1
|
Sarkar S, Zheng X, Clair GC, Kwon YM, You Y, Swensen AC, Webb-Robertson BJM, Nakayasu ES, Qian WJ, Metz TO. Exploring new frontiers in type 1 diabetes through advanced mass-spectrometry-based molecular measurements. Trends Mol Med 2024; 30:1137-1151. [PMID: 39152082 PMCID: PMC11631641 DOI: 10.1016/j.molmed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Type 1 diabetes (T1D) is a devastating autoimmune disease for which advanced mass spectrometry (MS) methods are increasingly used to identify new biomarkers and better understand underlying mechanisms. For example, integration of MS analysis and machine learning has identified multimolecular biomarker panels. In mechanistic studies, MS has contributed to the discovery of neoepitopes, and pathways involved in disease development and identifying therapeutic targets. However, challenges remain in understanding the role of tissue microenvironments, spatial heterogeneity, and environmental factors in disease pathogenesis. Recent advancements in MS, such as ultra-fast ion-mobility separations, and single-cell and spatial omics, can play a central role in addressing these challenges. Here, we review recent advancements in MS-based molecular measurements and their role in understanding T1D.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yu Mi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Youngki You
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
2
|
Bessard MA, Moser A, Waeckel-Énée E, Lindo V, Gdoura A, You S, Wong FS, Greer F, van Endert P. Insulin-degrading enzyme regulates insulin-directed cellular autoimmunity in murine type 1 diabetes. Front Immunol 2024; 15:1474453. [PMID: 39600694 PMCID: PMC11588737 DOI: 10.3389/fimmu.2024.1474453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Type 1 diabetes results from the destruction of pancreatic beta cells by autoreactive T cells. As an autoantigen with extremely high expression in beta cells, insulin triggers and sustains the autoimmune CD4+ and CD8+ T cell responses and islet inflammation. We have previously shown that deficiency for insulin-degrading enzyme (IDE), a ubiquitous cytosolic protease with very high affinity for insulin, induces endoplasmic reticulum (ER) stress and proliferation in islet cells and protects non-obese diabetic mice (NOD) from diabetes. Here we wondered whether IDE deficiency affects autoreactive CD8+ T cell responses to insulin and thereby immune pathogenesis in NOD mice. We find that Ide-/- NOD harbor fewer diabetogenic T cells and reduced numbers of CD8+ T cells recognizing the dominant autoantigen insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Using in vitro digestions and cellular antigen presentation assays, we show that generation of the dominant insulin epitope B15-23 involves both the proteasome and IDE. IDE deficiency attenuates MHC-I presentation of the immunodominant insulin epitope by beta cells to cognate CD8+ T cells. Consequently, Ide-/- islets display reduced susceptibility to autoimmune destruction upon grafting, and to killing by insulin-specific CD8+ T cells. Moreover, Ide-/- mice are partly resistant to disease transfer by CD8+ T cells specific for insulin but not for IGRP. Thus, IDE has a dual role in beta cells, regulating ER stress and proliferation while at the same time promoting insulin-directed autoreactive CD8+ T cell responses.
