1
|
Altintas MM, Agarwal S, Sudhini Y, Zhu K, Wei C, Reiser J. Pathogenesis of Focal Segmental Glomerulosclerosis and Related Disorders. ANNUAL REVIEW OF PATHOLOGY 2025; 20:329-353. [PMID: 39854184 PMCID: PMC11875227 DOI: 10.1146/annurev-pathol-051220-092001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Focal segmental glomerulosclerosis (FSGS) is the morphologic manifestation of a spectrum of kidney diseases that primarily impact podocytes, cells that create the filtration barrier of the glomerulus. As its name implies, only parts of the kidney and glomeruli are affected, and only a portion of the affected glomerulus may be sclerosed. Although the diagnosis is based primarily on microscopic features, patient stratification relies on clinical data such as proteinuria and etiological criteria. FSGS affects both children and adults and has an elevated risk of progression to end-stage renal disease. The prevalence of FSGS is rising among various populations, and the efficacy of various therapies is limited. Therefore, understanding the pathophysiology of FSGS and developing targeted therapies to address the complex needs of FSGS patients are topics of great interest that are currently being studied across various clinical trials. We discuss the etiology of FSGS, describe the major contributing pathophysiological pathways, and outline emerging therapeutic strategies along with their pitfalls.
Collapse
Affiliation(s)
- Mehmet M Altintas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| | | | - Yashwanth Sudhini
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ke Zhu
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| | - Changli Wei
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| | - Jochen Reiser
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| |
Collapse
|
2
|
Mrosewski I, Mantel V, Urbank M, Schulze-Tanzil G, Werner C, Gögele C, Kokozidou M, Bertsch T. Menaquinone-7 and its therapeutic potential in type 2 diabetes mellitus based on a Zucker diabetic fatty rat model. Heliyon 2024; 10:e40826. [PMID: 39719993 PMCID: PMC11666950 DOI: 10.1016/j.heliyon.2024.e40826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/26/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is marked by insulin resistance, low grade chronic inflammation, and endothelial dysfunction. Vitamin K2, especially menaquinone-7 (MK-7), might delay T2DM progression and alleviate its consequences. Hence, this study evaluated the effects of MK-7 on serum and urine markers of diabetes in an animal model of T2DM. Methods Hetero- (fa/+, control) and homozygous (fa/fa, diabetic) male Zucker diabetic fatty (ZDF) rats were supplemented or not with MK-7 for 12 weeks. After euthanasia, vitamin K1, menaquinone-4 and MK-7 serum concentrations were analyzed via reversed phase high pressure liquid chromatography. Glucose (serum), fructosamine (serum) and creatinine (serum and urine) levels were assessed photometrically, serum cystatin C and urinary total protein were turbidimetrically determined. Serum transforming growth factor beta 1 (TGF-β1) and procollagen type III N-terminal peptide (PIIINP) were quantified with enzyme-linked immunosorbent assay. Urinary marker proteins were analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Nephropathy was assessed histologically. Results Supplementation led to significantly elevated MK-7 serum levels and a significant reduction of PIIINP serum levels in both hetero- and homozygous ZDF rats. Additionally, not statistically significant reductions of TGF-β1 serum levels, proteinuria as well as the nephropathy score were observed. In vivo body mass, serum fructosamine, glucose, cystatin C and creatinine levels were unaffected. Conclusion MK-7 reduced serum markers of fibrosis, histological features of nephropathy and urinary protein excretion, but failed to affect serum markers of T2DM. The therapeutic potential of MK-7 in T2DM and its mode of action should be further investigated in more detail.
Collapse
Affiliation(s)
- Ingo Mrosewski
- MDI Limbach Berlin GmbH, Aroser Allee 84, 13407, Berlin, Germany
| | - Valeriya Mantel
- MDI Limbach Berlin GmbH, Aroser Allee 84, 13407, Berlin, Germany
- Berlin University of Applied Sciences and Technology, Luxemburger Str. 10, 13353, Berlin, Germany
| | - Matthias Urbank
- MDI Limbach Berlin GmbH, Aroser Allee 84, 13407, Berlin, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Maria Kokozidou
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| |
Collapse
|
3
|
Yáñez AJ, Jaramillo K, Silva P, Yáñez A M, Sandoval M, Carpio D, Aguilar M. Sodium tungstate (NaW) decreases inflammation and renal fibrosis in diabetic nephropathy. Am J Med Sci 2024; 368:518-531. [PMID: 38944202 DOI: 10.1016/j.amjms.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Diabetic Nephropathy is one of the most severe complications of Diabetes Mellitus and the main cause of end-stage kidney disease worldwide. Despite the therapies available to control blood glucose and blood pressure, many patients continue to suffer from progressive kidney damage. Chronic hyperglycemia is the main driver of changes observed in diabetes; however, it was recently discovered that inflammation and oxidative stress contribute to the development and progression of kidney damage. Therefore, it is important to search for new pharmacological therapies that stop the progression of DN. Sodium tungstate (NaW) is an effective short and long-term antidiabetic agent in both type 1 and type 2 diabetes models. METHODS In this study, the effect of NaW on proinflammatory signalling pathways, proinflammatory proteins and fibrosis in the streptozotocin (STZ)-induced type 1 diabetic rat model was analysed using histological analysis, western blotting and immunohistochemistry. RESULTS NaW treatment in diabetic rats normalize parameters such as glycemia, glucosuria, albuminuria/creatinuria, glomerular damage, and tubulointerstitial damage. NaW decreased the proinflammatory signaling pathway NF-κB, inflammatory markers (ICAM-1, MCP-1 and OPN), profibrotic pathways (TGFβ1/Smad2/3), reduced epithelial-mesenchymal transition (α -SMA), and decreased renal fibrosis (type IV collagen). CONCLUSION NaW could be an effective drug therapy for treating human diabetic nephropathy.
