechanisms underlying the effects of exercise on pyroptosis-related diseases remain elusive. In this review, we provided a comprehensive elucidation of the molecular mechanisms underlying pyroptosis and the potential mechanism of exercise in the treatment of DM and its complications through the modulation of anti-pyroptosis-associated inflammasome pathways. Based on the existing evidence, further investigation into the mechanisms by which exercise inhibits pyroptosis through the regulation of inflammasome pathways holds promising potential for expanding preventive and therapeutic strategies for DM and facilitating the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Nan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Liang Zhang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Xintang Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yue Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
32
|
Zhou T, Wang S, Pan Y, Dong X, Wu L, Meng J, Zhang J, Pang Q, Zhang A. Irisin Ameliorated Skeletal Muscle Atrophy by Inhibiting Fatty Acid Oxidation and Pyroptosis Induced by Palmitic Acid in Chronic Kidney Disease. Kidney Blood Press Res 2023; 48:628-641. [PMID: 37717561 PMCID: PMC10614467 DOI: 10.1159/000533926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Protein-energy waste (PEW) is a common complication in patients with chronic kidney disease (CKD), among which skeletal muscle atrophy is one of the most important clinical features of PEW. Pyroptosis is a type of proinflammatory, programmed cell death associated with skeletal muscle disease. Irisin, as a novel myokine, has attracted extensive attention for its protective role in the complications associated with CKD, but its role in muscle atrophy in CKD is unclear. METHODS Palmitic acid (PA)-induced muscular atrophy was evaluated by a reduction in C2C12 myotube diameter. Muscle atrophy model was established in male C57BL/6J mice treated with 0.2% adenine for 4 weeks and then fed a 45% high-fat diet. Blood urea nitrogen and creatinine levels, body and muscle weight, and muscle histology were assessed. The expression of carnitine palmitoyltransferase 1A (CPT1A) and pyroptosis-related protein was analysed by Western blots or immunohistochemistry. The release of IL-1β was detected by enzyme-linked immunosorbent assay. RESULTS In this study, we showed that PA-induced muscular atrophy manifested as a reduction in C2C12 myotube diameter. During this process, PA can also induce pyroptosis, as shown by the upregulation of NLRP3, cleaved caspase-1 and GSDMD-N expression and the increased IL-1β release and PI-positive cell rate. Inhibition of caspase-1 or NLRP3 attenuated PA-induced pyroptosis and myotube atrophy in C2C12 cells. Importantly, irisin treatment significantly ameliorated PA-induced skeletal muscle pyroptosis and atrophy. In terms of mechanism, PA upregulated CPT1A, a key enzyme of fatty acid oxidation (FAO), and irisin attenuated this effect, which was consistent with etomoxir (CPT1A inhibitor) treatment. Moreover, irisin improved skeletal muscle atrophy and pyroptosis in adenine-induced mice by regulating FAO. CONCLUSION Our study firstly verifies that pyroptosis is a novel mechanism of skeletal muscle atrophy in CKD. Irisin ameliorates skeletal muscle atrophy by inhibiting FAO and pyroptosis in CKD, and irisin may be developed as a potential therapeutic agent for the treatment of muscle wasting in CKD patients.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shiyuan Wang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yajing Pan
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Leiyun Wu
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiali Meng
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Zhao R, Chen Y, Wang D, Zhang C, Song H, Ni G. Role of irisin in bone diseases. Front Endocrinol (Lausanne) 2023; 14:1212892. [PMID: 37600697 PMCID: PMC10436578 DOI: 10.3389/fendo.2023.1212892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Bone diseases are common among middle-aged and elderly people, and harm to activities of daily living (ADL) and quality of life (QOL) for patients. It is crucial to search for key regulatory factors associated with the development of bone diseases and explore potential therapeutic targets for bone diseases. Irisin is a novel myokine that has been discovered in recent years. Accumulating evidence indicates that irisin has beneficial effects in the treatment of various diseases such as metabolic, cardiovascular and neurological disorders, especially bone-related diseases. Recent studies had shown that irisin plays the role in various bone diseases such as osteoarthritis, osteoporosis and other bone diseases, suggesting that irisin may be a potential molecule for the prevention and treatment of bone diseases. Therefore, in this review, by consulting the related domestic and international literature of irisin and bone diseases, we summarized the specific regulatory mechanisms of irisin in various bone diseases, and provided a systematic theoretical basis for its application in the diagnosis and treatment of the bone diseases.
