1
|
Gray V, Chen W, Tan RJY, Teo JMN, Huang Z, Fong CHY, Law TWH, Ye ZW, Yuan S, Bao X, Hung IFN, Tan KCB, Lee CH, Ling GS. Hyperglycemia-triggered lipid peroxidation destabilizes STAT4 and impairs anti-viral Th1 responses in type 2 diabetes. Cell Metab 2024; 36:2511-2527.e7. [PMID: 39488214 DOI: 10.1016/j.cmet.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Patients with type 2 diabetes (T2D) are more susceptible to severe respiratory viral infections, but the underlying mechanisms remain elusive. Here, we show that patients with T2D and coronavirus disease 2019 (COVID-19) infections, and influenza-infected T2D mice, exhibit defective T helper 1 (Th1) responses, which are an essential component of anti-viral immunity. This defect stems from intrinsic metabolic perturbations in CD4+ T cells driven by hyperglycemia. Mechanistically, hyperglycemia triggers mitochondrial dysfunction and excessive fatty acid synthesis, leading to elevated oxidative stress and aberrant lipid accumulation within CD4+ T cells. These abnormalities promote lipid peroxidation (LPO), which drives carbonylation of signal transducer and activator of transcription 4 (STAT4), a crucial Th1-lineage-determining factor. Carbonylated STAT4 undergoes rapid degradation, causing reduced T-bet induction and diminished Th1 differentiation. LPO scavenger ameliorates Th1 defects in patients with T2D who have poor glycemic control and restores viral control in T2D mice. Thus, this hyperglycemia-LPO-STAT4 axis underpins reduced Th1 activity in T2D hosts, with important implications for managing T2D-related viral complications.
Collapse
Affiliation(s)
- Victor Gray
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rachael Julia Yuenyinn Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhihao Huang
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Carol Ho-Yi Fong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Tommy Wing Hang Law
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shuofeng Yuan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiucong Bao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Kathryn Choon-Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Chi-Ho Lee
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Srivastava N, Vomund AN, Peterson OJ, Abousaway O, Li T, Kain L, Stone P, Clement CC, Sharma S, Zhang B, Liu C, Joglekar AV, Campisi L, Hsieh CS, Santambrogio L, Teyton L, Arbelaez AM, Lichti CF, Wan X. A post-translational cysteine-to-serine conversion in human and mouse insulin generates a diabetogenic neoepitope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622538. [PMID: 39605669 PMCID: PMC11601459 DOI: 10.1101/2024.11.07.622538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Type 1 diabetes (T1D) affects a genetically susceptible population that develops autoreactive T cells attacking insulin-producing pancreatic β cells. Increasingly, neoantigens are recognized as critical drivers of this autoimmune response. Here, we report a novel insulin neoepitope generated via post-translational cysteine-to-serine conversion (C>S) in human patients, which is also seen in the autoimmune-prone non-obese diabetic (NOD) mice. This modification is driven by oxidative stress within the microenvironment of pancreatic β cells and is further amplified by T1D-relevant inflammatory cytokines, enhancing neoantigen formation in both pancreatic β cells and dendritic cells. We discover that C>S-modified insulin is specifically recognized by CD4 + T cells in human T1D patients and NOD mice. In humans with established T1D, HLA-DQ8-restricted, C>S-specific CD4 + T cells exhibit an activated memory phenotype and lack regulatory signatures. In NOD mice, these neoepitope-specific T cells can orchestrate islet infiltration and promote diabetes progression. Collectively, these data advance a concept that microenvironment-driven and context-dependent post-translational modifications (PTMs) can generate neoantigens that contribute to organ-specific autoimmunity.
Collapse
|
3
|
Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK. The immunology of type 1 diabetes. Nat Rev Immunol 2024; 24:435-451. [PMID: 38308004 PMCID: PMC7616056 DOI: 10.1038/s41577-023-00985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Thomas Delong
- Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Ana Luisa Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Internal Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Noah Biru
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London, London, UK.
- Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
4
|
Callebaut A, Guyer P, Derua R, Buitinga M, Manganaro A, Yi X, Sodré FMC, Vig S, Suleiman M, Marchetti P, Eizirik DL, Kent SC, Mathieu C, James EA, Overbergh L. CD4+ T Cells From Individuals With Type 1 Diabetes Respond to a Novel Class of Deamidated Peptides Formed in Pancreatic Islets. Diabetes 2024; 73:728-742. [PMID: 38387030 PMCID: PMC11043062 DOI: 10.2337/db23-0588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The β-cell plays a crucial role in the pathogenesis of type 1 diabetes, in part through the posttranslational modification of self-proteins by biochemical processes such as deamidation. These neoantigens are potential triggers for breaking immune tolerance. We report the detection by LC-MS/MS of 16 novel Gln and 27 novel Asn deamidations in 14 disease-related proteins within inflammatory cytokine-stressed human islets of Langerhans. T-cell clones responsive against one Gln- and three Asn-deamidated peptides could be isolated from peripheral blood of individuals with type 1 diabetes. Ex vivo HLA class II tetramer staining detected higher T-cell frequencies in individuals with the disease compared with control individuals. Furthermore, there was a positive correlation between the frequencies of T cells specific for deamidated peptides, insulin antibody levels at diagnosis, and duration of disease. These results highlight that stressed human islets are prone to enzymatic and biochemical deamidation and suggest that both Gln- and Asn-deamidated peptides can promote the activation and expansion of autoreactive CD4+ T cells. These findings add to the growing evidence that posttranslational modifications undermine tolerance and may open the road for the development of new diagnostic and therapeutic applications for individuals living with type 1 diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Aïsha Callebaut
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - Mijke Buitinga
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Anthony Manganaro
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Saurabh Vig
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Sally C. Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Lut Overbergh
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Evans-Molina C. The Ailing β-Cell in Diabetes: Insights From a Trip to the ER: The 2023 Outstanding Scientific Achievement Award Lecture. Diabetes 2024; 73:545-553. [PMID: 38507587 PMCID: PMC10958579 DOI: 10.2337/dbi23-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/28/2023] [Indexed: 03/22/2024]
Abstract
The synthesis, processing, and secretion of insulin by the pancreatic β-cell is key for the maintenance of systemic metabolic homeostasis, and loss or dysfunction of β-cells underlies the development of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Work in the Evans-Molina laboratory over the past 15 years has pioneered the idea that regulation of calcium dynamics is critical to β-cell biology and diabetes pathophysiology. In this article, I will share three vignettes from the laboratory that demonstrate our bench-to-bedside approach to determining mechanisms of β-cell stress that could improve therapeutic options and outcomes for individuals living with diabetes. The first of these vignettes will illustrate a role for the sarcoendoplasmic reticulum calcium ATPase (SERCA) pump in the regulation of endoplasmic reticulum (ER) calcium, protein trafficking, and proinsulin processing within the β-cell. The second vignette will highlight how alterations in β-cell calcium signaling intersect with T1D pathogenesis. The final vignette will demonstrate how activation of β-cell stress pathways may serve as an anchor to inform biomarker strategies in T1D. Lastly, I will share my vision for the future of diabetes care, where multiple biomarkers of β-cell stress may be combined with additional immune and metabolic biomarkers to better predict disease risk and improve therapies to prevent or delay T1D development.
Collapse
Affiliation(s)
- Carmella Evans-Molina
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
6
|
Sharma C, Hamza A, Boyle E, Donu D, Cen Y. Post-Translational Modifications and Diabetes. Biomolecules 2024; 14:310. [PMID: 38540730 PMCID: PMC10968569 DOI: 10.3390/biom14030310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetes and its associated complications have increasingly become major challenges for global healthcare. The current therapeutic strategies involve insulin replacement therapy for type 1 diabetes (T1D) and small-molecule drugs for type 2 diabetes (T2D). Despite these advances, the complex nature of diabetes necessitates innovative clinical interventions for effective treatment and complication prevention. Accumulative evidence suggests that protein post-translational modifications (PTMs), including glycosylation, phosphorylation, acetylation, and SUMOylation, play important roles in diabetes and its pathological consequences. Therefore, the investigation of these PTMs not only sheds important light on the mechanistic regulation of diabetes but also opens new avenues for targeted therapies. Here, we offer a comprehensive overview of the role of several PTMs in diabetes, focusing on the most recent advances in understanding their functions and regulatory mechanisms. Additionally, we summarize the pharmacological interventions targeting PTMs that have advanced into clinical trials for the treatment of diabetes. Current challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Abu Hamza
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Emily Boyle
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
7
|
Lastwika KJ, Lampe PD. Breaking tolerance: autoantibodies can target protein posttranslational modifications. Curr Opin Biotechnol 2024; 85:103056. [PMID: 38141322 PMCID: PMC10922400 DOI: 10.1016/j.copbio.2023.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
Autoantibodies (AAb) are an immunological resource ripe for exploitation in cancer detection and treatment. Key to this translation is a better understanding of the self-epitope that AAb target in tumor tissue, but do not bind to in normal tissue. Posttranslational modifications (PTMs) on self-proteins are known to break tolerance in many autoimmune diseases and have also recently been described in cancer. This scope of possible autoantigens is quite broad and new high-dimensional and -throughput technologies to probe this repertoire will be necessary to fully exploit their potential. Here, we discuss the strengths and weaknesses of existing high-throughput platforms to detect AAb, review the current methods for characterizing immunogenic PTMs, describe the main challenges to identifying disease-relevant antigens and suggest the properties of future technologies that may be able to address these challenges. We conclude that exploiting the evolutionary power of the immune system to distinguish between self and nonself has great potential to be translated into antibody-based clinical applications.