Collapse
Affiliation(s)
- Alejandro J Yáñez
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Universidad de Concepción, Chile; Research and Development Department, Greenvolution SpA. Puerto Varas, Chile.
| | - Karen Jaramillo
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Pamela Silva
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Mariana Yáñez A
- Facultad de Medicina y Ciencias, Campus de la Patagonia, Universidad San Sebastian, 5480000 Puerto Montt, Chile
| | - Moises Sandoval
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Daniel Carpio
- Facultad de Medicina, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Marcelo Aguilar
- Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile.
| |
Collapse
|
4
|
Ajay AK, Zhu LJ, Zhao L, Liu Q, Ding Y, Chang YC, Shah SI, Hsiao LL. Local vascular Klotho mediates diabetes-induced atherosclerosis via ERK1/2 and PI3-kinase-dependent signaling pathways. Atherosclerosis 2024; 396:118531. [PMID: 38996716 DOI: 10.1016/j.atherosclerosis.2024.118531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND AND AIMS Diabetes is one of the major causes of cardiovascular disease (CVD). As high as 29 % of patients with diabetes develop atherosclerosis. Vascular Smooth Muscle Cells (VSMCs) are a key mediator in the pathogenesis of atherosclerosis, generating pro-inflammatory and proliferative characteristics in atherosclerotic lesions. METHODS We used human atherosclerotic samples, developed diabetes-induced atherosclerotic mice, and generated loss of function and gain of function in Klotho human aortic smooth muscle cells to investigate the function of Klotho in atherosclerosis. RESULTS We found that Klotho expression is decreased in smooth muscle actin-positive cells in patients with diabetes and atherosclerosis. Consistent with human data, we found that Apoe knockout mice with streptozotocin-induced diabetes fed on a high-fat diet showed decreased expression of Klotho in SMCs. Additionally, these mice showed increased expression of TGF-β, MMP9, phosphorylation of ERK and Akt. Further, we utilized primary Human Aortic Smooth Muscle Cells (HASMCs) with d-glucose under dose-response and in time-dependent conditions to study the role of Klotho in these cells. Klotho gain of function and loss of function studies showed that Klotho inversely regulated the expression of atherosclerotic markers TGF-β, MMP2, MMP9, and Fractalkine. Further, High Glucose (HG) induced Akt, and ERK1/2 phosphorylation were enhanced or mitigated by endogenous Klotho deficiency or its overexpression respectively. PI3K/Akt and MAPK/ERK inhibition partially abolished the HG-induced upregulation of TGF-β, MMP2, MMP9, and Fractalkine. Additionally, Klotho knockdown increased the proliferation of HASMCs and enhanced α-SMA and TGF-β expression. CONCLUSIONS Taken together, these results indicate that local vascular Klotho is involved in diabetes-induced atherosclerosis, which is via PI3K/Akt and ERK1/2-dependent signaling pathways.
Collapse
MESH Headings
- Klotho Proteins/metabolism
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Glucuronidase/metabolism
- Glucuronidase/genetics
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Mice, Knockout, ApoE
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Signal Transduction
- Cells, Cultured
- Aorta/pathology
- Aorta/metabolism
- MAP Kinase Signaling System
- Mice
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-akt/metabolism
- Cell Proliferation
Collapse
Affiliation(s)
- Amrendra K Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115.
| | - Lang-Jing Zhu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Department of Nephrology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Li Zhao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Division of Renal Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qinghua Liu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Ding
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Yu-Chun Chang
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Sujal I Shah
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Li-Li Hsiao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115.
| |
Collapse
|
5
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
6
|
Kohler R, Segvich DM, Reul O, Metzger CE, Allen MR, Wallace JM. Romosozumab rescues impaired bone mass and strength in a murine model of diabetic kidney disease. Bone Rep 2024; 21:101774. [PMID: 38778834 PMCID: PMC11108809 DOI: 10.1016/j.bonr.2024.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
As international incidence of diabetes and diabetes-driven comorbidities such as chronic kidney disease (CKD) continue to climb, interventions are needed that address the high-risk skeletal fragility of what is a complex disease state. Romosozumab (Romo) is an FDA-approved sclerostin inhibitor that has been shown to increase bone mineral density and decrease fracture rates in osteoporotic patients with mild to severe CKD, but its effect on diabetes-weakened bone is unknown. We aimed to test Romo's performance in a model of combined diabetes and CKD. 6-week old male C57BL/6 mice were randomly divided into control (CON) and disease model (STZ-Ad) groups, using a previously established streptozotocin- and adenine-diet-induced model. After 16 weeks of disease induction, both CON and STZ-Ad groups were subdivided into two treatment groups and given weekly subcutaneous injections of 100 μL vehicle (phosphorus buffered saline, PBS) or 10 mg/kg Romo. Mice were euthanized after 4 weeks of treatment via cardiac exsanguination and cervical dislocation. Hindlimb bones and L4 vertebrae were cleaned of soft tissue, wrapped in PBS-soaked gauze and stored at -20C. Right tibiae, femora, and L4s were scanned via microcomputed tomography; tibiae were then tested to failure in 4-pt bending while L4s were compression tested. Romo treatment significantly increased cortical and trabecular bone mass in both STZ-Ad and CON animals. These morphological improvements created corresponding increases in cortical bending strength and trabecular compression strength, with STZ-Ad treated mice surpassing vehicle CON mice in all trabecular mechanics measures. These results suggest that Romo retains its efficacy at increasing bone mass and strength in diabetic kidney disease.
Collapse
Affiliation(s)
- Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Dyann M. Segvich
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Olivia Reul
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Corinne E. Metzger
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| |
Collapse
|
7
|
Tsuruta H, Yasuda-Yamahara M, Yoshibayashi M, Kuwagata S, Yamahara K, Tanaka-Sasaki Y, Chin-Kanasaki M, Matsumoto S, Ema M, Kume S. Fructose overconsumption accelerates renal dysfunction with aberrant glomerular endothelial-mesangial cell interactions in db/db mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167074. [PMID: 38354758 DOI: 10.1016/j.bbadis.2024.167074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
For the advancement of DKD treatment, identifying unrecognized residual risk factors is essential. We explored the impact of obesity diversity derived from different carbohydrate qualities, with an emphasis on the increasing trend of excessive fructose consumption and its effect on DKD progression. In this study, we utilized db/db mice to establish a novel diabetic model characterized by fructose overconsumption, aiming to uncover the underlying mechanisms of renal damage. Compared to the control diet group, the fructose-fed db/db mice exhibited more pronounced obesity yet demonstrated milder glucose intolerance. Plasma cystatin C levels were elevated in the fructose model compared to the control, and this elevation was accompanied by enhanced glomerular sclerosis, even though albuminuria levels and tubular lesions were comparable. Single-cell RNA sequencing of the whole kidney highlighted an increase in Lrg1 in glomerular endothelial cells (GECs) in the fructose model, which appeared to drive mesangial fibrosis through enhanced TGF-β1 signaling. Our findings suggest that excessive fructose intake exacerbates diabetic kidney disease progression, mediated by aberrant Lrg1-driven crosstalk between GECs and mesangial cells.