Collapse
Affiliation(s)
- Ruobing Zhao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yan Chen
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Henan Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
34
|
Choppa VSR, Kim WK. A Review on Pathophysiology, and Molecular Mechanisms of Bacterial Chondronecrosis and Osteomyelitis in Commercial Broilers. Biomolecules 2023; 13:1032. [PMID: 37509068 PMCID: PMC10377700 DOI: 10.3390/biom13071032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Modern day broilers have a great genetic potential to gain heavy bodyweights with a huge metabolic demand prior to their fully mature ages. Moreover, this made the broilers prone to opportunistic pathogens which may enter the locomotory organs under stress causing bacterial chondronecrosis and osteomyelitis (BCO). Such pathogenic colonization is further accelerated by microfractures and clefts that are formed in the bones due to rapid growth rate of the broilers along with ischemia of blood vessels. Furthermore, there are several pathways which alter bone homeostasis like acute phase response, and intrinsic and extrinsic cell death pathways. In contrast, all the affected birds may not exhibit clinical lameness even with the presence of lameness associated factors causing infection. Although Staphylococcus, E. coli, and Enterococcus are considered as common bacterial pathogens involved in BCO, but there exist several other non-culturable bacteria. Any deviation from maintaining a homeostatic environment in the gut might lead to bacterial translocation through blood followed by proliferation of pathogenic bacteria in respective organs including bones. It is important to alleviate dysbiosis of the blood which is analogous to dysbiosis in the gut. This can be achieved by supplementing pro, pre, and synbiotics which helps in providing a eubiotic environment abating the bacterial translocation that was studied to the incidence of BCO. This review focused on potential and novel biomarkers, pathophysiological mechanism, the economic significance of BCO, immune mechanisms, and miscellaneous factors causing BCO. In addition, the role of gut microbiomes along with their diversity and cell culture models from compact bones of chicken in better understanding of BCO were explored.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
35
|
Li G, Qin H, Zhou M, Zhang T, Zhang Y, Ding H, Xu L, Song J. Knockdown of SIRT3 perturbs protective effects of irisin against bone loss in diabetes and periodontitis. Free Radic Biol Med 2023; 200:11-25. [PMID: 36863620 DOI: 10.1016/j.freeradbiomed.2023.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
A well-recognized risk factor for periodontitis, diabetes mellitus (DM) aggravates periodontal disease with increasing alveolar bone loss. As a novel myokine, irisin is closely linked with bone metabolism. Nonetheless, the effects of irisin on periodontitis under diabetic conditions and the underlying mechanisms remain poorly understood. Here, we showed that local irisin treatment ameliorates alveolar bone loss and oxidative stress, increases SIRT3 expression within periodontal tissues of our experimentally-induced diabetes and periodontitis (DP) rat models. By culturing the periodontal ligament cells (PDLCs) in vitro, we found that irisin could partially rescue inhibited cell viability, mitigate accumulated intracellular oxidative stress, ameliorate mitochondrial dysfunctions, and restore disturbed osteogenic and osteoclastogenic capacities of PDLCs when exposed to high glucose and pro-inflammatory stimulation. Furthermore, lentivirus-mediated SIRT3 knockdown was employed to unravel the underlying mechanism by which SIRT3 mediated irisin's beneficial effects on PDLCs. Meanwhile, in SIRT3-deficient mice, irisin treatment did not protect against alveolar bone destruction and oxidative stress accumulation in DP models, which underlined the crucial role of SIRT3 in mediating the positive effects of irisin on DP. Our findings, for the first time, revealed that irisin attenuates alveolar bone loss and oxidative stress via activation of the SIRT3 signaling cascade, and highlighted its therapeutic potential for the treatment of DP.
