1
|
Rangert A, Oldin C, Golsäter M, Ludvigsson J, Åkesson K. No association between incidence of type 1 diabetes and rotavirus vaccination in Swedish children. Front Immunol 2023; 14:1175071. [PMID: 37638044 PMCID: PMC10456946 DOI: 10.3389/fimmu.2023.1175071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Background Rotavirus infection is a potential trigger of type 1 diabetes (T1D) and rotavirus vaccination is hypothesized to decrease the incidence of T1D. In Sweden, rotavirus vaccination was introduced in 2014 in two regions and from 2019, nationwide. This study aims to investigate the association between rotavirus vaccination and incidence of T1D in Swedish children and whether rotavirus vaccination is associated with a change in clinical manifestation at diabetes onset. Methods A nationwide register-based study with all Swedish children <15 years of age, diagnosed with T1D 2009-2019 was conducted. 7893 children were retrieved. Nationwide vaccine coverage was collected from Child Health Services. Three vaccine groups were created: I: Vaccination start 2014; II: Gradual vaccination start 2016-2018; III: No vaccination. Incidence rates of T1D before (2009-2014) and after (2014-2019) introduction of rotavirus vaccine were compared. Findings The mean incidence of T1D in children <15 years was 42·61 per 100 000 during the observed period. When comparing the years before and after 2014 the incidence rate ratio (IRR) for children <5 years was 0·86 in group I (p=0·10), 0·85 (p=0·05) in group II and 0·87 (p=0·06) in group III. A similar IRR reduction was also seen among older children who received no vaccine. Children developing or not developing T1D were vaccinated to the same extent. No differences regarding clinical manifestation at onset associated with rotavirus vaccination were seen. Interpretation There is no association between rotavirus vaccination in children and incidence or clinical manifestation of T1D.
Collapse
Affiliation(s)
- Amanda Rangert
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Futurum – Academy of Health and Care, Region Jönköping County, Jönköping, Sweden
| | - Carin Oldin
- Child Health Services, Jönköping, Region Jönköping County, Jönköping, Sweden
| | - Marie Golsäter
- Futurum – Academy of Health and Care, Region Jönköping County, Jönköping, Sweden
- Child Health Services, Jönköping, Region Jönköping County, Jönköping, Sweden
- CHILD - Research Group, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children´s Hospital, Linköping, Sweden
| | - Karin Åkesson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Pediatrics, Ryhov County Hospital, Jönköping, Sweden
| |
Collapse
|
2
|
Knip M, Parviainen A, Turtinen M, But A, Härkönen T, Hepojoki J, Sironen T, Iheozor-Ejiofor R, Uğurlu H, Saksela K, Lempainen J, Ilonen J, Vapalahti O. SARS-CoV-2 and type 1 diabetes in children in Finland: an observational study. Lancet Diabetes Endocrinol 2023; 11:251-260. [PMID: 36958868 DOI: 10.1016/s2213-8587(23)00041-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Some epidemiological studies have suggested an increase in incidence of type 1 diabetes during the COVID-19 pandemic, however the mechanism(s) behind such an increase have yet to be identified. In this study we aimed to evaluate the possible role of the SARS-CoV-2 virus in the reported increase in the rate of type 1 diabetes. METHODS In this observational cohort study using data from the Finnish Pediatric Diabetes Register (FPDR), we assessed the incidence of type 1 diabetes (number of children with newly diagnosed type 1 diabetes per 100 000 person-years during the pandemic and the reference period) during the first 18 months of the COVID-19 pandemic in children in Finland younger than 15 years old compared with a reference period which included three corresponding pre-pandemic periods also obtained from the FPDR. Children with confirmed monogenic diabetes were excluded. We also compared the phenotype and HLA genotype of the disease between these two cohorts, and analysed the proportion of newly diagnosed people with type 1 diabetes testing positive for SARS-CoV-2 antibodies. FINDINGS 785 children and adolescents in Finland were diagnosed with type 1 diabetes from March 1, 2020, to Aug 31, 2021. In the reference period, which comprised three similar 18-month terms (from March 1, 2014, to Aug 31, 2015; March 1, 2016, to Aug 31, 2017; and March 1, 2018, to Aug 31, 2019) 2096 children and adolescents were diagnosed. The incidence of type 1 diabetes was 61·0 per 100 000 person-years (95% CI 56·8-65·4) among children younger than 15 years old during the pandemic, which was significantly higher than during the reference period (52·3 per 100 000 person-years; 50·1-54·6). The incidence rate ratio adjusted for age and sex for the COVID-19 pandemic was 1·16 (1·06-1·25; p=0·0006) when compared with the reference period. The children diagnosed during the COVID-19 pandemic had more often diabetic ketoacidosis (p<0·001), had a higher HbA1c (p<0·001), and tested more frequently positive for glutamic acid debarboxylase antibodies at diagnosis (p<0·001) than those diagnosed before the pandemic. There were no significant differences in the distribution of HLA genotypes between the two periods. Only five of those diagnosed during the pandemic (0·9%) of 583 tested positive for infection-induced SARS-CoV-2 antibodies. INTERPRETATION Children and adolescents diagnosed with type 1 diabetes during the pandemic had a more severe disease at diagnosis. The observed increase in type 1 diabetes incidence during the first 18 months could be a consequence of lockdown and physical distancing rather than a direct effect of SARS-CoV-2 infection. FUNDING Helsinki University Hospital Research Funds, EU Horizon 2020 (Versatile emerging infectious disease observatory project), Academy of Finland, Sigrid Jusélius Foundation, Jane & Aatos Erkko Foundation, and Medicinska understödsföreningen Liv och Hälsa. TRANSLATIONS For the Finnish and Swedish translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Mikael Knip
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Anna Parviainen
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maaret Turtinen
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna But
- Biostatistics consulting, Department of Public Health, University Hospital, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Hasan Uğurlu
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Kalle Saksela
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Virology and Immunology, Diagnostic Center, Helsinki University Hospital (HUSLAB), Helsinki, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland; Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Virology and Immunology, Diagnostic Center, Helsinki University Hospital (HUSLAB), Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
3
|
Khalil RG, Abdel-Moneim A, Arafa AA, Allam G, El-Senousy WM, Mabrouk D. Possible association of rotavirus IgG with cytokine expression levels and dyslipidemia in rotavirus-infected type 1 diabetic children. Mol Biol Rep 2022; 49:7587-7599. [PMID: 35733062 PMCID: PMC9216291 DOI: 10.1007/s11033-022-07573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
Background Rotavirus (RV) has been postulated as a viral trigger for the onset of autoimmune disorders, such as type 1 diabetes (T1D). This study aimed to examine the conceivable association of RV IgG with cytokine levels and dyslipidemia in the pathogenesis of pediatric T1D. Methods This study included 30 healthy controls and 80 children with T1D who were divided into two groups based on the time since their T1D diagnosis: newly diagnosed (ND ≤ 1 year; n = 30) and previously diagnosed (PD > 1 year; n = 50). ND and PD patients were also separated into negative and positive according to IgG detection (RV IgG−, ND−, and PD−; RV IgG+, ND+, and PD+). Results Positive polymerase chain reaction for RVs was evidenced in 7.5% of children with T1D. Anti-RV IgG was 30% and 36% in ND and PD, respectively, compared to healthy controls (2 of 30, 6.6%; P < 0.05). Fasting blood sugar and hemoglobin A1c significantly increased in PD+ compared to PD−. Interferon-γ and interleukin (IL)-15 levels significantly increased. IL-12 and IL-22 mRNA expression was upregulated in ND+ patients compared to that in ND− patients. IL-37 mRNA expression was significantly downregulated in ND− and ND+ patients compared to that in healthy controls. Total cholesterol and high- and low-density lipoprotein-cholesterol levels were significantly lower in PD+ than in PD−; whereas triglyceride levels were higher than those in healthy controls. Conclusions This study suggested that anti-RV IgG may have a role in the pathogenesis, development, and progression of T1D, and RV infections are implicated in dyslipidemia and inflammation status. Supplementary information The online version contains supplementary material available at 10.1007/s11033-022-07573-0.