Collapse
Affiliation(s)
- Hiroaki Tsuruta
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mamoru Yoshibayashi
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shogo Kuwagata
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Yuki Tanaka-Sasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masami Chin-Kanasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shoma Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan.
| |
Collapse
|
8
|
王 一, 郭 建, 邵 宝, 陈 海, 蓝 辉. [The Role of TGF-β1/SMAD in Diabetic Nephropathy: Mechanisms and Research Development]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1065-1073. [PMID: 38162063 PMCID: PMC10752761 DOI: 10.12182/20231160108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 01/03/2024]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes and a leading cause of end-stage renal disease. Transforming growth factor-β1 (TGF-β1)/SMAD signaling activation plays an important role in the onset and progression of DN. Reported findings suggest that the activation of TGF-β1 (including the latent form, the active form, and the receptors) and its downstream signaling proteins (SMAD3, SMAD7, etc.) plays a critical role in DN. In addition, TGF-β1/SMAD signaling may mediate the pathogenesis and progression of DN via various microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence shows that TGF-β1, SMAD3, and SMAD7 are the main signaling proteins that contribute to the development of DN, and that they can be potential targets for the treatment of DN. However, recent clinical trials have shown that the anti-TGF-β1 monoclonal antibody treatment fails to effectively alleviate DN, which suggests that upstream inhibition of TGF-β1/SMAD signaling does not alleviate clinical symptoms and that this may be related to the fact that TGF-β1/SMAD has multiple biological effects. Targeted inhibition of the downstream TGF-β1 signaling (e.g., SMAD3 and SMAD7) may be an effective approach to attenuate DN. This article discussed the current understanding of the molecular mechanisms and potential targets for the treatment and prevention of DN by focusing on TGF-β1/SMAD signaling.
Collapse
Affiliation(s)
- 一帆 王
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 建波 郭
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 宝仪 邵
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 海勇 陈
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
- 香港大学深圳医院 中医部 (深圳 518053)Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - 辉耀 蓝
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
- 香港大学深圳医院 中医部 (深圳 518053)Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
9
|
Song SH, Han D, Park K, Um JE, Kim S, Ku M, Yang J, Yoo TH, Yook JI, Kim NH, Kim HS. Bone morphogenetic protein-7 attenuates pancreatic damage under diabetic conditions and prevents progression to diabetic nephropathy via inhibition of ferroptosis. Front Endocrinol (Lausanne) 2023; 14:1172199. [PMID: 37293506 PMCID: PMC10244744 DOI: 10.3389/fendo.2023.1172199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Background Approximately 30% of diabetic patients develop diabetic nephropathy, a representative microvascular complication. Although the etiological mechanism has not yet been fully elucidated, renal tubular damage by hyperglycemia-induced expression of transforming growth factor-β (TGF-β) is known to be involved. Recently, a new type of cell death by iron metabolism called ferroptosis was reported to be involved in kidney damage in animal models of diabetic nephropathy, which could be induced by TGF-β. Bone morphogenetic protein-7 (BMP7) is a well-known antagonist of TGF-β inhibiting TGF-β-induced fibrosis in many organs. Further, BMP7 has been reported to play a role in the regeneration of pancreatic beta cells in diabetic animal models. Methods We used protein transduction domain (PTD)-fused BMP7 in micelles (mPTD-BMP7) for long-lasting in vivo effects and effective in vitro transduction and secretion. Results mPTD-BMP7 successfully accelerated the regeneration of diabetic pancreas and impeded progression to diabetic nephropathy. With the administration of mPTD-BMP7, clinical parameters and representative markers of pancreatic damage were alleviated in a mouse model of streptozotocin-induced diabetes. It not only inhibited the downstream genes of TGF-β but also attenuated ferroptosis in the kidney of the diabetic mouse and TGF-β-stimulated rat kidney tubular cells. Conclusion BMP7 impedes the progression of diabetic nephropathy by inhibiting the canonical TGF-β pathway, attenuating ferroptosis, and helping regenerate diabetic pancreas.