Collapse
Affiliation(s)
- Marie-Andrée Bessard
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Anna Moser
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Emmanuelle Waeckel-Énée
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | | | - Abdelaziz Gdoura
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
| | - Sylvaine You
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Cochin, Paris, France
| | - F. Susan Wong
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Peter van Endert
- Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France
- Service Immunologie Biologique, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
3
|
Bhattacharjee P, Pakusch M, Lacorcia M, Tresoldi E, Rubin AF, Foster A, King L, Chiu CY, Kay TWH, Karas JA, Cameron FJ, Mannering SI. Proinsulin C-peptide is a major source of HLA-DQ8 restricted hybrid insulin peptides recognized by human islet-infiltrating CD4 + T cells. PNAS NEXUS 2024; 3:pgae491. [PMID: 39554513 PMCID: PMC11565411 DOI: 10.1093/pnasnexus/pgae491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that develops when T cells destroy the insulin-producing beta cells that reside in the pancreatic islets. Immune cells, including T cells, infiltrate the islets and gradually destroy the beta cells. Human islet-infiltrating CD4+ T cells recognize peptide epitopes derived from proinsulin, particularly C-peptide. Hybrid insulin peptides (HIPs) are neoepitopes formed by the fusion of two peptides derived from beta cell granule proteins and are known to be the targets of pathogenic CD4+ T cells in the non-obese diabetic (NOD) mouse and human islet-infiltrating CD4+ T cells. Proinsulin is widely recognized as a central antigen in T1D, but its role in forming HIPs is unclear. We developed a method to functionally screen TCRs derived from human islet-infiltrating CD4+ T cells and applied this to the identification of new proinsulin-derived HIPs. We generated a library of 4,488 candidate HIPs formed by fusion of proinsulin fragments and predicted to bind to HLA-DQ8. This library was screened against 109 islet-infiltrating CD4+ T cell receptors (TCRs) isolated from four organ donors who had T1D. We identified 13 unique HIPs recognized by nine different TCRs from two organ donors. HIP-specific T cell avatars responded specifically to a peptide extract from human islets. These new HIPs predominantly stimulated CD4+ T cell proliferation in peripheral blood mononuclear cells from individuals with T1D in contrast to HLA-matched controls. This is the first unbiased functional, islet-infiltrating T cell based, screen to identify proinsulin-derived HIPs. It has revealed many new HIPs and a central role of proinsulin C-peptide in their formation.
Collapse
Affiliation(s)
- Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Miha Pakusch
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Matthew Lacorcia
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Eleonora Tresoldi
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Alan F Rubin
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Abby Foster
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Laura King
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Chris Y Chiu
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Thomas W H Kay
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - John A Karas
- School of Chemistry, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Fergus J Cameron
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Parkville, Melbourne, VIC 3052, Australia
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC 3065, Australia
| |
Collapse
|
4
|
Mitchell JS, Spanier JA, Dwyer AJ, Knutson TP, Alkhatib MH, Qian G, Weno ME, Chen Y, Shaheen ZR, Tucker CG, Kangas TO, Morales MS, Silva N, Kaisho T, Farrar MA, Fife BT. CD4 + T cells reactive to a hybrid peptide from insulin-chromogranin A adopt a distinct effector fate and are pathogenic in autoimmune diabetes. Immunity 2024; 57:2399-2415.e8. [PMID: 39214091 DOI: 10.1016/j.immuni.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
T cell-mediated islet destruction is a hallmark of autoimmune diabetes. Here, we examined the dynamics and pathogenicity of CD4+ T cell responses to four different insulin-derived epitopes during diabetes initiation in non-obese diabetic (NOD) mice. Single-cell RNA sequencing of tetramer-sorted CD4+ T cells from the pancreas revealed that islet-antigen-specific T cells adopted a wide variety of fates and required XCR1+ dendritic cells for their activation. Hybrid-insulin C-chromogranin A (InsC-ChgA)-specific CD4+ T cells skewed toward a distinct T helper type 1 (Th1) effector phenotype, whereas the majority of insulin B chain and hybrid-insulin C-islet amyloid polypeptide-specific CD4+ T cells exhibited a regulatory phenotype and early or weak Th1 phenotype, respectively. InsC-ChgA-specific CD4+ T cells were uniquely pathogenic upon transfer, and an anti-InsC-ChgA:IAg7 antibody prevented spontaneous diabetes. Our findings highlight the heterogeneity of T cell responses to insulin-derived epitopes in diabetes and argue for the feasibility of antigen-specific therapies that blunts the response of pathogenic CD4+ T cells causing autoimmunity.