Collapse
Affiliation(s)
- Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt. Salah Salem St, 62511, Beni-Suef, Egypt.
| | - Amany A Arafa
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Allam
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Waled M El-Senousy
- Department of Water Pollution Research, Environmental Research Division, National Research Centre (NRC), Dokki, Cairo, Egypt
| | - Doaa Mabrouk
- Department of Microbiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Ahmad HH, Peck B, Terry D. The influence of probiotics on gastrointestinal tract infections among children attending childcare: A systematic review and meta-analysis. J Appl Microbiol 2021; 132:1636-1651. [PMID: 34796583 DOI: 10.1111/jam.15374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Current literature related to the impact of probiotics on the incidence of gastrointestinal tract infections (GITIs) has shown mixed results and no systematic review available with pooled analysis exists. Thus, the aim of this systematic review was to provide contemporary evidence regarding the overall and strain-specific influence of probiotics in preventing GITIs among infants and children attending childcare centres. The review shortlisted 18 RCTs after screening through the initial search results of 779 articles. However, only 15 trials were deemed eligible, addressing at least one outcome in the pooled analysis. It is concluded that the supplementation of probiotics (overall effect) may reduce the risk of GITI episode by 26%, with Lacticaseibacillus paracasei, Limosilactobacillus reuteri and Lacticaseibacillus rhamnosus GG being specifically potent probiotic strains in reducing GITI episode, duration of infection and absence from childcare respectively. There is insufficient evidence to determine the effect of Bifidobacterium animalis subsp. lactis BB-12 based on the findings of the trials included in this review.
Collapse
Affiliation(s)
- Hafiz H Ahmad
- School of Health, Federation University, Ballarat, Victoria, Australia
| | - Blake Peck
- School of Health, Federation University, Ballarat, Victoria, Australia
| | - Daniel Terry
- School of Health, Federation University, Ballarat, Victoria, Australia
| |
Collapse
|
5
|
Tangjittipokin W, Borrisut N, Rujirawan P. Prediction, diagnosis, prevention and treatment: genetic-led care of patients with diabetes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1970526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity (Sicore-do), Faculty of Medicine Siriraj, Mahidol University, Bangkoknoi, Bangkok, Thailand
| | - Nutsakol Borrisut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| | - Patcharapong Rujirawan
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| |
Collapse
|
6
|
Inns T, Fleming KM, Iturriza-Gomara M, Hungerford D. Paediatric rotavirus vaccination, coeliac disease and type 1 diabetes in children: a population-based cohort study. BMC Med 2021; 19:147. [PMID: 34183004 PMCID: PMC8240289 DOI: 10.1186/s12916-021-02017-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Rotavirus infection has been proposed as a risk factor for coeliac disease (CD) and type 1 diabetes (T1D). The UK introduced infant rotavirus vaccination in 2013. We have previously shown that rotavirus vaccination can have beneficial off-target effects on syndromes, such as hospitalised seizures. We therefore investigated whether rotavirus vaccination prevents CD and T1D in the UK. METHODS A cohort study of children born between 2010 and 2015 was conducted using primary care records from the Clinical Practice Research Datalink. Children were followed up from 6 months to 7 years old, with censoring for outcome, death or leaving the practice. CD was defined as diagnosis of CD or the prescription of gluten-free goods. T1D was defined as a T1D diagnosis. The exposure was rotavirus vaccination, defined as one or more doses. Mixed-effects Cox regression was used to estimate hazard ratios (HR) and 95% confidence intervals (CIs). Models were adjusted for potential confounders and included random intercepts for general practices. RESULTS There were 880,629 children in the cohort (48.8% female). A total of 343,113 (39.0%) participants received rotavirus vaccine; among those born after the introduction of rotavirus vaccination, 93.4% were vaccinated. Study participants contributed 4,388,355 person-years, with median follow-up 5.66 person-years. There were 1657 CD cases, an incidence of 38.0 cases per 100,000 person-years. Compared with unvaccinated children, the adjusted HR for a CD was 1.05 (95% CI 0.86-1.28) for vaccinated children. Females had a 40% higher hazard than males. T1D was recorded for 733 participants, an incidence of 17.1 cases per 100,000 person-years. In adjusted analysis, rotavirus vaccination was not associated with risk of T1D (HR = 0.89, 95% CI 0.68-1.19). CONCLUSIONS Rotavirus vaccination has reduced diarrhoeal disease morbidity and mortality substantial since licencing in 2006. Our finding from this large cohort study did not provide evidence that rotavirus vaccination prevents CD or T1D, nor is it associated with increased risk, delivering further evidence of rotavirus vaccine safety.
Collapse
Affiliation(s)
- Thomas Inns
- St Helens and Knowsley Teaching Hospitals NHS Trust, Merseyside, UK
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool, UK
| | - Kate M Fleming
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Miren Iturriza-Gomara
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool, UK
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
- Centre for Vaccine Innovation and Access, PATH, Geneva, Switzerland
| | - Daniel Hungerford
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool, UK.
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK.
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK.
| |
Collapse
|
7
|
Li G, Chen Z, Lv Z, Li H, Chang D, Lu J. Diabetes Mellitus and COVID-19: Associations and Possible Mechanisms. Int J Endocrinol 2021; 2021:7394378. [PMID: 33859687 PMCID: PMC8025139 DOI: 10.1155/2021/7394378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/02/2020] [Accepted: 03/11/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a recently emerged disease with formidable infectivity and high mortality. Emerging data suggest that diabetes is one of the most prevalent comorbidities in patients with COVID-19. Although their causal relationship has not yet been investigated, preexisting diabetes can be considered as a risk factor for the adverse outcomes of COVID-19. Proinflammatory state, attenuation of the innate immune response, possibly increased level of ACE2, along with vascular dysfunction, and prothrombotic state in people with diabetes probably contribute to higher susceptibility for SARS-CoV-2 infection and worsened prognosis. On the other hand, activated inflammation, islet damage induced by virus infection, and treatment with glucocorticoids could, in turn, result in impaired glucose regulation in people with diabetes, thus working as an amplification loop to aggravate the disease. Therefore, glycemic management in people with COVID-19, especially in those with severe illness, is of considerable importance. The insights may help to reduce the fatality in the effort against COVID-19.