Collapse
Affiliation(s)
- Sang Hyun Song
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Dawool Han
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kyeonghui Park
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jo Eun Um
- R&D Center, MET Life Science, Seoul, Republic of Korea
| | - Seonghun Kim
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
- R&D Center, MET Life Science, Seoul, Republic of Korea
| | - Minhee Ku
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
10
|
Liu F, Cao Y, Zhang C, Su H. Decreased DANCR contributes to high glucose-induced extracellular matrix accumulation in human renal mesangial cell via regulating the TGF-β/Smad signaling. FASEB J 2023; 37:e22926. [PMID: 37052733 DOI: 10.1096/fj.202300146r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Glomerulosclerosis is one of the major histopathologic changes in diabetic kidney diseases (DKD), which is characterized by excessive deposition of extracellular matrix (ECM) in the glomerulus mainly produced by mesangial cells in response to transforming growth factor-β (TGF-β) stimuli under diabetic conditions. Despite TGF-β has been implicated as a major pathogenic factor in the development of diabetic glomerulosclerosis, clinical trials of monoclonal antibodies against TGF-β failed to demonstrate therapeutic benefits. Thus, developing alternative therapeutic strategies to effectively block the TGF-β/Smad signaling could be of paramount importance for DKD treatment. Emerging evidence indicates that dysregulation of certain lncRNAs can lead to aberrant activation of TGF-β/Smad signaling. Herein, we identified a novel lncRNA, named DANCR, which could efficiently function as a negative regulator of TGF-β/Smad signaling in mesangial cells. Ectopic expression of DANCR could specifically block the activation of TGF-β/Smad signaling induced by high-glucose or TGF-β in human renal mesangial cells (HRMCs). Mechanistically, DANCR functions to stabilize nemo-like kinase (NLK) mRNA through interaction with insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), resulting in enhanced phosphorylating on the linker region of activated Smad2/3 in the nucleus. Taken together, our data have uncovered an lncRNA-based regulatory modality of the TGF-β/Smad signaling and identified DANCR as an endogenous blocker of TGF-β/Smad signaling in HRMCs, which may represent a potential therapeutic target against the diabetic glomerulosclerosis.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Sinha F, Federlein A, Biesold A, Schwarzfischer M, Krieger K, Schweda F, Tauber P. Empagliflozin increases kidney weight due to increased cell size in the proximal tubule S3 segment and the collecting duct. Front Pharmacol 2023; 14:1118358. [PMID: 37033639 PMCID: PMC10076569 DOI: 10.3389/fphar.2023.1118358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
The inhibition of renal SGLT2 glucose reabsorption has proven its therapeutic efficacy in chronic kidney disease. SGLT2 inhibitors (SGLTi) have been intensively studied in rodent models to identify the mechanisms of SGLT2i-mediated nephroprotection. So far, the overwhelming effects from clinical trials, could only partially be reproduced in rodent models of renal injury. However, a commonly disregarded observation from these studies, is the increase in kidney weight after SGLT2i administration. Increased kidney mass often relies on tubular growth in response to reabsorption overload during glomerular hyperfiltration. Since SGLT2i suppress hyperfiltration but concomitantly increase renal weight, it seems likely that SGLT2i have a growth promoting effect on the kidney itself, independent of GFR control. This study aimed to investigate the effect of SGLT2i on kidney growth in wildtype animals, to identify enlarged nephron segments and classify the size increase as hypertrophic/hyperplastic growth or cell swelling. SGLT2i empagliflozin increased kidney weight in wildtype mice by 13% compared to controls, while bodyweight and other organs were not affected. The enlarged nephron segments were identified as SGLT2-negative distal segments of proximal tubules and as collecting ducts by histological quantification of tubular cell area. In both segments protein/DNA ratio, a marker for hypertrophic growth, was increased by 6% and 12% respectively, while tubular nuclei number (hyperplasia) was unchanged by empagliflozin. SGLT2-inhibition in early proximal tubules induces a shift of NaCl resorption along the nephron causing compensatory NaCl and H2O reabsorption and presumably cell growth in downstream segments. Consistently, in collecting ducts of empagliflozin-treated mice, mRNA expression of the Na+-channel ENaC and the H2O-channels Aqp-2/Aqp-3 were increased. In addition, the hypoxia marker Hif1α was found increased in intercalated cells of the collecting duct together with evidence for increased proton secretion, as indicated by upregulation of carbonic anhydrases and acidified urine pH in empagliflozin-treated animals. In summary, these data show that SGLT2i induce cell enlargement by hypertrophic growth and possibly cell swelling in healthy kidneys, probably as a result of compensatory glucose, NaCl and H2O hyperreabsorption of SGLT2-negative segments. Particularly affected are the SGLT2-negative proximal tubules (S3) and the collecting duct, areas of low O2 availability.
Collapse
|
12
|
Teuma L, Eshwaran R, Tawokam Fongang U, Wieland J, Shao F, Lagana ML, Wang Y, Agaci A, Hammes HP, Feng Y. Glucosamine inhibits extracellular matrix accumulation in experimental diabetic nephropathy. Front Nutr 2022; 9:1048305. [PMID: 36532524 PMCID: PMC9751334 DOI: 10.3389/fnut.2022.1048305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Glucosamine, the intermediate metabolite of the hexosamine biosynthesis pathway (HBP), is widely used as a supplementary drug in patients with osteoarthritis. However, its consequences in such patients concomitantly suffering from diabetic nephropathy is unknown. METHODS The aim of the study was to investigate the effect of exogenous administration of glucosamine in the diabetic kidney. A mouse model of streptozotocin-induced diabetic nephropathy in vivo and cultured endothelial cells in vitro were used in the study. The mice were treated with glucosamine for 6 months. Renal function was evaluated by metabolic cage, and histology of the kidney was estimated by periodic acid-schiff (PAS) staining. The expression of related genes was assessed by real-time PCR, immunofluorescence staining, immunoblotting and ELISA. RESULTS There was no significant difference in urinary albumin secretion, relative kidney weight, or creatinine clearance between the groups treated with glucosamine and controls. Assessment of the kidney demonstrated reduction in mesangial expansion and fibronectin expression in the diabetic glomeruli treated with glucosamine. Glucosamine treatment significantly decreased α-smooth muscle actin (α-SMA) protein expression in both diabetic and control kidneys, whereas the expression of other fibrosis-related genes and inflammatory factors was unaltered. Moreover, α-SMA colocalized with the endothelial marker CD31 in the diabetic and control kidneys, and glucosamine reduced α-SMA+ ECs in the diabetic glomeruli. In addition, glucosamine suppressed α-SMA expression in endothelial cells treated with or without high glucose. DISCUSSION In summary, this is the first report to show that glucosamine reduces mesangial expansion and inhibits endothelial-mesenchymal transition in diabetic nephropathy. The underlying mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Loic Teuma
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Rachana Eshwaran
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Ulrich Tawokam Fongang
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Johanna Wieland
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Feng Shao
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Maria Luisa Lagana
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Yixin Wang
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Ane Agaci
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| |
Collapse
|
13
|
Davis JL, Kennedy C, Clerkin S, Treacy NJ, Dodd T, Moss C, Murphy A, Brazil DP, Cagney G, Brougham DF, Murad R, Finlay D, Vuori K, Crean J. Single-cell multiomics reveals the complexity of TGFβ signalling to chromatin in iPSC-derived kidney organoids. Commun Biol 2022; 5:1301. [PMID: 36435939 PMCID: PMC9701233 DOI: 10.1038/s42003-022-04264-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
TGFβ1 plays a regulatory role in the determination of renal cell fate and the progression of renal fibrosis. Here we show an association between SMAD3 and the histone methyltransferase, EZH2, during cell differentiation; ChIP-seq revealed that SMAD3 and EZH2 co-occupy the genome in iPSCs and in iPSC-derived nephron progenitors. Through integration of single cell gene expression and epigenome profiling, we identified de novo ACTA2+ve/POSTN+ve myofibroblasts in kidney organoids treated with TGFβ1, characterised by increased SMAD3-dependent cis chromatin accessibility and gene expression associated with fibroblast activation. We have identified fibrosis-associated regulons characterised by enrichment of SMAD3, AP1, the ETS family of transcription factors, and NUAK1, CREB3L1, and RARG, corresponding to enriched motifs at accessible loci identified by scATACseq. Treatment with the EZH2 specific inhibitor GSK343, blocked SMAD3-dependent cis co-accessibility and inhibited myofibroblast activation. This mechanism, through which TGFβ signals directly to chromatin, represents a critical determinant of fibrotic, differentiated states.