Collapse
Affiliation(s)
- Jason S Mitchell
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Justin A Spanier
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA; Center for Autoimmune Disease Research, University of Minnesota, Minneapolis, MN, USA
| | - Alexander J Dwyer
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Todd P Knutson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mohannad H Alkhatib
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Gina Qian
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Matthew E Weno
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Yixin Chen
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Zachary R Shaheen
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, Division of Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Christopher G Tucker
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Takashi O Kangas
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Milagros Silva Morales
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Nubia Silva
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Tsuneyasu Kaisho
- Department of Immunology Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Michael A Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Brian T Fife
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA; Center for Autoimmune Disease Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Mishto M, Takala I, Bonfanti P, Liepe J. Proteasome isoforms in human thymi and mouse models. Immunol Lett 2024; 269:106899. [PMID: 39019403 DOI: 10.1016/j.imlet.2024.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
The thymus is the organ where functional and self-tolerant T cells are selected through processes of positive and negative selection before migrating to the periphery. The antigenic peptides presented on MHC class I molecules of thymic epithelial cells (TECs) in the cortex and medulla of the thymus are key players in these processes. It has been theorized that these cells express different proteasome isoforms, which generate MHC class I immunopeptidomes with features that differentiate cortex and medulla, and hence positive and negative CD8+ T cell selection. This theory is largely based on mouse models and does not consider the large variety of noncanonical antigenic peptides that could be produced by proteasomes and presented on MHC class I molecules. Here, we review the multi-omics, biochemical and cellular studies carried out on mouse models and human thymi to investigate their content of proteasome isoforms, briefly summarize the implication that noncanonical antigenic peptide presentation in the thymus could have on CD8+ T cell repertoire and put these aspects in the larger framework of anatomical and immunological differences between these two species.
Collapse
Affiliation(s)
- Michele Mishto
- Molecular Immunology laboratory, the Francis Crick Institute, NW1 1AT London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, United Kingdom.
| | - Iina Takala
- Research group of Quantitative System Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, London NW3 2PP, United Kingdom
| | - Juliane Liepe
- Research group of Quantitative System Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Hu H, Vomund AN, Peterson OJ, Srivastava N, Li T, Kain L, Beatty WL, Zhang B, Hsieh CS, Teyton L, Lichti CF, Unanue ER, Wan X. Crinophagic granules in pancreatic β cells contribute to mouse autoimmune diabetes by diversifying pathogenic epitope repertoire. Nat Commun 2024; 15:8318. [PMID: 39333495 PMCID: PMC11437215 DOI: 10.1038/s41467-024-52619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Autoimmune attack toward pancreatic β cells causes permanent loss of glucose homeostasis in type 1 diabetes (T1D). Insulin secretory granules store and secrete insulin but are also thought to be tissue messengers for T1D. Here, we show that the crinophagic granules (crinosome), a minor set of vesicles formed by fusing lysosomes with the conventional insulin dense-core granules (DCG), are pathogenic in T1D development in mouse models. Pharmacological inhibition of crinosome formation in β cells delays T1D progression without affecting the dominant DCGs. Mechanistically, crinophagy inhibition diminishes the epitope repertoire in pancreatic islets, including cryptic, modified and disease-relevant epitopes derived from insulin. These unconventional insulin epitopes are largely undetectable in the MHC-II epitope repertoire of the thymus, where only canonical insulin epitopes are presented. CD4+ T cells targeting unconventional insulin epitopes display autoreactive phenotypes, unlike tolerized T cells recognizing epitopes presented in the thymus. Thus, the crinophagic pathway emerges as a tissue-intrinsic mechanism that transforms insulin from a signature thymic self-protein to a critical autoantigen by creating a peripheral-thymic mismatch in the epitope repertoire.
