1
|
Yamazaki H, Streicher SA, Wu L, Fukuhara S, Wagner R, Heni M, Grossman SR, Lenz HJ, Setiawan VW, Le Marchand L, Huang BZ. Evidence for a causal link between intra-pancreatic fat deposition and pancreatic cancer: A prospective cohort and Mendelian randomization study. Cell Rep Med 2024; 5:101391. [PMID: 38280379 PMCID: PMC10897551 DOI: 10.1016/j.xcrm.2023.101391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/29/2024]
Abstract
Prior observational studies suggest an association between intra-pancreatic fat deposition (IPFD) and pancreatic ductal adenocarcinoma (PDAC); however, the causal relationship is unclear. To elucidate causality, we conduct a prospective observational study using magnetic resonance imaging (MRI)-measured IPFD data and also perform a Mendelian randomization study using genetic instruments for IPFD. In the observational study, we use UK Biobank data (N = 29,463, median follow-up: 4.5 years) and find that high IPFD (>10%) is associated with PDAC risk (adjusted hazard ratio [HR]: 3.35, 95% confidence interval [95% CI]: 1.60-7.00). In the Mendelian randomization study, we leverage eight out of nine IPFD-associated genetic variants (p < 5 × 10-8) from a genome-wide association study in the UK Biobank (N = 25,617) and find that genetically determined IPFD is associated with PDAC (odds ratio [OR] per 1-standard deviation [SD] increase in IPFD: 2.46, 95% CI: 1.38-4.40) in the Pancreatic Cancer Cohort Consortium I, II, III (PanScan I-III)/Pancreatic Cancer Case-Control Consortium (PanC4) dataset (8,275 PDAC cases and 6,723 non-cases). This study provides evidence for a potential causal role of IPFD in the pathogenesis of PDAC. Thus, reducing IPFD may lower PDAC risk.
Collapse
Affiliation(s)
- Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.
| | - Samantha A Streicher
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Shunichi Fukuhara
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Róbert Wagner
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Heni
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, Ulm University, Ulm, Germany; Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Steven R Grossman
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Wendy Setiawan
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Brian Z Huang
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Costabile G, Salamone D, Della Pepa G, Vitale M, Testa R, Cipriano P, Scidà G, Rivellese AA, Annuzzi G, Bozzetto L. Differential Effects of Two Isocaloric Healthy Diets on Postprandial Lipid Responses in Individuals with Type 2 Diabetes. Nutrients 2024; 16:333. [PMID: 38337618 PMCID: PMC10857261 DOI: 10.3390/nu16030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND High blood concentrations of triglycerides (TG) in the postprandial period have been shown to be more closely associated with the risk of cardiovascular disease (CVD) than fasting values in individuals with type 2 diabetes (T2D). Dietary changes are the primary determinants of postprandial lipid responses. METHODS We investigated the effects of an isocaloric multifactorial diet, rich in n-3 PUFA, MUFA, fiber, polyphenols, and vitamins, compared to an isocaloric diet, containing the same amount of MUFA, on the postprandial lipid response in T2D individuals. Following a randomized, controlled, parallel group design, 43 (25 male/18 female) T2D individuals were assigned to an isocaloric multifactorial (n = 21) or a MUFA-rich diet (n = 22). At the beginning and after the 8 weeks of dietary intervention, the concentrations of plasma triglycerides, total cholesterol, HDL cholesterol, and non-HDL cholesterol were detected at fasting and over a 4-h test meal with the same composition as the prescribed diet. RESULTS The concentrations of fasting plasma triglycerides, total cholesterol, HDL cholesterol, and non-HDL cholesterol did not change after both diets. Compared with the MUFA diet, the 8-week multifactorial diet significantly lowered the postprandial response, which was evaluated as the incremental area under the curve (iAUC), of triglycerides by 33% (64 ± 68 vs. 96 ± 50 mmol/L·240 min, mean ± SD, respectively, p = 0.018), total cholesterol by 105% (-51 ± 33 vs. -25 ± 29, p = 0.013), and non-HDL cholesterol by 206% (-39 ± 33 vs. -13 ± 23, p = 0.013). CONCLUSIONS In T2D individuals, a multifactorial diet, characterized by several beneficial components, improved the postprandial lipid response compared to a MUFA diet, generally considered a healthy diet being reduced in saturated fat, and probably contributed to the reduction of cardiovascular risk.