Collapse
Affiliation(s)
- Jessica L. Davis
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Ciaran Kennedy
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Shane Clerkin
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Niall J. Treacy
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Thomas Dodd
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Catherine Moss
- grid.7886.10000 0001 0768 2743UCD Genomics Core Facility, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Alison Murphy
- grid.7886.10000 0001 0768 2743UCD Genomics Core Facility, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Derek P. Brazil
- grid.4777.30000 0004 0374 7521Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BT9 7BL Northern Ireland, UK
| | - Gerard Cagney
- grid.7886.10000 0001 0768 2743UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Dermot F. Brougham
- grid.7886.10000 0001 0768 2743UCD School of Chemistry, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Rabi Murad
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Institute for Medical Discovery, La Jolla, CA 92037 USA
| | - Darren Finlay
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Institute for Medical Discovery, La Jolla, CA 92037 USA
| | - Kristiina Vuori
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Institute for Medical Discovery, La Jolla, CA 92037 USA
| | - John Crean
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, 4, Ireland.
| |
Collapse
|
14
|
Das F, Ghosh-Choudhury N, Maity S, Kasinath BS, Choudhury GG. Oncoprotein DJ-1 interacts with mTOR complexes to effect transcription factor Hif1α-dependent expression of collagen I (α2) during renal fibrosis. J Biol Chem 2022; 298:102246. [PMID: 35835217 PMCID: PMC9399488 DOI: 10.1016/j.jbc.2022.102246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Proximal tubular epithelial cells respond to transforming growth factor β (TGFβ) to synthesize collagen I (α2) during renal fibrosis. The oncoprotein DJ-1 has previously been shown to promote tumorigenesis and prevent apoptosis of dopaminergic neurons; however, its role in fibrosis signaling is unclear. Here, we show TGFβ-stimulation increased expression of DJ-1, which promoted noncanonical mTORC1 and mTORC2 activities. We show DJ-1 augmented the phosphorylation/activation of PKCβII, a direct substrate of mTORC2. In addition, coimmunoprecipitation experiments revealed association of DJ-1 with Raptor and Rictor, exclusive subunits of mTORC1 and mTORC2, respectively, as well as with mTOR kinase. Interestingly, siRNAs against DJ-1 blocked TGFβ-stimulated expression of collagen I (α2), while expression of DJ-1 increased expression of this protein. In addition, expression of dominant negative PKCβII and siRNAs against PKCβII significantly inhibited TGFβ-induced collagen I (α2) expression. In fact, constitutively active PKCβII abrogated the effect of siRNAs against DJ-1, suggesting a role of PKCβII downstream of this oncoprotein. Moreover, we demonstrate expression of collagen I (α2) stimulated by DJ-1 and its target PKCβII is dependent on the transcription factor hypoxia-inducible factor 1α (Hif1α). Finally, we show in the renal cortex of diabetic rats that increased TGFβ was associated with enhanced expression of DJ-1 and activation of mTOR and PKCβII, concomitant with increased Hif1α and collagen I (α2). Overall, we identified that DJ-1 affects TGFβ-induced expression of collagen I (α2) via an mTOR-, PKCβII-, and Hif1α-dependent mechanism to regulate renal fibrosis.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas
| | | | - Soumya Maity
- Department of Medicine, UT Health San Antonio, Texas
| | | | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas.
| |
Collapse
|
15
|
Avramovic D, Archaimbault SA, Kemble AM, Gruener S, Lazendic M, Westenskow PD. TGFβ1 Induces Senescence and Attenuated VEGF Production in Retinal Pericytes. Biomedicines 2022; 10:biomedicines10061404. [PMID: 35740425 PMCID: PMC9219633 DOI: 10.3390/biomedicines10061404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular disease of the retina and a serious complication of type I and type II diabetes mellitus. DR affects working-age populations and can cause permanent vision loss if left untreated. The standard of care for proliferative DR is inhibiting VEGF. However, the mechanisms that induce excessive VEGF production in the retina remain elusive, although some evidence links elevated VEGF in the diabetic retina with local and systemic TGFβ1 upexpression. Here, we present evidence from animal models of disease suggesting that excessive TGFβ1 production in the early DR is correlated with VEGF mRNA and protein production by senescent pericytes and other retinal cells. Collectively, these results confirm that TGFβ1 is strongly implicated in the vascular complications of DR.
Collapse
Affiliation(s)
- Dragana Avramovic
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
- Correspondence: (D.A.); (P.D.W.)
| | - Sébastien A. Archaimbault
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Alicia M. Kemble
- Neuroscience and Rare Disease, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Sabine Gruener
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Mirjana Lazendic
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Peter D. Westenskow
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
- Correspondence: (D.A.); (P.D.W.)
| |
Collapse
|
16
|
Wonnacott A, Denby L, Coward RJM, Fraser DJ, Bowen T. MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev 2022; 182:114045. [PMID: 34767865 DOI: 10.1016/j.addr.2021.114045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
The global prevalence of diabetes mellitus was estimated to be 463 million people in 2019 and is predicted to rise to 700 million by 2045. The associated financial and societal costs of this burgeoning epidemic demand an understanding of the pathology of this disease, and its complications, that will inform treatment to enable improved patient outcomes. Nearly two decades after the sequencing of the human genome, the significance of noncoding RNA expression is still being assessed. The family of functional noncoding RNAs known as microRNAs regulates the expression of most genes encoded by the human genome. Altered microRNA expression profiles have been observed both in diabetes and in diabetic complications. These transcripts therefore have significant potential and novelty as targets for therapy, therapeutic agents and biomarkers.