Collapse
Affiliation(s)
- Hao Hu
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Orion J Peterson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Neetu Srivastava
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Noble JA. Fifty years of HLA-associated type 1 diabetes risk: history, current knowledge, and future directions. Front Immunol 2024; 15:1457213. [PMID: 39328411 PMCID: PMC11424550 DOI: 10.3389/fimmu.2024.1457213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
More than 50 years have elapsed since the association of human leukocyte antigens (HLA) with type 1 diabetes (T1D) was first reported. Since then, methods for identification of HLA have progressed from cell based to DNA based, and the number of recognized HLA variants has grown from a few to tens of thousands. Current genotyping methodology allows for exact identification of all HLA-encoding genes in an individual's genome, with statistical analysis methods evolving to digest the enormous amount of data that can be produced at an astonishing rate. The HLA region of the genome has been repeatedly shown to be the most important genetic risk factor for T1D, and the original reported associations have been replicated, refined, and expanded. Even with the remarkable progress through 50 years and over 5,000 reports, a comprehensive understanding of all effects of HLA on T1D remains elusive. This report represents a summary of the field as it evolved and as it stands now, enumerating many past and present challenges, and suggests possible paradigm shifts for moving forward with future studies in hopes of finally understanding all the ways in which HLA influences the pathophysiology of T1D.
Collapse
Affiliation(s)
- Janelle A. Noble
- Children’s Hospital Oakland Research Institute,
Oakland, CA, United States
- University of California San Francisco, Oakland,
CA, United States
| |
Collapse
|
8
|
He Q, Zhao MM, Li MJ, Li XY, Jin JM, Feng YM, Zhang L, Huang WJ, Yang F, Yang JK. Hyperglycemia induced cathepsin L maturation linked to diabetic comorbidities and COVID-19 mortality. eLife 2024; 13:RP92826. [PMID: 39150053 PMCID: PMC11329274 DOI: 10.7554/elife.92826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.
Collapse
Affiliation(s)
- Qiong He
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Miao-Miao Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ming-Jia Li
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ya Li
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian-Min Jin
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying-Mei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China, Beijing, China
| | - Wei Jin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China, Beijing, China
| | - Fangyuan Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Groegler J, Callebaut A, James EA, Delong T. The insulin secretory granule is a hotspot for autoantigen formation in type 1 diabetes. Diabetologia 2024; 67:1507-1516. [PMID: 38811417 DOI: 10.1007/s00125-024-06164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 05/31/2024]
Abstract
In type 1 diabetes, the insulin-producing beta cells of the pancreas are destroyed through the activity of autoreactive T cells. In addition to strong and well-documented HLA class II risk haplotypes, type 1 diabetes is associated with noncoding polymorphisms within the insulin gene locus. Furthermore, autoantibody prevalence data and murine studies implicate insulin as a crucial autoantigen for the disease. Studies identify secretory granules, where proinsulin is processed into mature insulin, stored and released in response to glucose stimulation, as a source of antigenic epitopes and neoepitopes. In this review, we integrate established concepts, including the role that susceptible HLA and thymic selection of the T cell repertoire play in setting the stage for autoimmunity, with emerging insights about beta cell and insulin secretory granule biology. In particular, the acidic, peptide-rich environment of secretory granules combined with its array of enzymes generates a distinct proteome that is unique to functional beta cells. These factors converge to generate non-templated peptide sequences that are recognised by autoreactive T cells. Although unanswered questions remain, formation and presentation of these epitopes and the resulting immune responses appear to be key aspects of disease initiation. In addition, these pathways may represent important opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jason Groegler
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aïsha Callebaut
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK. The immunology of type 1 diabetes. Nat Rev Immunol 2024; 24:435-451. [PMID: 38308004 PMCID: PMC7616056 DOI: 10.1038/s41577-023-00985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Thomas Delong
- Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Ana Luisa Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Internal Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Noah Biru
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London, London, UK.
- Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
11
|
Boyer CK, Blom SE, Machado AE, Rohli KE, Maxson ME, Stephens SB. Loss of the Golgi-localized v-ATPase subunit does not alter insulin granule formation or pancreatic islet β-cell function. Am J Physiol Endocrinol Metab 2024; 326:E245-E257. [PMID: 38265287 PMCID: PMC11193524 DOI: 10.1152/ajpendo.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Delayed Golgi export of proinsulin has recently been identified as an underlying mechanism leading to insulin granule loss and β-cell secretory defects in type 2 diabetes (T2D). Because acidification of the Golgi lumen is critical for proinsulin sorting and delivery into the budding secretory granule, we reasoned that dysregulation of Golgi pH may contribute to proinsulin trafficking defects. In this report, we examined pH regulation of the Golgi and identified a partial alkalinization of the Golgi lumen in a diabetes model. To further explore this, we generated a β-cell specific knockout (KO) of the v0a2 subunit of the v-ATPase pump, which anchors the v-ATPase to the Golgi membrane. Although loss of v0a2 partially neutralized Golgi pH and was accompanied by distension of the Golgi cisternae, proinsulin export from the Golgi and insulin granule formation were not affected. Furthermore, β-cell function was well preserved. β-cell v0a2 KO mice exhibited normal glucose tolerance in both sexes, no genotypic difference to diet-induced obesity, and normal insulin secretory responses. Collectively, our data demonstrate the v0a2 subunit contributes to β-cell Golgi pH regulation but suggest that additional disturbances to Golgi structure and function contribute to proinsulin trafficking defects in diabetes.NEW & NOTEWORTHY Delayed proinsulin export from the Golgi in diabetic β-cells contributes to decreased insulin granule formation, but the underlying mechanisms are not clear. Here, we explored if dysregulation of Golgi pH can alter Golgi function using β-cell specific knockout (KO) of the Golgi-localized subunit of the v-ATPase, v0a2. We show that partial alkalinization of the Golgi dilates the cisternae, but does not affect proinsulin export, insulin granule formation, insulin secretion, or glucose homeostasis.
Collapse
Affiliation(s)
- Cierra K Boyer
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
| | - Sandra E Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Ashleigh E Machado
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States
| | - Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
12
|
Wenzlau JM, Peterson OJ, Vomund AN, DiLisio JE, Hohenstein A, Haskins K, Wan X. Mapping of a hybrid insulin peptide in the inflamed islet β-cells from NOD mice. Front Immunol 2024; 15:1348131. [PMID: 38455055 PMCID: PMC10917911 DOI: 10.3389/fimmu.2024.1348131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
There is accumulating evidence that pathogenic T cells in T1D recognize epitopes formed by post-translational modifications of β-cell antigens, including hybrid insulin peptides (HIPs). The ligands for several CD4 T-cell clones derived from the NOD mouse are HIPs composed of a fragment of proinsulin joined to peptides from endogenous β-cell granule proteins. The diabetogenic T-cell clone BDC-6.9 reacts to a fragment of C-peptide fused to a cleavage product of pro-islet amyloid polypeptide (6.9HIP). In this study, we used a monoclonal antibody (MAb) to the 6.9HIP to determine when and where HIP antigens are present in NOD islets during disease progression and with which immune cells they associate. Immunogold labeling of the 6.9HIP MAb and organelle-specific markers for electron microscopy were employed to map the subcellular compartment(s) in which the HIP is localized within β-cells. While the insulin B9-23 peptide was present in nearly all islets, the 6.9HIP MAb stained infiltrated islets only in NOD mice at advanced stages of T1D development. Islets co-stained with the 6.9HIP MAb and antibodies to mark insulin, macrophages, and dendritic cells indicate that 6.9HIP co-localizes within insulin-positive β-cells as well as intra-islet antigen-presenting cells (APCs). In electron micrographs, the 6.9HIP co-localized with granule structures containing insulin alone or both insulin and LAMP1 within β-cells. Exposing NOD islets to the endoplasmic reticulum (ER) stress inducer tunicamycin significantly increased levels of 6.9HIP in subcellular fractions containing crinosomes and dense-core granules (DCGs). This work demonstrates that the 6.9HIP can be visualized in the infiltrated islets and suggests that intra-islet APCs may acquire and present HIP antigens within islets.