Collapse
Affiliation(s)
- Gerui Li
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Zhan Lv
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Hang Li
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Danqi Chang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jinping Lu
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
8
|
Li L, Liu S, Yu J. Autoimmune thyroid disease and type 1 diabetes mellitus: same pathogenesis; new perspective? Ther Adv Endocrinol Metab 2020; 11:2042018820958329. [PMID: 32973994 PMCID: PMC7493255 DOI: 10.1177/2042018820958329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune thyroid disease (AITD) and type 1 diabetes mellitus (T1DM) are two common autoimmune diseases that can occur concomitantly. In general, patients with diabetes have a high risk of AITD. It has been proposed that a complex genetic basis together with multiple nongenetic factors make a variable contribution to the pathogenesis of T1DM and AITD. In this paper, we summarize current knowledge in the field regarding potential pathogenic factors of T1DM and AITD, including human leukocyte antigen, autoimmune regulator, lymphoid protein tyrosine phosphatase, forkhead box protein P3, cytotoxic T lymphocyte-associated antigen, infection, vitamin D deficiency, and chemokine (C-X-C motif) ligand. These findings offer an insight into future immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Liyan Li
- Department of Endocrinology, First People’s Hospital of Jinan, Jinan, People’s Republic of China
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, People’s Republic of China
| | - Junxia Yu
- Department of Endocrinology, Tengzhou Central People’s Hospital, 181 Xingtan Road, Tengzhou, Shandong Province, 277500, People’s Republic of China
| |
Collapse
|
9
|
Mortimer GL, Gillespie KM. Early Onset of Autoimmune Diabetes in Children with Down Syndrome-Two Separate Aetiologies or an Immune System Pre-Programmed for Autoimmunity? Curr Diab Rep 2020; 20:47. [PMID: 32839884 PMCID: PMC7445156 DOI: 10.1007/s11892-020-01318-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW An increased frequency of autoimmunity in children with Down syndrome (DS) is well described but few studies have investigated the underlying mechanisms. Recent immune system investigation of individuals with DS may shed light on the increased risk of autoimmune conditions including type 1 diabetes. RECENT FINDINGS Diagnosis of type 1 diabetes is accelerated in children with DS with 17% diagnosed at, or under, the age of 2 years compared with only 4% in the same age group in the general population. Counterintuitively, children with DS and diabetes have less human leukocyte antigen (HLA)-mediated susceptibility than age-matched children with autoimmune diabetes from the general population. Early onset of diabetes in DS is further highlighted by the recent description of neonatal cases of diabetes which is autoimmune but not HLA associated. There are two potential explanations for this accelerated onset: (1) an additional chromosome 21 increases the genetic and immunological risk of autoimmune diabetes or (2) there are two separate aetiologies in children with DS and diabetes. Autoimmunity in DS is an under-investigated area. In this review, we will draw on recent mechanistic studies in individuals with DS which shed some light on the increased risk of autoimmunity in children with DS and consider the current support for and against two aetiologies underlying diabetes in children with DS.
Collapse
Affiliation(s)
- Georgina L Mortimer
- Diabetes and Metabolism, Bristol Medical School, Level 2, Learning and Research, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK
| | - Kathleen M Gillespie
- Diabetes and Metabolism, Bristol Medical School, Level 2, Learning and Research, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK.
| |
Collapse
|
10
|
Blum SI, Tse HM. Innate Viral Sensor MDA5 and Coxsackievirus Interplay in Type 1 Diabetes Development. Microorganisms 2020; 8:microorganisms8070993. [PMID: 32635205 PMCID: PMC7409145 DOI: 10.3390/microorganisms8070993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease characterized by immune-mediated destruction of insulin-producing β-cells. The concordance rate for T1D in monozygotic twins is ≈30-50%, indicating that environmental factors also play a role in T1D development. Previous studies have demonstrated that enterovirus infections such as coxsackievirus type B (CVB) are associated with triggering T1D. Prior to autoantibody development in T1D, viral RNA and antibodies against CVB can be detected within the blood, stool, and pancreata. An innate pathogen recognition receptor, melanoma differentiation-associated protein 5 (MDA5), which is encoded by the IFIH1 gene, has been associated with T1D onset. It is unclear how single nucleotide polymorphisms in IFIH1 alter the structure and function of MDA5 that may lead to exacerbated antiviral responses contributing to increased T1D-susceptibility. Binding of viral dsRNA via MDA5 induces synthesis of antiviral proteins such as interferon-alpha and -beta (IFN-α/β). Viral infection and subsequent IFN-α/β synthesis can lead to ER stress within insulin-producing β-cells causing neo-epitope generation, activation of β-cell-specific autoreactive T cells, and β-cell destruction. Therefore, an interplay between genetics, enteroviral infections, and antiviral responses may be critical for T1D development.