Collapse
Affiliation(s)
- Alexa Wonnacott
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard J M Coward
- Bristol Renal, Dorothy Hodgkin Building, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
17
|
Jung CY, Yoo TH. Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease. Diabetes Metab J 2022; 46:181-197. [PMID: 35385633 PMCID: PMC8987689 DOI: 10.4093/dmj.2021.0329] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Although diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease eventually requiring chronic kidney replacement therapy, the prevalence of DKD has failed to decline over the past 30 years. In order to reduce disease prevalence, extensive research has been ongoing to improve prediction of DKD onset and progression. Although the most commonly used markers of DKD are albuminuria and estimated glomerular filtration rate, their limitations have encouraged researchers to search for novel biomarkers that could improve risk stratification. Considering that DKD is a complex disease process that involves several pathophysiologic mechanisms such as hyperglycemia induced inflammation, oxidative stress, tubular damage, eventually leading to kidney damage and fibrosis, many novel biomarkers that capture one specific mechanism of the disease have been developed. Moreover, the increasing use of high-throughput omic approaches to analyze biological samples that include proteomics, metabolomics, and transcriptomics has emerged as a strong tool in biomarker discovery. This review will first describe recent advances in the understanding of the pathophysiology of DKD, and second, describe the current clinical biomarkers for DKD, as well as the current status of multiple potential novel biomarkers with respect to protein biomarkers, proteomics, metabolomics, and transcriptomics.
Collapse
Affiliation(s)
- Chan-Young Jung
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
- Corresponding author: Tae-Hyun Yoo https://orcid.org/0000-0002-9183-4507 Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea E-mail:
| |
Collapse
|
18
|
Zhang W, Rong G, Gu J, Fan C, Guo T, Jiang T, Deng W, Xie J, Su Z, Yu Q, Mai J, Zheng R, Chen X, Tang X, Zhang J. Nicotinamide N-methyltransferase ameliorates renal fibrosis by its metabolite 1-methylnicotinamide inhibiting the TGF-β1/Smad3 pathway. FASEB J 2022; 36:e22084. [PMID: 35107844 DOI: 10.1096/fj.202100913rrr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD), a disease involving damage to the kidney structure and function, is a global public health problem. Tubulointerstitial fibrosis (TIF) is both an inevitable pathological change in individuals with CKD and a driving force in the progression of renal fibrosis. Nicotinamide N-methyltransferase (NNMT) and its metabolite 1-methylnicotinamide (MNAM) have been shown to protect against lipotoxicity-induced kidney tubular injury. However, the biological roles of NNMT and MNAM in regulating TIF remain elusive. This study aimed to investigate the protective effect of NNMT and MNAM on TIF and the mechanisms involved. We explored the functions and mechanisms of NNMT and MNAM in TIF, as well as the interaction between NNMT and MNAM, using unilateral ureteral obstruction (UUO) mice and cultured mouse tubular epithelial cells (mTECs) stimulated with transforming growth factor-β1 (TGF-β1). Several important findings were obtained as follows: (1) NNMT expression was upregulated in the kidneys of UUO mice and TGF-β1-induced mTECs, and this upregulation was proposed to be a protective compensatory response to TIF. (2) MNAM was a potentially effective antifibrotic and anti-inflammatory medication in UUO mice. (3) The antifibrotic effect of NNMT overexpression was exerted by increasing the concentration of MNAM. (4) The renoprotective role of MNAM depended on the selective blockade of the interaction of Smad3 with TGFβ receptor I. Overall, our study shows that NNMT is involved in the development and progression of CKD and that its metabolite MNAM may be a novel inhibitor of the TGF-β1/Smad3 pathway with great therapeutic potential for CKD.
Collapse
Affiliation(s)
- Wenying Zhang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guang Rong
- Department of Nephrology, SSL Central Hospital of Dongguan City, Dongguan, China
| | - Jinge Gu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cuiling Fan
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Jiang
- Department of Nephrology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Weiqian Deng
- Department of Nephrology, Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jiayu Xie
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Zhihua Su
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qimin Yu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyi Mai
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rinan Zheng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xingling Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xun Tang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Zhang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Khan B, Ullah A, Khan MA, Amin A, Iqbal M, Khan S, Ateeq M, Aman K, Aziz A, Khattak MNK, Nadeem T, Munir N, Khan S, Ali Q. Anti-hyperglycemic and anti-hyperlipidemic effects of a methanolic extract of Debregeasia salicifolia in Alloxan-induced diabetic albino mice. BRAZ J BIOL 2021; 84:e251046. [PMID: 34932675 DOI: 10.1590/1519-6984.251046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
Diabetes mellitus (DM), an endocrine syndrome characterized by high blood glucose levels due to abrogated insulin activity. The existing treatments for DM have side effects and varying degrees of efficacy. Therefore, it is paramount that novel approaches be developed to enhance the management of DM. Therapeutic plants have been accredited as having comparatively high efficacy with fewer adverse effects. The current study aims to elucidate the phytochemical profile, anti-hyperlipidemic, and anti-diabetic effects of methanolic extract D. salicifolia (leaves) in Alloxan-induced diabetic mice. Alloxan was injected intraperitoneally (150 mg kg-1, b.w), to induced diabetes in mice. The mice were divided into three groups (n=10). Group 1 (normal control) received normal food and purified water, Group II (diabetic control) received regular feed and clean water and group III (diabetic treated) received a methanolic extract of the plant (300 mg kg-1) for 28 days with a typical diet and clean water throughout the experiment. Blood samples were collected to checked serum glucose and concentration of LDL, TC, TG. The extract demonstrated significant antihyperglycemic activity (P<0.05), whereas improvements in mice's body weight and lipid profiles were observed after treatment with the extract. This study establishes that the extract has high efficacy with comparatively less toxicity that can be used for DM management.