Collapse
Affiliation(s)
- Janet M. Wenzlau
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Orion J. Peterson
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States
| | - Anthony N. Vomund
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States
| | - James E. DiLisio
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Anita Hohenstein
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Xiaoxiao Wan
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
13
|
Soh WT, Roetschke HP, Cormican JA, Teo BF, Chiam NC, Raabe M, Pflanz R, Henneberg F, Becker S, Chari A, Liu H, Urlaub H, Liepe J, Mishto M. Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing. Nat Commun 2024; 15:1147. [PMID: 38326304 PMCID: PMC10850103 DOI: 10.1038/s41467-024-45339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow-and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein. The results confirm that 20S proteasomes produce a sizeable variety of cis-spliced peptides, whereas trans-spliced peptides are a minority. Both peptide hydrolysis and splicing produce peptides with well-defined characteristics, which hint toward an intricate regulation of both catalytic activities. At protein level, both non-spliced and spliced peptides are not randomly localized within protein sequences, but rather concentrated in hotspots of peptide products, in part driven by protein sequence motifs and proteasomal preferences. At sequence level, the different peptide sequence preference of peptide hydrolysis and peptide splicing suggests a competition between the two catalytic activities of 20S proteasomes during protein degradation.
Collapse
Affiliation(s)
- Wai Tuck Soh
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Hanna P Roetschke
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
| | - John A Cormican
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Bei Fang Teo
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Nyet Cheng Chiam
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Monika Raabe
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ralf Pflanz
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Fabian Henneberg
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ashwin Chari
- Research Group of Structural Biochemistry and Mechanisms, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Henning Urlaub
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Juliane Liepe
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK.
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
14
|
Reghupaty SC, Dall NR, Svensson KJ. Hallmarks of the metabolic secretome. Trends Endocrinol Metab 2024; 35:49-61. [PMID: 37845120 PMCID: PMC10841501 DOI: 10.1016/j.tem.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
The identification of novel secreted factors is advancing at an unprecedented pace. However, there is a critical need to consolidate and integrate this knowledge to provide a framework of their diverse mechanisms, functional significance, and inter-relationships. Complicating this effort are challenges related to nonstandardized methods, discrepancies in sample handling, and inconsistencies in the annotation of unknown molecules. This Review aims to synthesize the rapidly expanding field of the metabolic secretome, encompassing the five major types of secreted factors: proteins, peptides, metabolites, lipids, and extracellular vesicles. By systematically defining the functions and detection of the components within the metabolic secretome, this Review provides a primer into the advances of the field, and how integration of the techniques discussed can provide a deeper understanding of the mechanisms underlying metabolic homeostasis and its disorders.
Collapse
Affiliation(s)
- Saranya C Reghupaty
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Nicholas R Dall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
15
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
16
|
Crawford SA, Groegler J, Dang M, Michel C, Powell RL, Hohenstein AC, Reyes K, Haskins K, Wiles TA, Delong T. Hybrid insulin peptide isomers spontaneously form in pancreatic beta-cells from an aspartic anhydride intermediate. J Biol Chem 2023; 299:105264. [PMID: 37734557 PMCID: PMC10590738 DOI: 10.1016/j.jbc.2023.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Hybrid insulin peptides (HIPs) form in beta-cells when insulin fragments link to other peptides through a peptide bond. HIPs contain nongenomic amino acid sequences and have been identified as targets for autoreactive T cells in type 1 diabetes. A subgroup of HIPs, in which N-terminal amine groups of various peptides are linked to aspartic acid residues of insulin C-peptide, was detected through mass spectrometry in pancreatic islets. Here, we investigate a novel mechanism that leads to the formation of these HIPs in human and murine islets. Our research herein shows that these HIPs form spontaneously in beta-cells through a mechanism involving an aspartic anhydride intermediate. This mechanism leads to the formation of a regular HIP containing a standard peptide bond as well as a HIP-isomer containing an isopeptide bond by linkage to the carboxylic acid side chain of the aspartic acid residue. We used mass spectrometric analyses to confirm the presence of both HIP isomers in islets, thereby validating the occurrence of this novel reaction mechanism in beta-cells. The spontaneous formation of new peptide bonds within cells may lead to the development of neoepitopes that contribute to the pathogenesis of type 1 diabetes as well as other autoimmune diseases.