Collapse
|
11
|
Glanz JM, Clarke CL, Xu S, Daley MF, Shoup JA, Schroeder EB, Lewin BJ, McClure DL, Kharbanda E, Klein NP, DeStefano F. Association Between Rotavirus Vaccination and Type 1 Diabetes in Children. JAMA Pediatr 2020; 174:455-462. [PMID: 32150236 PMCID: PMC7063538 DOI: 10.1001/jamapediatrics.2019.6324] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Because rotavirus infection is a hypothesized risk factor for type 1 diabetes, live attenuated rotavirus vaccination could increase or decrease the risk of type 1 diabetes in children. OBJECTIVE To examine whether there is an association between rotavirus vaccination and incidence of type 1 diabetes in children aged 8 months to 11 years. DESIGN, SETTING, AND PARTICIPANTS A retrospective cohort study of 386 937 children born between January 1, 2006, and December 31, 2014, was conducted in 7 US health care organizations of the Vaccine Safety Datalink. Eligible children were followed up until a diagnosis of type 1 diabetes, disenrollment, or December 31, 2017. EXPOSURES Rotavirus vaccination for children aged 2 to 8 months. Three exposure groups were created. The first group included children who received all recommended doses of rotavirus vaccine by 8 months of age (fully exposed to rotavirus vaccination). The second group had received some, but not all, recommended rotavirus vaccines (partially exposed to rotavirus vaccination). The third group did not receive any doses of rotavirus vaccines (unexposed to rotavirus vaccination). MAIN OUTCOMES AND MEASURES Incidence of type 1 diabetes among children aged 8 months to 11 years. Type 1 diabetes was identified by International Classification of Diseases codes: 250.x1, 250.x3, or E10.xx in the outpatient setting. Cox proportional hazards regression models were used to analyze time to type 1 diabetes incidence from 8 months to 11 years. Hazard ratios and 95% CIs were calculated. Models were adjusted for sex, race/ethnicity, birth year, mother's age, birth weight, gestational age, number of well-child visits, and Vaccine Safety Datalink site. RESULTS In a cohort of 386 937 children (51.1% boys and 41.9% non-Hispanic white), 360 169 (93.1%) were fully exposed to rotavirus vaccination, 15 765 (4.1%) were partially exposed to rotavirus vaccination, and 11 003 (2.8%) were unexposed to rotavirus vaccination. Children were followed up a median of 5.4 years (interquartile range, 3.8-7.8 years). The total person-time follow-up in the cohort was 2 253 879 years. There were 464 cases of type 1 diabetes in the cohort, with an incidence rate of 20.6 cases per 100 000 person-years. Compared with children unexposed to rotavirus vaccination, the adjusted hazard ratio was 1.03 (95% CI, 0.62-1.72) for children fully exposed to rotavirus vaccination and 1.50 (95% CI, 0.81-2.77) for children partially exposed to rotavirus vaccination. CONCLUSIONS AND RELEVANCE The findings of this study suggest that rotavirus vaccination does not appear to be associated with type 1 diabetes in children.
Collapse
Affiliation(s)
- Jason M. Glanz
- Institute for Health Research, Kaiser Permanente Colorado, Aurora,Department of Epidemiology, Colorado School of Public Health, Aurora
| | | | - Stanley Xu
- Institute for Health Research, Kaiser Permanente Colorado, Aurora
| | - Matthew F. Daley
- Institute for Health Research, Kaiser Permanente Colorado, Aurora
| | - Jo Ann Shoup
- Institute for Health Research, Kaiser Permanente Colorado, Aurora
| | - Emily B. Schroeder
- Institute for Health Research, Kaiser Permanente Colorado, Aurora,Department of Endocrinology, Parkview Health and Parkview Physicians Group, Fort Wayne, Indiana
| | - Bruno J. Lewin
- Kaiser Permanente Department of Research and Evaluation, Kaiser Permanente of Southern California, Pasadena
| | - David L. McClure
- Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, Wisconsin
| | - Elyse Kharbanda
- Division of Research, HealthPartners Institute, Minneapolis, Minnesota
| | - Nicola P. Klein
- Kaiser Permanente Division of Research, Kaiser Permanente of Northern California, Oakland
| | - Frank DeStefano
- Immunization Safety Office, Vaccine Safety Datalink, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
12
|
Gómez-Rial J, Rivero-Calle I, Salas A, Martinón-Torres F. Rotavirus and autoimmunity. J Infect 2020; 81:183-189. [PMID: 32360880 DOI: 10.1016/j.jinf.2020.04.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/01/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
Rotavirus, a major etiological agent of acute diarrhea in children worldwide, has historically been linked to autoimmunity. In the last few years, several physiopathological approaches have been proposed to explain the leading mechanism triggering autoimmunity, from the old concept of molecular mimicry to the emerging theory of bystander activation and break of tolerance. Epidemiological and immunological data indicate a strong link between rotavirus infection and two of the autoimmune pathologies with the highest incidence: celiac disease and diabetes. The role for current oral rotavirus vaccines is now being elucidated, with a so far positive protective association demonstrated.
Collapse
Affiliation(s)
- J Gómez-Rial
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Hospital Clínico Universitario and Universidade de Santiago de Compostela (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain; Laboratorio de Inmunología, Servicio de Análisis Clínicos, Hospital Clínico Universitario Santiago de Compostela (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain.
| | - I Rivero-Calle
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Hospital Clínico Universitario and Universidade de Santiago de Compostela (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Travesa da Choupana s/n 15706 Galicia, Spain
| | - A Salas
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Hospital Clínico Universitario and Universidade de Santiago de Compostela (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain
| | - F Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Hospital Clínico Universitario and Universidade de Santiago de Compostela (SERGAS), Travesa da Choupana s/n 15706 Galicia, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Travesa da Choupana s/n 15706 Galicia, Spain
| |
Collapse
|
13
|
Mustonen N, Siljander H, Peet A, Tillmann V, Härkönen T, Ilonen J, Hyöty H, Knip M, Koski K, Koski M, Ryhänen S, Hämäläinen A, Ormisson A, Ulich V, Kuzmicheva E, Mokurov S, Markova S, Pylova S, Isakova M, Shakurova E, Petrov V, Dorshakova NV, Karapetyan T, Varlamova T, Kiviniemi M, Alnek K, Janson H, Uibo R, von Mutius E, Weber J, Ahlfors H, Kallionpää H, Laajala E, Lähdesmäki H, Lahesmaa R, Moulder R, Nieminen J, Ruohtula T, Vaarala O, Honkanen H, Kondrashova A, Oikarinen S, Harmsen HJ, De Goffau MC, Welling G, Alahuhta K, Virtanen SM. Early childhood infections and the use of antibiotics and antipyretic-analgesics in Finland, Estonia and Russian Karelia. Acta Paediatr 2019; 108:2075-2082. [PMID: 31132164 DOI: 10.1111/apa.14874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/14/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
AIM Infections in early childhood are common reasons to seek medical attention. This study compares the prevalence of infections, and the use of antibiotics and antipyretic-analgesics, in children from Finland, Estonia and Russian Karelia. METHODS Children with a genetically increased risk for type 1 diabetes (N = 797) were observed from birth up to 3 years of age. Illnesses and medications were reported by parents continuously. All reported infections, antibiotics and antipyretic-analgesics were compared between Finland and Estonia, and to a lesser extent with Russian Karelia, due to poor study compliance. RESULTS Compared with Estonians, Finns reported more infections during the first and second years of life. During the follow-up, Finnish children had 10 infections while Estonians only had 8 (p < 0.001). Finns also used more antibiotics and antipyretic-analgesics in each year during the follow-up. Russian Karelians reported the lowest frequency of infections and the most infrequent use of antibiotics and antipyretic-analgesics in the first two years of life. CONCLUSION Infections and the use of antibiotics and antipyretic-analgesics in early childhood were most frequent in Finland, where socio-economic conditions are the most developed and microbial encounters are sparse. This may reflect on the hygiene hypothesis, a less effective immune system that allows normally harmless microbes to attack and cause clinical infections.