Collapse
Affiliation(s)
- Kristin J Lastwika
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Paul D Lampe
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
8
|
Yang ML, Lam TT, Kanyo J, Kang I, Zhou ZS, Clarke SG, Mamula MJ. Natural isoaspartyl protein modification of ZAP70 alters T cell responses in lupus. Autoimmunity 2023; 56:2282945. [PMID: 37994408 PMCID: PMC10897934 DOI: 10.1080/08916934.2023.2282945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Protein posttranslational modifications (PTMs) arise in a number of normal cellular biological pathways and in response to pathology caused by inflammation and/or infection. Indeed, a number of PTMs have been identified and linked to specific autoimmune responses and metabolic pathways. One particular PTM, termed isoaspartyl (isoAsp or isoD) modification, is among the most common spontaneous PTM occurring at physiological pH and temperature. Herein, we demonstrate that isoAsp modifications arise within the ZAP70 protein tyrosine kinase upon T-cell antigen receptor (TCR) engagement. The enzyme protein L-isoaspartate O-methyltransferase (PCMT1, or PIMT, EC 2.1.1.77) evolved to repair isoaspartyl modifications in cells. In this regard, we observe that increased levels of isoAsp modification that arise under oxidative stress are correlated with reduced PIMT activity in patients with systemic lupus erythematosus (SLE). PIMT deficiency leads to T cell hyper-proliferation and hyper-phosphorylation through ZAP70 signaling. We demonstrate that inducing the overexpression of PIMT can correct the hyper-responsive phenotype in lupus T cells. Our studies reveal a phenotypic role of isoAsp modification and phosphorylation of ZAP70 in lupus T cell autoimmunity and provide a potential therapeutic target through the repair of isoAsp modification.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - TuKiet T. Lam
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
- Department of Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Insoo Kang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Moustakas AK, Nguyen H, James EA, Papadopoulos GK. Autoimmune susceptible HLA class II motifs facilitate the presentation of modified neoepitopes to potentially autoreactive T cells. Cell Immunol 2023; 390:104729. [PMID: 37301094 DOI: 10.1016/j.cellimm.2023.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), and celiac disease (CD), are strongly associated with susceptible HLA class II haplotypes. The peptide-binding pockets of these molecules are polymorphic, thus each HLA class II protein presents a distinct set of peptides to CD4+ T cells. Peptide diversity is increased through post-translational modifications, generating non-templated sequences that enhance HLA binding and/or T cell recognition. The high-risk HLA-DR alleles that confer susceptibility to RA are notable for their ability to accommodate citrulline, promoting responses to citrullinated self-antigens. Likewise, HLA-DQ alleles associated with T1D and CD favor the binding of deamidated peptides. In this review, we discuss structural features that promote modified self-epitope presentation, provide evidence supporting the relevance of T cell recognition of such antigens in disease processes, and make a case that interrupting the pathways that generate such epitopes and reprogramming neoepitope-specific T cells are key strategies for effective therapeutic intervention.