Collapse
Affiliation(s)
- Samantha A Crawford
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jason Groegler
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mylinh Dang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Roger L Powell
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anita C Hohenstein
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kaitlin Reyes
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Timothy A Wiles
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
17
|
Wenzlau JM, Gu Y, Michels A, Rewers M, Haskins K, Yu L. Identification of Autoantibodies to a Hybrid Insulin Peptide in Type 1 Diabetes. Diagnostics (Basel) 2023; 13:2859. [PMID: 37685398 PMCID: PMC10487141 DOI: 10.3390/diagnostics13172859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that attacks the insulin-producing b cells of the pancreatic islets. Autoantibodies to b cell proteins typically appear in the circulation years before disease onset, and serve as the most accurate biomarkers of T1D risk. Our laboratory has recently discovered novel b cell proteins comprising hybrid proinsulin:islet amyloid polypeptide peptides (IAPP). T cells from a diabetic mouse model and T1D patients are activated by these hybrid peptides. In this study, we asked whether these hybrid molecules could serve as antigens for autoantibodies in T1D and prediabetic patients. We analyzed sera from T1D patients, prediabetics and healthy age-matched donors. Using a highly sensitive electrochemiluminescence assay, sera were screened for binding to recombinant proinsulin:IAPP probes or truncated derivatives. Our results show that sera from T1D patients contain antibodies that bind larger hybrid proinsulin:IAPP probes, but not proinsulin or insulin, at significantly increased frequencies compared to normal donors. Examination of sera from prediabetic patients confirms titers of antibodies to these hybrid probes in more than 80% of individuals, often before seroconversion. These results suggest that hybrid insulin peptides are common autoantigens in T1D and prediabetic patients, and that antibodies to these peptides may serve as valuable early biomarkers of the disease.
Collapse
Affiliation(s)
- Janet M. Wenzlau
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA; (J.M.W.); (K.H.)
| | - Yong Gu
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| | - Aaron Michels
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA; (J.M.W.); (K.H.)
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| |
Collapse
|
18
|
Stutzmann C, Peng J, Wu Z, Savoie C, Sirois I, Thibault P, Wheeler AR, Caron E. Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery. CELL REPORTS METHODS 2023; 3:100511. [PMID: 37426761 PMCID: PMC10326451 DOI: 10.1016/j.crmeth.2023.100511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunotherapies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies (<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an overview of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based immunopeptidomics and single-cell proteomics.
Collapse
Affiliation(s)
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Zhaoguan Wu
- CHU Sainte Justine Research Center, Montreal, QC, Canada
| | | | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Etienne Caron
- CHU Sainte Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
19
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Moustakas AK, Nguyen H, James EA, Papadopoulos GK. Autoimmune susceptible HLA class II motifs facilitate the presentation of modified neoepitopes to potentially autoreactive T cells. Cell Immunol 2023; 390:104729. [PMID: 37301094 DOI: 10.1016/j.cellimm.2023.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), and celiac disease (CD), are strongly associated with susceptible HLA class II haplotypes. The peptide-binding pockets of these molecules are polymorphic, thus each HLA class II protein presents a distinct set of peptides to CD4+ T cells. Peptide diversity is increased through post-translational modifications, generating non-templated sequences that enhance HLA binding and/or T cell recognition. The high-risk HLA-DR alleles that confer susceptibility to RA are notable for their ability to accommodate citrulline, promoting responses to citrullinated self-antigens. Likewise, HLA-DQ alleles associated with T1D and CD favor the binding of deamidated peptides. In this review, we discuss structural features that promote modified self-epitope presentation, provide evidence supporting the relevance of T cell recognition of such antigens in disease processes, and make a case that interrupting the pathways that generate such epitopes and reprogramming neoepitope-specific T cells are key strategies for effective therapeutic intervention.
