1
|
Ossoli A, Pavanello C, Giorgio E, Calabresi L, Gomaraschi M. Dysfunctional HDL as a Therapeutic Target for Atherosclerosis Prevention. Curr Med Chem 2019; 26:1610-1630. [DOI: 10.2174/0929867325666180316115726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/24/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Hypercholesterolemia is one of the main risk factors for the development of atherosclerosis. Among the various lipoprotein classes, however, high density lipoproteins (HDL) are inversely associated with the incidence of atherosclerosis, since they are able to exert a series of atheroprotective functions. The central role of HDL within the reverse cholesterol transport, their antioxidant and anti-inflammatory properties and their ability to preserve endothelial homeostasis are likely responsible for HDL-mediated atheroprotection. However, drugs that effectively raise HDL-C failed to result in a decreased incidence of cardiovascular event, suggesting that plasma levels of HDL-C and HDL function are not always related. Several evidences are showing that different pathologic conditions, especially those associated with an inflammatory response, can cause dramatic alterations of HDL protein and lipid cargo resulting in HDL dysfunction. Established and investigational drugs designed to affect lipid metabolism and to increase HDL-C are only partly effective in correcting HDL dysfunction.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Eleonora Giorgio
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Monica Gomaraschi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
2
|
Kota SK, Meher LK, Kota SK, Jammula S, Krishna SVS, Modi KD. Implications of serum paraoxonase activity in obesity, diabetes mellitus, and dyslipidemia. Indian J Endocrinol Metab 2013; 17:402-412. [PMID: 23869295 PMCID: PMC3712369 DOI: 10.4103/2230-8210.111618] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Human serum paraoxonase 1 (PON1) is an enzyme with esterase activity, and is physically bound to high-density lipoproteins (HDL). It plays a key role in the action of HDL toward protection of lipoprotein and biological membrane against oxidative damage. It may have a protective role against atherosclerosis by virtue of its action on hydrolyzing lipid peroxides and preventing accumulation of phospholipids in oxidized low-density lipoprotein (LDL). PON1 is hypothesized to be an indicator of the risk of atherosclerosis and coronary artery disease development. Numerous studies have implicated PON1 activity in relation to various endocrine disorders. The current article reviews the clinical perspectives of PON1 activity with regards to obesity, diabetes mellitus with its complications, and dyslipidemia.
Collapse
Affiliation(s)
- Sunil K. Kota
- Department of Endocrinology, Medwin Hospital, Hyderabad, Andhra Pradesh, India
| | - Lalit K. Meher
- Department of Medicine, MKCG Medical College, Berhampur, Orissa, India
| | - Siva K. Kota
- Department of Anesthesia, Central Security Hospital, Riyadh, Saudi Arabia
| | - Sruti Jammula
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, Orissa, India
| | - S. V. S. Krishna
- Department of Endocrinology, Medwin Hospital, Hyderabad, Andhra Pradesh, India
| | - Kirtikumar D. Modi
- Department of Endocrinology, Medwin Hospital, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
3
|
Pan J, Shilian P, Ishida B, Wu X, Kane JP, Malloy MJ, Charles MA. Effect of niacin on preβ-1 high-density lipoprotein levels in diabetes. Metabolism 2011; 60:292-7. [PMID: 20303127 DOI: 10.1016/j.metabol.2010.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 01/26/2010] [Indexed: 11/25/2022]
Abstract
Preβ-1 high-density lipoprotein (HDL) is an acceptor of peripheral free cholesterol and thus a participant in reverse cholesterol transport. Because patients with diabetes may have defects in reverse cholesterol transport, we hypothesized that (1) preβ-1 HDL might be decreased in diabetes and (2) because niacin improves reverse cholesterol transport and may stimulate preβ-1 HDL maturation, niacin would further decrease steady-state levels of preβ-1 HDL in diabetes. Absolute levels of preβ-1 HDL mass were measured using an isotopic dilution-ultrafiltration assay that measures apolipoprotein (apo) A-I after physically isolating preβ-1. Plasma apo A-I concentration and routine lipids were also evaluated in 11 diabetic patients. Diabetic subjects have a nearly 50% reduction of circulating levels of preβ-1 HDL to 36 ± 22 (1 SD) μg/mL compared with our previously published values of 73 ± 44 μg/mL in 136 healthy subjects. After niacin therapy, there was a further 17% reduction of preβ-1 HDL levels to 30 ± 26 μg/mL (P < .026) compared with baseline. The percentage of preβ-1 HDL in diabetic patients, as a percentage of total apo A-I, was about half of the normal value of 6.1% ± 3.6%; after niacin in diabetic patients, the percentage further decreased from 3.3% ± 2.1% to 2.3% ± 1.9% (P < .003). Absolute levels of apo A-I were similar in diabetic patients (1.14 ± 0.29) and healthy subjects (1.24 ± 0.24), and were unchanged by niacin in diabetic patients. We conclude with the novel observations that diabetes is associated with significantly reduced levels of preβ-1 HDL and that, after niacin treatment, a further lowering of preβ-1 HDL levels occur. Several altered mechanisms of RCT in diabetes are consistent with low levels of preβ-1 HDL both before and after niacin treatment.