Collapse
Affiliation(s)
- Guangyue Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Han Qin
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mengjiao Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tingwei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yang Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ling Xu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; College of Stomatology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
36
|
Li Y, Zhang D, Fu S, Liu M, Liu H. Design and application of personalized exercise prescription for primary osteoporosis. Medicine (Baltimore) 2023; 102:e32857. [PMID: 36800636 PMCID: PMC9936019 DOI: 10.1097/md.0000000000032857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Regular exercise has been shown to have a beneficial effect on primary osteoporosis (POP). However, current exercise prescriptions have limitations such as insufficient individualized features and low participant compliance, which in turn limit their application in clinical practice. In this study, we propose to establish a personalized exercise prescription based on the Chinese traditional exercise-Yi Jin Jing, combined with treadmill exercises and strength training, and then observe its effects on pain, muscle strength, balance, bone mineral density (BMD) and bone metabolic indexes in patients with POP. METHODS This trial is a single-center, randomized, assessor-blinded, controlled clinical study. We will recruit 40 patients with POP and assign them to the control group and the experimental group in a 1:1 ratio according to the intended protocol. The control group received 24 weeks of conventional medication and health promotion, and the experimental group received 24 weeks of personalized exercise prescription intervention (Yijinjing, treadmill exercises, and strength training). Outcome measures include pain (visual analogue scale), muscle strength (bilateral upper limb grip strength and isometric muscle strength of the trunk, hip, and knee), balance (Balance test with eyes open and closed while standing on one leg), and BMD (Lumbar spine 2-4 and femoral neck). In addition, bone metabolism indicators include parathyroid hormone, osteocalcin, 25-hydroxyvitamin D3 (1,25(OH) 2D3), type I procollagen aminoterminal peptide and type I collagen carboxy-terminal peptide. Outcome measures will be assessed before and after 24 weeks of intervention. Statistical analysis was performed by SPSS22.0. DISCUSSION This trial aimed to enrich the content and form of exercise rehabilitation prescriptions for patients with POP, which is conducive to improving the exercise rehabilitation effect and quality of life in this population.
Collapse
Affiliation(s)
- Yongjie Li
- Department of Rehabilitation Medicine, Guizhou Provincial Orthopedics Hospital, Guiyang, China
| | - Dakuan Zhang
- Department of Rehabilitation Medicine, Guizhou Provincial Orthopedics Hospital, Guiyang, China
| | - Shenyu Fu
- Department of Rehabilitation Medicine, Guizhou Provincial Orthopedics Hospital, Guiyang, China
| | - Mengling Liu
- Department of Rehabilitation Medicine, Guizhou Provincial Orthopedics Hospital, Guiyang, China
| | - Hongju Liu
- Department of Rehabilitation Medicine, Guizhou Provincial Orthopedics Hospital, Guiyang, China
- * Correspondence: Hongju Liu, Department of Rehabilitation Medicine, Guizhou Provincial Orthopedics Hospital, Guiyang 550014, China (e-mail: )
| |
Collapse
|
37
|
Ferron M. Irisin: The Bony Builder Flexes Its Muscles. Diabetes 2022; 71:2486-2489. [PMID: 36409786 DOI: 10.2337/dbi22-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Mathieu Ferron
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
38
|
Zhang M, Li Y, Liu L, Huang M, Wang M, Zou J. The effects on type 2 diabetes mellitus mouse femoral bone achieved by anti-osteoporosis exercise interventions. Front Endocrinol (Lausanne) 2022; 13:914872. [PMID: 36465647 PMCID: PMC9715737 DOI: 10.3389/fendo.2022.914872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/24/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose Exercise therapy and key regulators of bone quality exert anti-hyperglycemic effects on type 2 diabetes mellitus (T2DM) mice. A number of programs have been reported to have an effect on bone disease in T2DM. Major unanswered questions concern the potential correlation of exercise with the improvement of bone quality in T2DM mice and how the nonlinear optical properties of bone are correlated with changes to its crystal structure. Methods Subjects were randomly divided into six groups: 1) control (C) group, which was fed a normal diet (n = 8); 2) T2DM quiet group, which was given a high-fat diet and quiet (n = 8); 3) T2DM plus swimming (T2DM+S) group, which received T2DM and swim training (n = 8); 4) T2DM plus resistance exercise (T2DM+RE) group, which was given T2DM and resistance exercise (n = 8); 5) T2DM plus aerobic exercise (T2DM+AE) group, with T2DM and medium-intensity treadmill exercise (n = 8); and 6) T2DM plus high-intensity interval training (T2DM+HIIT), with T2DM and high-intensity variable-speed intervention (n = 8). The levels of runt-related transcription factor 2 (RUNX2), osterix (OSX), and alkaline phosphatase (ALP), as well as the bone microstructure and morphometry, were measured at the end of the 8-week exercise intervention. Results Compared with the C group, the bone microstructure indexes [bone mineral density (BMD), bone volume/tissue volume (BV/TV), cortical thickness (Ct.Th), and connectivity density (Conn.D)], the bone biomechanical properties (maximum load, fracture load, yield stress, and elastic modulus), and the osteogenic differentiation factors (RUNX2, OSX, and BMP2) of the T2DM group were significantly decreased (all p < 0.05). Compared with the T2DM group, there were obvious improvements in the osteogenic differentiation factor (OSX) and Th.N, while the separation of trabecular bone (Tb.Sp) decreased in the T2DM+AE and T2DM+HIIT groups (all p < 0.05). In addition, the bone microstructure indicators BV/TV, tissue mineral density (TMD), Conn.D, and degree of anisotropy (DA) also increased in the T2DM+HIIT group, but the yield stress and Ct.Th deteriorated compared with the T2DM group (all p < 0.05). Compared with the T2DM+S and T2DM+RE groups, the BV/TV, trabecular number (Tb.N), Tb.Sp, and Conn.D in the T2DM+AE and T2DM+HIIT groups were significantly improved, but no significant changes in the above indicators were found between the T2DM+S and T2DM+RE groups (all p < 0.05). In addition, the BMD and the expression of ALP in the T2DM+AE group were significantly higher than those in the T2DM+HIIT group (all p < 0.05). Conclusion There was a significant deterioration in femur bone mass, trabecular bone microarchitecture, cortical bone geometry, and bone mechanical strength in diabetic mice. However, such deterioration was obviously attenuated in diabetic mice given aerobic and high-intensity interval training, which would be induced mainly by suppressing the development of T2DM. Regular physical exercise may be an effective strategy for the prevention of not only the development of diabetes but also the deterioration of bone properties in patients with chronic T2DM.