Collapse
Affiliation(s)
- B Khan
- Dalian Medical University Liaoning, Department of Physiology, Dalian, China
| | - A Ullah
- Department of Health and Biological Sciences, Abasyn University Peshawar, Khyber Pakhtunkhwa Pakistan
| | - M A Khan
- Hong Kong University of Science and Technology, Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Clear Water Bay, China
| | - A Amin
- Hong Kong Baptist University, School of Chinese Medicine and Department of Biology, Hong Kong, China
| | - M Iqbal
- Department of Botany, Shaheed Benazir Bhutto Women university Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - S Khan
- Institute of microbiology and biotechnology, Bacha Khan University Charsada
| | - M Ateeq
- Institute of biological sciences, Sarhad university of science and information technology Peshawar, Khyber Pakhtunkhwa Pakistan
| | - K Aman
- Department of Health and Biological Sciences, Abasyn University Peshawar, Khyber Pakhtunkhwa Pakistan
| | - A Aziz
- Institute of biological sciences, Sarhad university of science and information technology Peshawar, Khyber Pakhtunkhwa Pakistan
| | - M N K Khattak
- University of Sharjah, Department of Applied Biology, College of Sciences, Sharjah, United Arab Emirates
| | - T Nadeem
- University of the Punjab, Centre of Excellence in Molecular Biology, Lahore, Punjab, Pakistan
| | - N Munir
- Center of biotechnology and microbiology, University of Peshawar, Khyber Pakhtunkhwa Pakistan
| | - S Khan
- Department of biotechnology, university of swabi, Khyber Pakhtunkhwa Pakistan
| | - Q Ali
- The University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Punjab, Pakistan
| |
Collapse
|
20
|
Ricciardi CA, Gnudi L. Vascular growth factors as potential new treatment in cardiorenal syndrome in diabetes. Eur J Clin Invest 2021; 51:e13579. [PMID: 33942293 DOI: 10.1111/eci.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiorenal syndrome in diabetes is characterised by alterations of the cardiovascular system paralleled by kidney disease with progressive renal function decline. In diabetes, chronic metabolic and haemodynamic perturbations drive endothelial dysfunction, inflammation, oxidative stress and progressive tissue fibrosis which, in turn, lead to heart and renal anatomo-functional damage. In physiology, vascular growth factors have been implicated in vascular homeostasis; their imbalance, in disease setting such as diabetes, leads to vascular dysfunction and cardiorenal damage. AIMS To define the role of vascular growth factors and angiopoietins in cardiorenal syndrome. MATERIAL AND METHODS We will focus on the two most studied vascular growth factors, vascular endothelial growth factor (VEGF) and angiopoietins (Angpt). The balance and crosstalk between these growth factors are important in organ development and in the maintenance of a healthy vasculature, heart and kidney. The observed alterations in expression/function of these vascular growth factors, as seen in diabetes, are a protective response against external perturbations. RESULTS The chronic insults driving diabetes-mediated cardiorenal damage results in a paradoxical situation, whereby the vascular growth factors imbalance becomes a mechanism of disease. Studies have explored the possibility of modulating the expression/action of vascular growth factors to improve disease outcome. Experimental work has been conducted in animals and has been gradually translated in humans. DISCUSSION Difficulties have been encountered especially when considering the magnitude, timing and duration of interventions targeting a selective vascular growth factor. Targeting VEGF in cardiovascular disease has been challenging, while modulation of the Angpt system seems more promising. CONCLUSION Future studies will establish the translatability of therapies targeting vascular growth factors for heart and kidney disease in patients with diabetes.
Collapse
Affiliation(s)
- Carlo Alberto Ricciardi
- Section Vascular Biology and Inflammation, School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre for Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Luigi Gnudi
- Section Vascular Biology and Inflammation, School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre for Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
21
|
Wang L, Wang HL, Liu TT, Lan HY. TGF-Beta as a Master Regulator of Diabetic Nephropathy. Int J Mol Sci 2021; 22:7881. [PMID: 34360646 PMCID: PMC8345981 DOI: 10.3390/ijms22157881] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications in diabetes mellitus and the leading cause of end-stage renal disease. TGF-β is a pleiotropic cytokine and has been recognized as a key mediator of DN. However, anti-TGF-β treatment for DN remains controversial due to the diverse role of TGF-β1 in DN. Thus, understanding the regulatory role and mechanisms of TGF-β in the pathogenesis of DN is the initial step towards the development of anti-TGF-β treatment for DN. In this review, we first discuss the diverse roles and signaling mechanisms of TGF-β in DN by focusing on the latent versus active TGF-β1, the TGF-β receptors, and the downstream individual Smad signaling molecules including Smad2, Smad3, Smad4, and Smad7. Then, we dissect the regulatory mechanisms of TGF-β/Smad signaling in the development of DN by emphasizing Smad-dependent non-coding RNAs including microRNAs and long-non-coding RNAs. Finally, the potential therapeutic strategies for DN by targeting TGF-β signaling with various therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Li Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hong-Lian Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Tong-Tong Liu
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
22
|
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 2021; 9:696542. [PMID: 34327204 PMCID: PMC8314387 DOI: 10.3389/fcell.2021.696542] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD), as the most common complication of diabetes mellitus (DM), is the major cause of end-stage renal disease (ESRD). Renal interstitial fibrosis is a crucial metabolic change in the late stage of DKD, which is always considered to be complex and irreversible. In this review, we discuss the pathological mechanisms of diabetic renal fibrosis and discussed some signaling pathways that are closely related to it, such as the TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch pathways. The cross-talks among these pathways were then discussed to elucidate the complicated cascade behind the tubulointerstitial fibrosis. Finally, we summarized the new drugs with potential therapeutic effects on renal fibrosis and listed related clinical trials. The purpose of this review is to elucidate the mechanisms and related pathways of renal fibrosis in DKD and to provide novel therapeutic intervention insights for clinical research to delay the progression of renal fibrosis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Endocrinology Department, Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rongrong Zhou
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
23
|
Wang L, Wang Z, Yang Z, Yang K, Yang H. Study of the Active Components and Molecular Mechanism of Tripterygium wilfordii in the Treatment of Diabetic Nephropathy. Front Mol Biosci 2021; 8:664416. [PMID: 34164430 PMCID: PMC8215273 DOI: 10.3389/fmolb.2021.664416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
We aimed to explore the active ingredients and molecular mechanism of Tripterygium wilfordii (TW) in the treatment of diabetic nephropathy (DN) through network pharmacology and molecular biology. First, the active ingredients and potential targets of TW were obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and related literature materials, and Cytoscape 3.7.2 software was used to construct the active ingredient-target network diagram of TW. Second, the target set of DN was obtained through the disease database, and the potential targets of TW in the treatment of DN were screened through a Venn diagram. A protein interaction network diagram (PPI) was constructed with the help of the String platform and Cytoscape 3.7.2. Third, the ClueGO plug-in tool was used to enrich the GO biological process and the KEGG metabolic pathway. Finally, molecular docking experiments and cell pathway analyses were performed. As a result, a total of 52 active ingredients of TW were screened, and 141 predicted targets and 49 target genes related to DN were identified. The biological process of GO is mediated mainly through the regulation of oxygen metabolism, endothelial cell proliferation, acute inflammation, apoptotic signal transduction pathway, fibroblast proliferation, positive regulation of cyclase activity, adipocyte differentiation and other biological processes. KEGG enrichment analysis showed that the main pathways involved were AGE-RAGE, vascular endothelial growth factor, HIF-1, IL-17, relaxin signalling pathway, TNF, Fc epsilon RI, insulin resistance and other signaling pathways. It can be concluded that TW may treat DN by reducing inflammation, reducing antioxidative stress, regulating immunity, improving vascular disease, reducing insulin resistance, delaying renal fibrosis, repairing podocytes, and reducing cell apoptosis, among others, with multicomponent, multitarget and multisystem characteristics.