Collapse
|
4
|
Vergès B. Lipid disorders in type 1 diabetes. DIABETES & METABOLISM 2009; 35:353-60. [PMID: 19733492 DOI: 10.1016/j.diabet.2009.04.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 11/18/2022]
Abstract
Patients with type 1 diabetes (T1D) also present with lipid disorders. Quantitative abnormalities of lipoproteins are observed in T1D patients with poor glycaemic control (increased plasma triglycerides and low-density lipoprotein [LDL] cholesterol) or nephropathy (increased triglycerides and LDL cholesterol, low level of high density lipoprotein [HDL] cholesterol). In cases of T1D with optimal glycaemic control, plasma triglycerides and LDL cholesterol are normal or slightly decreased, while HDL cholesterol is normal or slightly increased. Several qualitative abnormalities of lipoproteins, which are potentially atherogenic, are observed in patients with T1D, even in those with good metabolic control. These abnormalities include increased cholesterol-to-triglyceride ratios within very low-density lipoprotein (VLDLs), increased triglycerides in LDLs and HDLs, compositional changes in the peripheral layer of lipoproteins, glycation of apolipoproteins, increased oxidation of LDLs and an increase in small, dense LDL particles. These qualitative changes in lipoproteins are likely to impair their function. In vitro, VLDLs and LDLs from patients with T1D induced abnormal responses in the cellular cholesterol metabolism of human macrophages. HDLs from patients with T1D are thought to be less effective in promoting cholesterol efflux from cells, and have been shown to have reduced antioxidative and vasorelaxant properties. These qualitative abnormalities are not fully explained by hyperglycaemia and may be partly due to peripheral hyperinsulinaemia associated with subcutaneous insulin administration. However, the precise consequences of these qualitative lipid changes on the development of cardiovascular disease in T1D are, as yet, unknown.
Collapse
Affiliation(s)
- B Vergès
- Service d'endocrinologie, de diabétologie et des maladies métaboliques, hôpital du Bocage, Dijon, France.
| |
Collapse
|
5
|
Abstract
High-density lipoprotein (HDL) plays an important protective role against atherosclerosis, and the anti-atherogenic properties of HDL include the promotion of cellular cholesterol efflux and reverse cholesterol transport (RCT), as well as antioxidant, anti-inflammatory and anticoagulant effects. RCT is a complex pathway, which transports cholesterol from peripheral cells and tissues to the liver for its metabolism and biliary excretion. The major steps in the RCT pathway include the efflux of free cholesterol mediated by cholesterol transporters from cells to the main extracellular acceptor HDL, the conversion of free cholesterol to cholesteryl esters and the subsequent removal of cholesteryl ester in HDL by the liver. The efficiency of RCT is influenced by the mobilization of cellular lipids for efflux and the intravascular remodelling and kinetics of HDL metabolism. Despite the increased cardiovascular risk in people with type 2 diabetes, current knowledge on RCT in diabetes is limited. In this article, abnormalities in RCT in type 2 diabetes mellitus and therapeutic strategies targeting HDL and RCT will be reviewed.
Collapse
Affiliation(s)
- K C B Tan
- Department of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|
6
|
Abstract
High-density lipoprotein (HDL) particles exert a spectrum of atheroprotective activities that can be deficient in type 2 diabetes. Key mechanisms leading to the formation of functionally deficient HDL involve 1) HDL enrichment in triglycerides and depletion in cholesteryl esters with conformational alterations of apolipoprotein A-I; 2) glycation of apolipoproteins and/or HDL-associated enzymes; and 3) oxidative modification of HDL lipids, apolipoproteins, and/or enzymes. Available data identify hypertriglyceridemia, with concomitant compositional modification of the HDL lipid core and conformational change of apolipoprotein A-I, as a driving force in functional alteration of HDL particles in type 2 diabetes. Therapeutic options for correcting HDL functional deficiency should target hypertriglyceridemia by normalizing circulating levels of triglyceride-rich lipoproteins.