Collapse
Affiliation(s)
- Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Dominic Salamone
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council-CNR, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Roberta Testa
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Paola Cipriano
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Giuseppe Scidà
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Angela Albarosa Rivellese
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Giovanni Annuzzi
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| |
Collapse
|
3
|
Della Pepa G, Salamone D, Testa R, Bozzetto L, Costabile G. Intrapancreatic fat deposition and nutritional treatment: the role of various dietary approaches. Nutr Rev 2023:nuad159. [PMID: 38153345 DOI: 10.1093/nutrit/nuad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Ectopic fat accumulation in various organs and tissues, such as the liver, muscle, kidney, heart, and pancreas, is related to impaired capacity of adipose tissue to accumulate triglycerides, as a consequence of overnutrition and an unhealthy lifestyle. Ectopic fat promotes organ dysfunction and is a key factor in the development and progression of cardiometabolic diseases. Interest in intrapancreatic fat deposition (IPFD) has developed in the last few years, particularly in relation to improvement in methodological techniques for detection of fat in the pancreas, and to growing evidence for the role that IPFD might have in glucose metabolism disorders and cardiometabolic disease. Body weight reduction represents the main option for reducing fat, and the evidence consistently shows that hypocaloric diets are effective in reducing IPFD. Changes in diet composition, independently of changes in energy intake, might offer a more feasible and safe alternative treatment to energy restriction. This current narrative review focused particularly on the possible beneficial role of the diet and its nutrient content, in hypocaloric and isocaloric conditions, in reducing IPFD in individuals with high cardiometabolic risk, highlighting the possible effects of differences in calorie quantity and calorie quality. This review also describes plausible mechanisms by which the various dietary approaches could modulate IPFD.
Collapse
Affiliation(s)
- Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy
| | - Dominic Salamone
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Roberta Testa
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
4
|
Petrov MS. Fatty change of the pancreas: the Pandora's box of pancreatology. Lancet Gastroenterol Hepatol 2023; 8:671-682. [PMID: 37094599 DOI: 10.1016/s2468-1253(23)00064-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 04/26/2023]
Abstract
Prevention of common diseases of the pancreas or interception of their progression is as attractive in theory as it is elusive in practice. The fundamental challenge has been an incomplete understanding of targets coupled with a multitude of intertwined factors that are associated with the development of pancreatic diseases. Evidence over the past decade has shown unique morphological features, distinctive biomarkers, and complex relationships of intrapancreatic fat deposition. Fatty change of the pancreas has also been shown to affect at least 16% of the global population. This knowledge has solidified the pivotal role of fatty change of the pancreas in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. The pancreatic diseases originating from intrapancreatic fat (PANDORA) hypothesis advanced in this Personal View cuts across traditional disciplinary boundaries with a view to tackling these diseases. New holistic understanding of pancreatic diseases is well positioned to propel pancreatology through lasting research breakthroughs and clinical advances.