Collapse
Affiliation(s)
- Neea Mustonen
- Pediatric Research Center, Children’s Hospital Helsinki University Hospital University of Helsinki Helsinki Finland
- Research Programs Unit, Diabetes and Obesity University of Helsinki Helsinki Finland
| | - Heli Siljander
- Pediatric Research Center, Children’s Hospital Helsinki University Hospital University of Helsinki Helsinki Finland
- Research Programs Unit, Diabetes and Obesity University of Helsinki Helsinki Finland
| | - Aleksandr Peet
- Department of Pediatrics, Tartu University Hospital University of Tartu Tartu Estonia
| | - Vallo Tillmann
- Department of Pediatrics, Tartu University Hospital University of Tartu Tartu Estonia
| | - Taina Härkönen
- Pediatric Research Center, Children’s Hospital Helsinki University Hospital University of Helsinki Helsinki Finland
- Research Programs Unit, Diabetes and Obesity University of Helsinki Helsinki Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine University of Turku Turku Finland
- Clinical Microbiology Turku University Hospital Turku Finland
| | - Heikki Hyöty
- Department of Virology, School of Medicine University of Tampere Tampere Finland
- Fimlab Laboratories Pirkanmaa Hospital District Tampere Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital Helsinki University Hospital University of Helsinki Helsinki Finland
- Research Programs Unit, Diabetes and Obesity University of Helsinki Helsinki Finland
- Folkhälsan Research Center Helsinki Finland
- Tampere Center for Child Health Research Tampere University Hospital Tampere Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To provide an overview of studies that have detected enteroviruses (EV) in samples from people with type 1 diabetes (T1D), the techniques they have used, and which challenges they have encountered. RECENT FINDINGS Recent studies have detected EVs in serum, blood, stools, nasal swabs, and pancreas of people with T1D before or around clinical onset of disease, indicating that an association between EV infections and T1D exists. However, definitive evidence for its role as disease triggers is lacking. Recent access to human samples is starting to provide the necessary tools to define their role in disease pathogenesis. Emerging evidence suggests that chronic infections take place in the pancreas of diabetic donors. However, the development of sensitive techniques able to detect low amounts of viral protein and RNA still constitute a major challenge for the field. New evidence at the protein, RNA, and host immune response level suggests a role for EV infections in the development of autoimmunity. In the upcoming years, new technologies, collaborative efforts, and therapeutic interventions are likely to find a definitive answer for their role in disease pathogenesis.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Diabetes Research, Ingolstaedter Landstrasse 1, 85764, Munich-Neuherberg, Germany.
| |
Collapse
|
15
|
Mustonen N, Siljander H, Peet A, Tillmann V, Härkönen T, Ilonen J, Hyöty H, Knip M. Early childhood infections precede development of beta-cell autoimmunity and type 1 diabetes in children with HLA-conferred disease risk. Pediatr Diabetes 2018; 19:293-299. [PMID: 28597957 DOI: 10.1111/pedi.12547] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The etiology of type 1 diabetes (T1D) is largely unknown. Infections and microbial exposures are believed to play a role in the pathogenesis and in the development of islet autoimmunity in genetically susceptible individuals. OBJECTIVE To assess the relationships between early childhood infections, islet autoimmunity, and progression to T1D in genetically predisposed children. METHODS Children with human leukocyte antigen (HLA)-conferred disease susceptibility (N=790; 51.5% males) from Finland (n = 386), Estonia (n = 322), and Russian Karelia (n = 82) were observed from birth up to the age of 3 years. Children attended clinical visits at the age of 3, 6, 12, 18, 24, and 36 months. Serum samples for analyzing T1D-associated autoimmune markers were collected and health data recorded during the visits. RESULTS Children developing islet autoimmunity (n = 46, 5.8%) had more infections during the first year of life (3.0 vs 3.0, mean rank 439.1 vs 336.2; P = .001) and their first infection occurred earlier (3.6 vs 5.0 months; P = .005) than children with no islet autoimmunity. By May 2016, 7 children (0.9%) had developed T1D (progressors). Compared with non-diabetic children, T1D progressors were younger at first infection (2.2 vs 4.9 months; P = .004) and had more infections during the first 2 years of life (during each year 6.0 vs 3.0; P = .001 and P = .027, respectively). By 3 years of age, the T1D progressors had twice as many infections as the other children (17.5 vs 9.0; P = .006). CONCLUSIONS Early childhood infections may play an important role in the pathogenesis of T1D. Current findings may reflect either differences in microbial exposures or early immunological aberrations making diabetes-prone children more susceptible to infections.
Collapse
Affiliation(s)
- N Mustonen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - H Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - A Peet
- Department of Pediatrics, University of Tartu and Tartu University Hospital, Tartu, Estonia
| | - V Tillmann
- Department of Pediatrics, University of Tartu and Tartu University Hospital, Tartu, Estonia
| | - T Härkönen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - J Ilonen
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - H Hyöty
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - M Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
16
|
Lönnrot M, Lynch KF, Elding Larsson H, Lernmark Å, Rewers MJ, Törn C, Burkhardt BR, Briese T, Hagopian WA, She JX, Simell OG, Toppari J, Ziegler AG, Akolkar B, Krischer JP, Hyöty H. Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: the TEDDY study. Diabetologia 2017; 60:1931-1940. [PMID: 28770319 PMCID: PMC5697762 DOI: 10.1007/s00125-017-4365-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/05/2017] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Respiratory infections and onset of islet autoimmunity are reported to correlate positively in two small prospective studies. The Environmental Determinants of Diabetes in the Young (TEDDY) study is the largest prospective international cohort study on the environmental determinants of type 1 diabetes that regularly monitors both clinical infections and islet autoantibodies. The aim was to confirm the influence of reported respiratory infections and to further characterise the temporal relationship with autoantibody seroconversion. METHODS During the years 2004-2009, 8676 newborn babies with HLA genotypes conferring an increased risk of type 1 diabetes were enrolled at 3 months of age to participate in a 15 year follow-up. In the present study, the association between parent-reported respiratory infections and islet autoantibodies at 3 month intervals up to 4 years of age was evaluated in 7869 children. Time-dependent proportional hazard models were used to assess how the timing of respiratory infections related to persistent confirmed islet autoimmunity, defined as autoantibody positivity against insulin, GAD and/or insulinoma antigen-2, concordant at two reference laboratories on two or more consecutive visits. RESULTS In total, 87,327 parent-reported respiratory infectious episodes were recorded while the children were under study surveillance for islet autoimmunity, and 454 children seroconverted. The number of respiratory infections occurring in a 9 month period was associated with the subsequent risk of autoimmunity (p < 0.001). For each 1/year rate increase in infections, the hazard of islet autoimmunity increased by 5.6% (95% CI 2.5%, 8.8%). The risk association was linked primarily to infections occurring in the winter (HR 1.42 [95% CI 1.16, 1.74]; p < 0.001). The types of respiratory infection independently associated with autoimmunity were common cold, influenza-like illness, sinusitis, and laryngitis/tracheitis, with HRs (95% CI) of 1.38 (1.11, 1.71), 2.37 (1.35, 4.15), 2.63 (1.22, 5.67) and 1.76 (1.04, 2.98), respectively. CONCLUSIONS/INTERPRETATION Recent respiratory infections in young children correlate with an increased risk of islet autoimmunity in the TEDDY study. Further studies to identify the potential causative viruses with pathogen-specific assays should focus especially on the 9 month time window leading to autoantibody seroconversion.