Collapse
Affiliation(s)
- Anatol Kontush
- INSERM Unité 551, Pavillon Benjamin Delessert, Hôpital de Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | | |
Collapse
|
7
|
Passarelli M, Shimabukuro AF, Catanozi S, Nakandakare ER, Rocha JC, Carrilho AJ, Quintão EC. Diminished rate of mouse peritoneal macrophage cholesterol efflux is not related to the degree of HDL glycation in diabetes mellitus. Clin Chim Acta 2000; 301:119-34. [PMID: 11020467 DOI: 10.1016/s0009-8981(00)00336-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efflux of (14)C-cholesterol from mouse peritoneal macrophages mediated by in vivo and in vitro glycation of intact HDL(3) and by HDL(3) apolipoproteins was investigated. Cholesterol-laden cells were incubated a long time with HDL(3) from control subjects (C), poorly controlled diabetes mellitus patients (D) and with HDL C submitted to in vitro glycation (G), as well as with all their respectively isolated apolipoproteins. A diminished cholesterol efflux rate occurred in incubations with intact HDL(3) D but not with intact HDL(3)G or with apoHDL(3)C, G or D. The specific binding of (125)I-HDL(3)G to the cell receptor, obtained upon incubation in the absence and in the presence of excess unlabelled HDL(3), was lower than the control. The role of apoE secretion by cholesterol-laden macrophages on cholesterol efflux was analyzed by incubating apoE knockout and control mice macrophages with HDL C or HDL G: a lower cholesterol efflux was observed from apoE knockout macrophages but glycation of HDL(3) did not influence this process either. The diminished capacity to remove cholesterol by the HDL drawn from diabetic subjects must be attributed to other modifications of the lipoproteins, except for non enzymatic glycation. Thus, events that impair the cell cholesterol removal in diabetes mellitus are multifaceted.
Collapse
Affiliation(s)
- M Passarelli
- Lipids Laboratory, University of São Paulo Medical School, Av. Dr. Arnaldo, 455 s/3317, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
There are epidemiological data and experimental animal models relating the development of premature atherosclerosis with defects of the reverse cholesterol transport (RCT) system. In this regard, the plasma concentrations of the high density lipoprotein (HDL) subfractions, of cholesteryl ester transfer protein (CETP), as well as the activity of the enzyme lecithin-cholesterol acyl transferase (LCAT) play critical roles. However, there has been plenty of evidence that atherosclerosis in diabetes mellitus (DM) is ascribed to a greater arterial wall cell uptake of modified apoB-containing lipoproteins whereas a primary or predominant defect of the RCT system is still a subject of debate. In other words, in spite of the fact that in DM the composition and rates of metabolism of the HDL particles are greatly altered and display a diminished in vitro efficiency to remove cell cholesterol, definitive in vivo demonstration of the importance of this fact in atherogenesis is lacking. Furthermore, the roles played by LCAT and CETP in RCT in DM are difficult to interpret because the in vitro procedures of measurement utilized have either been inadequate, or inappropriately interpreted. Knock-out or transgenic mice are much needed models to investigate the roles of LCAT, CETP, phospholipid transfer protein (PLTP), and of a CETP inhibitor in the development of atherosclerosis of experimental DM.
Collapse
Affiliation(s)
- E C Quintão
- Lipid Metabolism Laboratory (LIM 10), Hospital das Clínicas, The University of São Paulo Medical School, São Paulo, Brazil.