Collapse
Affiliation(s)
- Miao Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuexuan Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lifei Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Mei Huang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Miao Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
39
|
Abstract
Type 2 diabetes mellitus (T2DM), is a chronic metabolic disease, characterized by the presence of hyperglycemia and insulin resistance. The key treatment strategies for T2DM include modification of lifestyle, medications, and continuous glucose monitoring. DM patients often have DM-associated morbidities and comorbidities; however, disorders of musculoskeletal system are often neglected, compared to other major systems in DM patients. Based on sharing similar pathophysiology of DM and osteoporosis, it is supposed that the use of antidiabetic agents (ADAs) may not only provide the lowering glucose level effect and the maintenance of the sugar homeostasis to directly delay the tissue damage secondary to hyperglycemia but also offer the benefits, such as the prevention of developing osteoporosis and fractures. Based on the current review, evidence shows the positive correlation between DM and osteoporosis or fracture, but the effectiveness of using ADA in the prevention of osteoporosis and subsequent reduction of fracture seems to be inconclusive. Although the benefits of ADA on bone health are uncertain, the potential value of "To do one and to get more" therapeutic strategy should be always persuaded. At least, one of the key treatment strategies as an establishment of healthy lifestyle may work, because it improves the status of insulin resistance and subsequently helps DM control, prevents the DM-related micro- and macrovascular injury, and possibly strengthens the general performance of musculoskeletal system. With stronger musculoskeletal system support, the risk of "fall" may be decreased, because it is associated with fracture. Although the ADA available in the market does not satisfy the policy of "To do one and to get more" yet, we are looking forward to seeing the continuously advanced technology of drug development on diabetic control, and hope to see their extra-sugar-lowering effects.
Collapse
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
- Female Cancer Foundation, Taipei, Taiwan, ROC
| | - Szu-Ting Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wen-Hsun Chang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fa-Kung Lee
- Department of Obstetrics and Gynecology, Cathy General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
40
|
Adropin’s Role in Energy Homeostasis and Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23158318. [PMID: 35955453 PMCID: PMC9369016 DOI: 10.3390/ijms23158318] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Adropin is a novel 76-amino acid-peptide that is expressed in different tissues and cells including the liver, pancreas, heart and vascular tissues, kidney, milk, serum, plasma and many parts of the brain. Adropin, encoded by the Enho gene, plays a crucial role in energy homeostasis. The literature review indicates that adropin alleviates the degree of insulin resistance by reducing endogenous hepatic glucose production. Adropin improves glucose metabolism by enhancing glucose utilization in mice, including the sensitization of insulin signaling pathways such as Akt phosphorylation and the activation of the glucose transporter 4 receptor. Several studies have also demonstrated that adropin improves cardiac function, cardiac efficiency and coronary blood flow in mice. Adropin can also reduce the levels of serum triglycerides, total cholesterol and low-density lipoprotein cholesterol. In contrast, it increases the level of high-density lipoprotein cholesterol, often referred to as the beneficial cholesterol. Adropin inhibits inflammation by reducing the tissue level of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-6. The protective effect of adropin on the vascular endothelium is through an increase in the expression of endothelial nitric oxide synthase. This article provides an overview of the existing literature about the role of adropin in different pathological conditions.
Collapse
|