Collapse
Affiliation(s)
- Maria Lönnrot
- Department of Dermatology, Tampere University Hospital, Teiskontie 35, 33521, Tampere, Finland.
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| | - Kristian F Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
- Skåne University Hospital (SUS), Malmo, Sweden
| | - Åke Lernmark
- Skåne University Hospital (SUS), Malmo, Sweden
- Department of Clinical Sciences Malmö, Lund University Clinical Research Centre (CRC), Malmö, Sweden
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Carina Törn
- Department of Clinical Sciences Malmö, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
- Skåne University Hospital (SUS), Malmo, Sweden
| | - Brant R Burkhardt
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Olli G Simell
- Research Centre of Applied and Preventive Cardiovascular Medicine, Faculty of Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Paediatrics, Turku University Hospital, Turku, Finland
| | - Anette-G Ziegler
- Forschergruppe Diabetes e.V, Neuherberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
17
|
Scott FW, Pound LD, Patrick C, Eberhard CE, Crookshank JA. Where genes meet environment-integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Transl Res 2017; 179:183-198. [PMID: 27677687 DOI: 10.1016/j.trsl.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
Abstract
The rise in new cases of type 1 diabetes (T1D) in genetically susceptible individuals over the past half century has been attributed to numerous environmental "triggers" or promoters such as enteroviruses, diet, and most recently, gut bacteria. No single cause has been identified in humans, likely because there are several pathways by which one can develop T1D. There is renewed attention to the role of the gut and its immune system in T1D pathogenesis based largely on recent animal studies demonstrating that altering the gut microbiota affects diabetes incidence. Although T1D patients display dysbiosis in the gut microbiome, it is unclear whether this is cause or effect. The heart of this question involves several moving parts including numerous risk genes, diet, viruses, gut microbiota, timing, and loss of immune tolerance to β-cells. Most clinical trials have addressed only one aspect of this puzzle using some form of immune suppression, without much success. The key location where our genes meet and deal with the environment is the gastrointestinal tract. The influence of all of its major contents, including microbes, diet, and immune system, must be understood as part of the integrative biology of T1D before we can develop durable means of preventing, treating, or curing this disease. In the present review, we expand our previous gut-centric model based on recent developments in the field.
Collapse
Affiliation(s)
- Fraser W Scott
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| | - Lynley D Pound
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Christopher Patrick
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Chandra E Eberhard
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
18
|
Balazard F, Le Fur S, Valtat S, Valleron AJ, Bougnères P, Thevenieau D, Chatel CF, Desailloud R, Bony-Trifunovic H, Ducluzeau PH, Coutant R, Caudrelier S, Pambou A, Dubosclard E, Joubert F, Jan P, Marcoux E, Bertrand AM, Mignot B, Penformis A, Stuckens C, Piquemal R, Barat P, Rigalleau V, Stheneur C, Fournier S, Kerlan V, Metz C, Fargeot-Espaliat A, Reznic Y, Olivier F, Gueorguieva I, Monier A, Radet C, Gajdos V, Terral D, Vervel C, Bendifallah D, Signor CB, Dervaux D, Benmahammed A, Loeuille GA, Popelard F, Guillou A, Benhamou PY, Khoury J, Brossier JP, Bassil J, Clavel S, Le Luyer B, Bougnères P, Labay F, Guemas I, Weill J, Cappoen JP, Nadalon S, Lienhardt-Roussie A, Paoli A, Kerouedan C, Yollin E, Nicolino M, Simonin G, Cohen J, Atlan C, Tamboura A, Dubourg H, Pignol ML, Talon P, Jellimann S, Chaillous L, Baron S, Bortoluzzi MN, Baechler E, Salet R, Zelinsky-Gurung A, Dallavale F, Larger E, Laloi-Michelin M, Gautier JF, Guérin B, Oilleau L, Pantalone L, Lukas C, Guilhem I, De Kerdanet M, Wielickzo MC, Priou-Guesdon M, Richard O, Kurtz F, Laisney N, Ancelle D, Parlier G, Boniface C, Bockel DP, Dufillot D, Razafimahefa B, Gourdy P, Lecomte P, Pepin-Donat M, Combes-Moukhovsky ME, Zymmermann B, Raoulx M, Dumont AGEC. Association of environmental markers with childhood type 1 diabetes mellitus revealed by a long questionnaire on early life exposures and lifestyle in a case-control study. BMC Public Health 2016; 16:1021. [PMID: 27682602 PMCID: PMC5041527 DOI: 10.1186/s12889-016-3690-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
Background The incidence of childhood type 1 diabetes (T1D) incidence is rising in many countries, supposedly because of changing environmental factors, which are yet largely unknown. The purpose of the study was to unravel environmental markers associated with T1D. Methods Cases were children with T1D from the French Isis-Diab cohort. Controls were schoolmates or friends of the patients. Parents were asked to fill a 845-item questionnaire investigating the child’s environment before diagnosis. The analysis took into account the matching between cases and controls. A second analysis used propensity score methods. Results We found a negative association of several lifestyle variables, gastroenteritis episodes, dental hygiene, hazelnut cocoa spread consumption, wasp and bee stings with T1D, consumption of vegetables from a farm and death of a pet by old age. Conclusions The found statistical association of new environmental markers with T1D calls for replication in other cohorts and investigation of new environmental areas. Trial registration Clinical-Trial.gov NCT02212522. Registered August 6, 2014. Electronic supplementary material The online version of this article (doi:10.1186/s12889-016-3690-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Balazard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France. .,INSERM U1169, Hôpital Bicêtre, Université Paris-Sud, Kremlin-Bicêtre, France.