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Yamazaki H, Streicher SA, Wu L, Fukuhara S, Wagner R, Heni M, Grossman SR, Lenz HJ, Setiawan VW, Marchand LL, Huang BZ. Genetic Evidence Causally Linking Pancreas Fat to Pancreatic Cancer: A Mendelian Randomization Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.20.23288770. [PMID: 37163062 PMCID: PMC10168411 DOI: 10.1101/2023.04.20.23288770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background & Aims Pancreatic ductal adenocarcinoma (PDAC) is highly lethal, and any clues to understanding its elusive etiology could lead to breakthroughs in prevention, early detection, or treatment. Observational studies have shown a relationship between pancreas fat accumulation and PDAC, but the causality of this link is unclear. We therefore investigated whether pancreas fat is causally associated with PDAC using two-sample Mendelian randomization. Methods We leveraged eight genetic variants associated with pancreas fat (P<5×10 -8 ) from a genome-wide association study (GWAS) in the UK Biobank (25,617 individuals), and assessed their association with PDAC in the Pancreatic Cancer Cohort Consortium I-III and the Pancreatic Cancer Case-Control Consortium dataset (8,275 PDAC cases and 6,723 non-cases). Causality was assessed using the inverse-variance weighted method. Although none of these genetic variants were associated with body mass index (BMI) at genome-wide significance, we further conducted a sensitivity analysis excluding genetic variants with a nominal BMI association in GWAS summary statistics from the UK Biobank and the Genetic Investigation of Anthropometric Traits consortium dataset (806,834 individuals). Results Genetically determined higher levels of pancreas fat using the eight genetic variants was associated with increased risk of PDAC. For one standard deviation increase in pancreas fat levels (i.e., 7.9% increase in pancreas fat fraction), the odds ratio of PDAC was 2.46 (95%CI:1.38-4.40, P=0.002). Similar results were obtained after excluding genetic variants nominally linked to BMI (odds ratio:3.79, 95%CI:1.66-8.65, P=0.002). Conclusions This study provides genetic evidence for a causal role of pancreas fat in the pathogenesis of PDAC. Thus, reducing pancreas fat could lower the risk of PDAC.
Collapse
|
6
|
Isokalorische multifaktorielle Diät hat Vorteile gegenüber MUFA-betonter Ernährung. DIABETOL STOFFWECHS 2022. [DOI: 10.1055/a-1733-0646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Leiu KH, Poppitt SD, Miles-Chan JL, Sequeira IR. Fatty Pancreas and Cardiometabolic Risk: Response of Ectopic Fat to Lifestyle and Surgical Interventions. Nutrients 2022; 14:nu14224873. [PMID: 36432559 PMCID: PMC9693202 DOI: 10.3390/nu14224873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Ectopic fat accumulation in non-adipose organs, such as the pancreas and liver, is associated with an increased risk of cardiometabolic disease. While clinical trials have focused on interventions to decrease body weight and liver fat, ameliorating pancreatic fat can be crucial but successful intervention strategies are not yet defined. We identified twenty-two published studies which quantified pancreatic fat during dietary, physical activity, and/or bariatric surgery interventions targeted at body weight and adipose mass loss alongside their subsequent effect on metabolic outcomes. Thirteen studies reported a significant decrease in body weight, utilising weight-loss diets (n = 2), very low-energy diets (VLED) (n = 2), isocaloric diets (n = 1), a combination of diet and physical activity (n = 2), and bariatric surgery (n = 5) including a comparison with VLED (n = 1). Surgical intervention achieved the largest decrease in pancreatic fat (range: -18.2% to -67.2%) vs. a combination of weight-loss diets, isocaloric diets, and/or VLED (range: -10.2% to -42.3%) vs. diet and physical activity combined (range: -0.6% to -3.9%), with a concurrent decrease in metabolic outcomes. While surgical intervention purportedly is the most effective strategy to decrease pancreas fat content and improve cardiometabolic health, the procedure is invasive and may not be accessible to most individuals. Given that dietary intervention is the cornerstone for the prevention of adverse metabolic health, the alternative approaches appear to be the use of weight-loss diets or VLED meal replacements, which are shown to decrease pancreatic fat and associated cardiometabolic risk.
Collapse
Affiliation(s)
- Kok Hong Leiu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
| | - Sally D. Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
- Riddet Centre of Research Excellence (CoRE) for Food and Nutrition, Palmerston North 4442, New Zealand
| | - Jennifer L. Miles-Chan
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
- Riddet Centre of Research Excellence (CoRE) for Food and Nutrition, Palmerston North 4442, New Zealand
| | - Ivana R. Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
- Correspondence: ; Tel.: +64-09-6301162
| |
Collapse
|