Collapse
Affiliation(s)
- Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, GR26100 Argostoli, Cephalonia, Greece
| | - Hai Nguyen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, GR47100 Arta, Greece
| |
Collapse
|
10
|
Lichti CF, Wan X. Using mass spectrometry to identify neoantigens in autoimmune diseases: The type 1 diabetes example. Semin Immunol 2023; 66:101730. [PMID: 36827760 PMCID: PMC10324092 DOI: 10.1016/j.smim.2023.101730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In autoimmune diseases, recognition of self-antigens presented by major histocompatibility complex (MHC) molecules elicits unexpected attack of tissue by autoantibodies and/or autoreactive T cells. Post-translational modification (PTM) may alter the MHC-binding motif or TCR contact residues in a peptide antigen, transforming the tolerance to self to autoreactivity. Mass spectrometry-based immunopeptidomics provides a valuable mechanism for identifying MHC ligands that contain PTMs and can thus provide valuable insights into pathogenesis and therapeutics of autoimmune diseases. A plethora of PTMs have been implicated in this process, and this review highlights their formation and identification.
Collapse
Affiliation(s)
- Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Syed F, Singhal D, Raedschelders K, Krishnan P, Bone RN, McLaughlin MR, Van Eyk JE, Mirmira RG, Yang ML, Mamula MJ, Wu H, Liu X, Evans-Molina C. A discovery-based proteomics approach identifies protein disulphide isomerase (PDIA1) as a biomarker of β cell stress in type 1 diabetes. EBioMedicine 2023; 87:104379. [PMID: 36463755 PMCID: PMC9719098 DOI: 10.1016/j.ebiom.2022.104379] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Stress responses within the β cell have been linked with both increased β cell death and accelerated immune activation in type 1 diabetes (T1D). At present, information on the timing and scope of these responses as well as disease-related changes in islet β cell protein expression during T1D development is lacking. METHODS Data independent acquisition-mass spectrometry was performed on islets collected longitudinally from NOD mice and NOD-SCID mice rendered diabetic through T cell adoptive transfer. FINDINGS In islets collected from female NOD mice at 10, 12, and 14 weeks of age, we found a time-restricted upregulation of proteins involved in stress mitigation and maintenance of β cell function, followed by loss of expression of protective proteins that heralded diabetes onset. EIF2 signalling and the unfolded protein response, mTOR signalling, mitochondrial function, and oxidative phosphorylation were commonly modulated pathways in both NOD mice and NOD-SCID mice rendered acutely diabetic by T cell adoptive transfer. Protein disulphide isomerase A1 (PDIA1) was upregulated in NOD islets and pancreatic sections from human organ donors with autoantibody positivity or T1D. Moreover, PDIA1 plasma levels were increased in pre-diabetic NOD mice and in the serum of children with recent-onset T1D compared to non-diabetic controls. INTERPRETATION We identified a core set of modulated pathways across distinct mouse models of T1D and identified PDIA1 as a potential human biomarker of β cell stress in T1D. FUNDING NIH (R01DK093954, DK127308, U01DK127786, UC4DK104166, R01DK060581, R01GM118470, and 5T32DK101001-09). VA Merit Award I01BX001733. JDRF (2-SRA-2019-834-S-B, 2-SRA-2018-493-A-B, 3-PDF-20016-199-A-N, 5-CDA-2022-1176-A-N, and 3-PDF-2017-385-A-N).
Collapse
Affiliation(s)
- Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Divya Singhal
- Department of Biochemistry and Molecular Biology, University of Calgary, 2500 University Drive NW, Alberta, Canada, T2N1N4
| | - Koen Raedschelders
- Advanced Clinical Biosystems Research Institute, Precision Health, Barbra Streisand Women's Heart Center at the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Suite A9227, Los Angeles, CA, USA, 90048
| | - Preethi Krishnan
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Robert N Bone
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Madeline R McLaughlin
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Precision Health, Barbra Streisand Women's Heart Center at the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Suite A9227, Los Angeles, CA, USA, 90048
| | - Raghavendra G Mirmira
- Kovler Diabetes Center, University of Chicago, 900 E 57th St, Chicago, IL, USA, 60637
| | - Mei-Ling Yang
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA, 06510
| | - Mark J Mamula
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA, 06510
| | - Huanmei Wu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, 535 W. Michigan Street, Indianapolis, IN, USA, 46202; Department of Health Services Administration and Policy, Temple University College of Public Health, 1101 W. Montgomery Ave, Philadelphia, PA, USA, 19122
| | - Xiaowen Liu
- Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, USA, 70112
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202; Department of Medicine, Indiana University School of Medicine, 340 W 10th St, Indianapolis, IN, USA, 46202; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, USA, 46202; Richard L. Roudebush VA Medical Center, Indiana University School of Informatics and Computing, 1481 W 10th St, Indianapolis, IN, USA, 46202.
| |
Collapse
|
12
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|