| | - S Le Fur
- INSERM U1169, Hôpital Bicêtre, Université Paris-Sud, Kremlin-Bicêtre, France.,Department of pediatric endocrinology, Hôpital Bicêtre, Kremlin-Bicêtre, France
| | - S Valtat
- INSERM U1169, Hôpital Bicêtre, Université Paris-Sud, Kremlin-Bicêtre, France
| | - A J Valleron
- INSERM U1169, Hôpital Bicêtre, Université Paris-Sud, Kremlin-Bicêtre, France
| | - P Bougnères
- INSERM U1169, Hôpital Bicêtre, Université Paris-Sud, Kremlin-Bicêtre, France.,Department of pediatric endocrinology, Hôpital Bicêtre, Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pound LD, Patrick C, Eberhard CE, Mottawea W, Wang GS, Abujamel T, Vandenbeek R, Stintzi A, Scott FW. Cathelicidin Antimicrobial Peptide: A Novel Regulator of Islet Function, Islet Regeneration, and Selected Gut Bacteria. Diabetes 2015; 64:4135-47. [PMID: 26370175 DOI: 10.2337/db15-0788] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/22/2015] [Indexed: 11/13/2022]
Abstract
Cathelicidin antimicrobial peptide (CAMP) is a naturally occurring secreted peptide that is expressed in several organs with pleiotropic roles in immunomodulation, wound healing, and cell growth. We previously demonstrated that gut Camp expression is upregulated when type 1 diabetes-prone rats are protected from diabetes development. Unexpectedly, we have also identified novel CAMP expression in the pancreatic β-cells of rats, mice, and humans. CAMP was present even in sterile rat embryo islets, germ-free adult rat islets, and neogenic tubular complexes. Camp gene expression was downregulated in young BBdp rat islets before the onset of insulitis compared with control BBc rats. CAMP treatment of dispersed islets resulted in a significant increase in intracellular calcium mobilization, an effect that was both delayed and blunted in the absence of extracellular calcium. Additionally, CAMP treatment promoted insulin and glucagon secretion from isolated rat islets. Thus, CAMP is a promoter of islet paracrine signaling that enhances islet function and glucoregulation. Finally, daily treatment with the CAMP/LL-37 peptide in vivo in BBdp rats resulted in enhanced β-cell neogenesis and upregulation of potentially beneficial gut microbes. In particular, CAMP/LL-37 treatment shifted the abundance of specific bacterial populations, mitigating the gut dysbiosis observed in the BBdp rat. Taken together, these findings indicate a novel functional role for CAMP/LL-37 in islet biology and modification of gut microbiota.
Collapse
Affiliation(s)
- Lynley D Pound
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Christopher Patrick
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Chandra E Eberhard
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Walid Mottawea
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Gen-Sheng Wang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Turki Abujamel
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Roxanne Vandenbeek
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fraser W Scott
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Diamanti A, Capriati T, Bizzarri C, Ferretti F, Ancinelli M, Romano F, Perilli A, Laureti F, Locatelli M. Autoimmune diseases and celiac disease which came first: genotype or gluten? Expert Rev Clin Immunol 2015; 12:67-77. [DOI: 10.1586/1744666x.2016.1095091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Seixas GF, Garbelini CCD, Aida KL, Cheirubim AP, Venâncio EJ, Ramos SDP. Anti-dentine Salivary SIgA in young adults with a history of dental trauma in deciduous teeth. Braz Oral Res 2015; 29:1-8. [PMID: 26313350 DOI: 10.1590/1807-3107bor-2015.vol29.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 04/16/2015] [Indexed: 11/22/2022] Open
Abstract
Anti-dentin autoantibodies are associated with inflammatory root resorption in permanent teeth and are modulated by dental trauma and orthodontic force. However, it is not known whether deciduous tooth trauma can stimulate the development of a humoral immune response against dentin. The aim of this study was to evaluate the levels of salivary SIgA reactivity against human dentin extract in young adults with a history of trauma in the primary dentition. A sample of 78 patients, aged 18 to 25, who had completed an early childhood (0 to 5 years old) caries prevention program years earlier at the Universidade Estadual de Londrina Pediatric Clinic, underwent radiographic examination and salivary sampling. Anti-dentin SIgA levels were analyzed by immunoenzymatic assay and Western blotting. Although dental trauma to deciduous teeth had occurred in 34 (43.6%) of the patients, no differences in SIgA levels were detected between individuals who had experienced trauma and those who had not (p > 0.05). Multivariate regression analysis showed no association between dental trauma and SIgA levels (p > 0.05). Patients with a history of deciduous trauma presented low levels of anti-dentin antibodies, associated with orthodontic root resorption (p < 0.05). Western blot analysis showed that salivary antibodies recognized a single band of approximately 45 kDa in dentin extract. We concluded that salivary SIgA recognizes a specific component of the dentin matrix and that anti-dentin antibodies were not triggered by trauma to primary teeth. However, trauma to deciduous teeth may down-modulate SIgA in response to orthodontic root response.
Collapse
Affiliation(s)
- Gabriela Fleury Seixas
- Center of Health Sciences, School of Dentistry, Universidade Estadual de Londrina, Londrina, PR, BR
| | | | - Kelly Limi Aida
- Center of Health Sciences, School of Dentistry, Universidade Estadual de Londrina, Londrina, PR, BR
| | - Ana Paula Cheirubim
- Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, PR, BR
| | | | | |
Collapse
|
22
|
Simmons KM, Michels AW. Type 1 diabetes: A predictable disease. World J Diabetes 2015; 6:380-390. [PMID: 25897349 PMCID: PMC4398895 DOI: 10.4239/wjd.v6.i3.380] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/26/2014] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by loss of insulin producing beta cells and reliance on exogenous insulin for survival. T1D is one of the most common chronic diseases in childhood and the incidence is increasing, especially in children less than 5 years of age. In individuals with a genetic predisposition, an unidentified trigger initiates an abnormal immune response and the development of islet autoantibodies directed against proteins in insulin producing beta cells. There are currently four biochemical islet autoantibodies measured in the serum directed against insulin, glutamic decarboxylase, islet antigen 2, and zinc transporter 8. Development of islet autoantibodies occurs before clinical diagnosis of T1D, making T1D a predictable disease in an individual with 2 or more autoantibodies. Screening for islet autoantibodies is still predominantly done through research studies, but efforts are underway to screen the general population. The benefits of screening for islet autoantibodies include decreasing the incidence of diabetic ketoacidosis that can be life threatening, initiating insulin therapy sooner in the disease process, and evaluating safe and specific therapies in large randomized clinical intervention trials to delay or prevent progression to diabetes onset.
Collapse
|
23
|
Daycare attendance, breastfeeding, and the development of type 1 diabetes: the diabetes autoimmunity study in the young. BIOMED RESEARCH INTERNATIONAL 2015; 2015:203947. [PMID: 25883944 PMCID: PMC4389988 DOI: 10.1155/2015/203947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/08/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND The hygiene hypothesis attributes the increased incidence of type 1 diabetes (T1D) to a decrease of immune system stimuli from infections. We evaluated this prospectively in the Diabetes Autoimmunity Study in the Young (DAISY) by examining daycare attendance during the first two years of life (as a proxy for infections) and the risk of T1D. METHODS DAISY is a prospective cohort of children at increased T1D risk. Analyses were limited to 1783 children with complete daycare and breastfeeding data from birth to 2 years of age; 58 children developed T1D. Daycare was defined as supervised time with at least one other child at least 3 times a week. Breastfeeding duration was evaluated as a modifier of the effect of daycare. Cox proportional hazards regression was used for analyses. RESULTS Attending daycare before the age of 2 years was not associated with T1D risk (HR: 0.89; CI: 0.54-1.47) after adjusting for HLA, first degree relative with T1D, ethnicity, and breastfeeding duration. Breastfeeding duration modified this association, where daycare attendance was associated with increased T1D risk in nonbreastfed children and a decreasing T1D risk with increasing breastfeeding duration (interaction P value=0.02). CONCLUSIONS These preliminary data suggest breastfeeding may modify the effect of daycare on T1D risk.