Collapse
Affiliation(s)
- Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, GR26100 Argostoli, Cephalonia, Greece
| | - Hai Nguyen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, GR47100 Arta, Greece
| |
Collapse
|
21
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
22
|
Mohammadi-Motlagh HR, Sadeghalvad M, Yavari N, Primavera R, Soltani S, Chetty S, Ganguly A, Regmi S, Fløyel T, Kaur S, Mirza AH, Thakor AS, Pociot F, Yarani R. β Cell and Autophagy: What Do We Know? Biomolecules 2023; 13:biom13040649. [PMID: 37189396 DOI: 10.3390/biom13040649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic β cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in β cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components. Impaired autophagy results in β cell loss of function and apoptosis and, as a result, diabetes initiation and progress. It has been shown that in response to endoplasmic reticulum stress, inflammation, and high metabolic demands, autophagy affects β cell function, insulin synthesis, and secretion. This review highlights recent evidence regarding how autophagy can affect β cells' fate in the pathogenesis of diabetes. Furthermore, we discuss the role of important intrinsic and extrinsic autophagy modulators, which can lead to β cell failure.
Collapse
Affiliation(s)
- Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67155-1616, Iran
| | - Mona Sadeghalvad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rosita Primavera
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Shashank Chetty
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abantika Ganguly
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shobha Regmi
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Aashiq H Mirza
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Avnesh S Thakor
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Reza Yarani
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
23
|
Boyer CK, Bauchle CJ, Zhang J, Wang Y, Stephens SB. Synchronized proinsulin trafficking reveals delayed Golgi export accompanies β-cell secretory dysfunction in rodent models of hyperglycemia. Sci Rep 2023; 13:5218. [PMID: 36997560 PMCID: PMC10063606 DOI: 10.1038/s41598-023-32322-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
The pancreatic islet β-cell's preference for release of newly synthesized insulin requires careful coordination of insulin exocytosis with sufficient insulin granule production to ensure that insulin stores exceed peripheral demands for glucose homeostasis. Thus, the cellular mechanisms regulating insulin granule production are critical to maintaining β-cell function. In this report, we utilized the synchronous protein trafficking system, RUSH, in primary β-cells to evaluate proinsulin transit through the secretory pathway leading to insulin granule formation. We demonstrate that the trafficking, processing, and secretion of the proinsulin RUSH reporter, proCpepRUSH, are consistent with current models of insulin maturation and release. Using both a rodent dietary and genetic model of hyperglycemia and β-cell dysfunction, we show that proinsulin trafficking is impeded at the Golgi and coincides with the decreased appearance of nascent insulin granules at the plasma membrane. Ultrastructural analysis of β-cells from diabetic leptin receptor deficient mice revealed gross morphological changes in Golgi structure, including shortened and swollen cisternae, and partial Golgi vesiculation, which are consistent with defects in secretory protein export. Collectively, this work highlights the utility of the proCpepRUSH reporter in studying proinsulin trafficking dynamics and suggests that altered Golgi export function contributes to β-cell secretory defects in the pathogenesis of Type 2 diabetes.
Collapse
Affiliation(s)
- Cierra K Boyer
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52246, USA
| | - Casey J Bauchle
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52246, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA, 52246, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52246, USA.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA, 52246, USA.
| |
Collapse
|
24
|
Lichti CF, Wan X. Using mass spectrometry to identify neoantigens in autoimmune diseases: The type 1 diabetes example. Semin Immunol 2023; 66:101730. [PMID: 36827760 PMCID: PMC10324092 DOI: 10.1016/j.smim.2023.101730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In autoimmune diseases, recognition of self-antigens presented by major histocompatibility complex (MHC) molecules elicits unexpected attack of tissue by autoantibodies and/or autoreactive T cells. Post-translational modification (PTM) may alter the MHC-binding motif or TCR contact residues in a peptide antigen, transforming the tolerance to self to autoreactivity. Mass spectrometry-based immunopeptidomics provides a valuable mechanism for identifying MHC ligands that contain PTMs and can thus provide valuable insights into pathogenesis and therapeutics of autoimmune diseases. A plethora of PTMs have been implicated in this process, and this review highlights their formation and identification.
Collapse
Affiliation(s)
- Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| |
Collapse
|