| | | | | |
Collapse
|
9
|
Syvänne M, Castro G, Dengremont C, De Geitere C, Jauhiainen M, Ehnholm C, Michelagnoli S, Franceschini G, Kahri J, Taskinen MR. Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-I:A-II particles and phospholipid transfer protein. Atherosclerosis 1996; 127:245-53. [PMID: 9125315 DOI: 10.1016/s0021-9150(96)05962-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We measured the capacity of human plasma to induce cholesterol efflux from Fu5AH rat hepatoma cells in four groups of men with or without non-insulin-dependent diabetes mellitus (NIDDM) and coronary artery disease (CAD). Plasma from men with both NIDDM and CAD (n = 47) had the lowest efflux capacity (17.3 +/- 3.6%) whereas healthy control subjects with neither diabetes nor CAD (n = 25) had the highest capacity (19.8 +/- 3.4%). The groups with CAD but no diabetes (n = 44) and with NIDDM but no CAD (n = 35) had intermediate efflux values (18.5 +/- 3.8 and 18.5 +/- 3.9%, respectively). In a 2 x 2 factorial ANOVA, the differences were significant with respect to the presence of CAD (P = 0.038) and NIDDM (P = 0.041), with no interaction between the factors. The concentration of HDL particles containing apolipoprotein (apo) A-I but no apo A-II (LpA-I) was not related to efflux capacity in univariate or multivariate analyses. A multivariate regression analysis showed that when controlled for the presence of NIDDM and CAD, the concentration of particles containing both apo A-I and apo A-II (LpA-I:A-II) and plasma phospholipid transfer protein activity were both positively, independently, and significantly (P < 0.001) related to cholesterol efflux capacity.
Collapse
Affiliation(s)
- M Syvänne
- Department of Medicine, Helsinki University Central Hospital, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
High-density lipoprotein (HDL), the most abundant human plasma lipoprotein, plays a major role in reverse cholesterol transport, which recycles cholesterol from peripheral cells to the liver. HDL constitutes a heterogeneous group of particles differing in density, size, electrophoretic mobility, and apolipoprotein content. HDL can therefore be fractionated into discrete subclasses by different techniques according to their physicochemical properties. The clinical significance of HDL differs with the subclasses, especially with respect to coronary heart disease, alcohol intake, longevity, dyslipoproteinemia, dietary fat content, and hypolipidemic drugs. Because of their structural and functional diversity, HDL subclasses generate considerable hope that they may help to improve the identification of individuals at an increased risk of developing coronary heart disease.
Collapse
Affiliation(s)
- A Tailleux
- SERLIA-INSERM U325, Institut Pasteur, Lille
| | | |
Collapse
|
11
|
Cavallero E, Brites F, Delfly B, Nicolaïew N, Decossin C, De Geitere C, Fruchart JC, Wikinski R, Jacotot B, Castro G. Abnormal reverse cholesterol transport in controlled type II diabetic patients. Studies on fasting and postprandial LpA-I particles. Arterioscler Thromb Vasc Biol 1995; 15:2130-5. [PMID: 7489233 DOI: 10.1161/01.atv.15.12.2130] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The high incidence and prevalence of coronary heart disease in diabetes mellitus is clearly established. The usual lipid pattern found in type II diabetic patients is a moderate increase in fasting triglyceride levels associated with low HDL cholesterol levels. These abnormalities are further amplified in the postprandial state. To study the effect of these alterations on reverse cholesterol transport, we isolated lipoprotein containing apoA-I but not apoA-II (LpA-I) particles by immunoaffinity chromatography from the plasma of well-controlled type II diabetic patients and nondiabetic matched control subjects. Different parameters involved in this antiatherogenic pathway were measured in both fasting and postprandial states. Diabetic patients had reduced levels of LpA-I particles that were protein enriched and phospholipid depleted. Gradient gel electrophoresis showed that control LpA-I particles had five distinct populations, whereas diabetic particles lacked the largest one. LpA-I isolated from diabetic plasma exhibited a decreased capacity to induce cholesterol efflux from Ob 1771 adipose cells both in fasting (15.1 +/- 10.0% versus 7.5 +/- 2.7%, P < .05) and postprandial (17.7 +/- 11.2% versus 7.7 +/- 3.9%, P < .05) states, whereas only control particles showed significantly higher ability to promote cholesterol efflux after the test meal (P = .02). Lecithin:cholesterol acyltransferase activity measured with an exogenous substrate showed a 54% increase and an 18% decrease postprandially for control subjects and patients, respectively. Thus, the different abnormalities found in the fasting state were further amplified in the postprandial situation. This resulted in LpA-I particles with aberrant size and composition and decreased ability to accomplish their antiatherogenic role in type II diabetic patients.
Collapse
Affiliation(s)
- E Cavallero
- Service de Médecine Interne, Nutrition, Métabolisme Lipidique, Hôpital Henri-Mondor Créteil, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|