Collapse
|
24
|
Lessons from type 1 diabetes for understanding natural history and prevention of autoimmune disease. Rheum Dis Clin North Am 2014; 40:797-811. [PMID: 25437293 DOI: 10.1016/j.rdc.2014.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder resulting from immune-mediated destruction of insulin-producing beta cells within the pancreatic islets. Prediction of T1D is now possible, as having 2 or more islet autoantibodies confers a 100% risk of diabetes development. With the ability to predict disease development, clinical trials to prevent diabetes onset have been completed and are currently under way. This review focuses on the natural history, prediction, and prevention trials in T1D. We review the lessons learned from these attempts at preventing a chronic autoimmune disease and apply the paradigm from T1D prevention to other autoimmune disorders.
Collapse
|
25
|
Diamanti A, Capriati T, Bizzarri C, Panetta F, Ferretti F, Ancinelli M, Romano F, Locatelli M. Celiac disease and endocrine autoimmune disorders in children: an update. Expert Rev Clin Immunol 2014; 9:1289-301. [DOI: 10.1586/1744666x.2013.850029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Pane JA, Webster NL, Zufferey C, Coulson BS. Rotavirus acceleration of murine type 1 diabetes is associated with increased MHC class I-restricted antigen presentation by B cells and elevated proinflammatory cytokine expression by T cells. Virus Res 2014; 179:73-84. [DOI: 10.1016/j.virusres.2013.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 01/08/2023]
|
27
|
Children who develop type 1 diabetes early in life show low levels of carnitine and amino acids at birth: does this finding shed light on the etiopathogenesis of the disease? Nutr Diabetes 2013; 3:e94. [PMID: 24166423 PMCID: PMC3817347 DOI: 10.1038/nutd.2013.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/29/2013] [Accepted: 09/08/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Children and adolescents with overt type 1 diabetes (T1D) have been found to show an altered carnitine profile. This pattern has not previously been analyzed in neonates before onset of the disease. MATERIALS AND METHODS Fifty children who developed T1D during the first 6 years of life, born and living in the Tuscany and Umbria Regions of Italy, were identified and 200 controls were recruited into the study. All newborns were subjected to extended neonatal screening by mass spectrometry at 48-72 h of life. Four controls for each of the 50 index cases were taken randomly and blinded in the same analytical batch. The panel used for neonatal screening consists of 13 amino acids, free carnitine, 33 acyl-carnitines and 21 ratios. All Guthrie cards are analyzed within 2 days of collection. RESULTS Total and free carnitine were found to be significantly lower in neonates who later developed T1D compared with controls. Moreover, the concentrations of the acyl-carnitines - acetyl-L-carnitine (C2), proprionylcarnitine (C3), 3-hydroxyisovalerylcarnitine (C5OH), miristoylcarnitine (C4), palmitoylcarnitine (C16) and stearoylcarnitine (C18) - were also significantly low in the cases vs controls. Furthermore, total amino-acid concentrations, expressed as the algebraic sum of all amino acids tested, showed a trend toward lower levels in cases vs controls. CONCLUSIONS We found that carnitine and amino-acid deficit may be evident before the clinical appearance of T1D, possibly from birth. The evaluation of these metabolites in the neonatal period of children human leukocyte antigen genetically at 'risk' to develop T1D, could represent an additional tool for the prediction of T1D and could also offer the possibility to design new strategies for the primary prevention of the disease from birth.
Collapse
|
28
|
Rewers M. The next big idea. Diabetes Technol Ther 2013; 15 Suppl 2:S2-29-S2-36. [PMID: 23786296 PMCID: PMC3676661 DOI: 10.1089/dia.2013.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
George S. Eisenbarth will remain in our memories as a brilliant scientist and great collaborator. His quest to discover the cause and prevention of type 1 (autoimmune) diabetes started from building predictive models based on immunogenetic markers. Despite his tremendous contributions to our understanding of the natural history of pre-type 1 diabetes and potential mechanisms, George left us with several big questions to answer before his quest is completed.
Collapse
Affiliation(s)
- Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| |
Collapse
|
29
|
Patrick C, Wang GS, Lefebvre DE, Crookshank JA, Sonier B, Eberhard C, Mojibian M, Kennedy CR, Brooks SP, Kalmokoff ML, Maglio M, Troncone R, Poussier P, Scott FW. Promotion of autoimmune diabetes by cereal diet in the presence or absence of microbes associated with gut immune activation, regulatory imbalance, and altered cathelicidin antimicrobial Peptide. Diabetes 2013; 62:2036-47. [PMID: 23349499 PMCID: PMC3661603 DOI: 10.2337/db12-1243] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We are exposed to millions of microbial and dietary antigens via the gastrointestinal tract, which likely play a key role in type 1 diabetes (T1D). We differentiated the effects of these two major environmental factors on gut immunity and T1D. Diabetes-prone BioBreeding (BBdp) rats were housed in specific pathogen-free (SPF) or germ-free (GF) conditions and weaned onto diabetes-promoting cereal diets or a protective low-antigen hydrolyzed casein (HC) diet, and T1D incidence was monitored. Fecal microbiota 16S rRNA genes, immune cell distribution, and gene expression in the jejunum were analyzed. T1D was highest in cereal-SPF (65%) and cereal-GF rats (53%) but inhibited and delayed in HC-fed counterparts. Nearly all HC-GF rats remained diabetes-free, whereas HC-fed SPF rats were less protected (7 vs. 29%). Bacterial communities differed in SPF rats fed cereal compared with HC. Cereal-SPF rats displayed increased gut CD3(+) and CD8α(+) lymphocytes, ratio of Ifng to Il4 mRNA, and Lck expression, indicating T-cell activation. The ratio of CD3(+) T cells expressing the Treg marker Foxp3(+) was highest in HC-GF and lowest in cereal-SPF rats. Resident CD163(+) M2 macrophages were increased in HC-protected rats. The cathelicidin antimicrobial peptide (Camp) gene was upregulated in the jejunum of HC diet-protected rats, and CAMP(+) cells colocalized with CD163. A cereal diet was a stronger promoter of T1D than gut microbes in association with impaired gut immune homeostasis.
Collapse
Affiliation(s)
- Christopher Patrick
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Gen-Sheng Wang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David E. Lefebvre
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Brigitte Sonier
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Chandra Eberhard
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Majid Mojibian
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher R. Kennedy
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | | | - Martin L. Kalmokoff
- Atlantic Food and Horticulture Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada
| | - Mariantonia Maglio
- European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | | | - Fraser W. Scott
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Corresponding author: Fraser W. Scott,
| |
Collapse
|