Collapse
Affiliation(s)
- Lin Wang
- Graduate School, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheyi Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihua Yang
- Graduate School, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kang Yang
- Graduate School, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Graduate School, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
24
|
Balas M, Popescu Din IM, Hermenean A, Cinteza LO, Dinischiotu A. Exposure to Iron Oxide Nanoparticles Coated with Phospholipid-Based Polymeric Micelles Induces Renal Transitory Biochemical and Histopathological Changes in Mice. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2605. [PMID: 34067676 PMCID: PMC8156474 DOI: 10.3390/ma14102605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022]
Abstract
The renal toxicity induced by the intravenously injected iron oxide nanoparticles (IONPs) encapsulated in phospholipid-based polymeric micelles was studied in CD1 mice for 2 weeks. Two doses of 5 and 15 mg of Fe/kg bodyweight of NPs or saline solution (control) were tested, and the levels of antioxidant enzyme activities, oxidative stress parameters, and the expressions of kidney fibrosis biomarkers were analyzed. The enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and glucose-6-phosphate dehydrogenase in the kidney were significantly decreased compared to the control in the first 3 days followed by a recovery up to 14 days. Concomitantly, a significant increase in lipid peroxidation (malondialdehyde) levels and a decrease in protein thiol groups were recorded. Moreover, increases in the expressions of T cell immunoglobulin and mucin domain 1 (TIM-1) and transforming growth factor-β (TGF-β) were observed in mouse tissue samples in the first week, which were more pronounced for the higher dose. The results suggested the role of oxidative stress as a mechanism for induced toxicity in mice kidneys after the IV administration of IONPs encapsulated in phospholipid-based polymeric micelles but also the capacity of the kidneys' defense systems to revert efficiently the biochemical modifications that were moderate and for short duration.
Collapse
Affiliation(s)
- Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| | - Ioana Mihaela Popescu Din
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 1 Feleacului Street, 310396 Arad, Romania
| | - Ludmila Otilia Cinteza
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd, 030018 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| |
Collapse
|
25
|
Makowski LM, Leffers M, Waltenberger J, Pardali E. Transforming growth factor-β1 signalling triggers vascular endothelial growth factor resistance and monocyte dysfunction in type 2 diabetes mellitus. J Cell Mol Med 2021; 25:5316-5325. [PMID: 33942489 PMCID: PMC8178271 DOI: 10.1111/jcmm.16543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 12/01/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) leads to monocyte dysfunction associated with atherogenesis and defective arteriogenesis. Transforming growth factor (TGF)-β1, placenta growth factor (PlGF)-1 and vascular endothelial growth factor (VEGF)A play important roles in atherogenesis and arteriogenesis. VEGF-receptor (VEGFR)-mediated monocyte migration is inhibited in T2DM (VEGFA resistance), while TGF-β1-induced monocyte migration is fully functional. Therefore, we hypothesize that TGF-β antagonises the VEGFA responses in human monocytes. We demonstrate that monocytes from T2DM patients have an increased migratory response towards low concentrations of TGF-β1, while PlGF-1/VEGFA responses are mitigated. Mechanistically, this is due to increased expression of type II TGF-β receptor in monocytes under high-glucose conditions and increased expression of soluble (s)VEGFR1, which is known to interfere with VEGFA signalling. VEGFA resistance in monocytes from T2DM patients can be rescued by either experimental down-regulation of TGF-β receptor expression in vitro or by functional blocking of TGF-β signalling using either a TGF-β receptor kinase inhibitor or a TGF-β neutralizing antibody. Our data demonstrate that both T2DM and high-glucose potentiate the TGF-β pathway. TGF-β signalling impairs VEGFR-mediated responses in T2DM monocytes and in this way contributes to mononuclear cell dysfunction, provide novel insights into T2DM vascular dysfunction.
Collapse
Affiliation(s)
- Lena-Maria Makowski
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Cardiolology, Münster, Germany
| | - Merle Leffers
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Cardiolology, Münster, Germany
| | - Johannes Waltenberger
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Cardiolology, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.,Department of Cardiovascular Medicine, Medical Faculty, University of Münster, Münster, Germany
| | - Evangelia Pardali
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Cardiolology, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| |
Collapse
|
26
|
Vitamin D protects glomerular mesangial cells from high glucose-induced injury by repressing JAK/STAT signaling. Int Urol Nephrol 2021; 53:1247-1254. [PMID: 33942213 PMCID: PMC8144147 DOI: 10.1007/s11255-020-02728-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 12/02/2020] [Indexed: 01/28/2023]
Abstract
Aim High glucose (HG) induces the production of transforming growth factor (TGF)-β and reactive oxygen species, which further activates JAK/STAT signaling and promotes the synthesis of matrix proteins, contributes to the pathophysiological processes of diabetic nephropathy. This study aims to investigate the protection role of vitamin D (VD) in the kidney in high glucose condition. Methods Rat glomerular mesangial cells were cultured in high glucose medium, with or without VD or VD receptor (VDR) siRNAs treatment. The levels of TGF-β and fibronectin were detected by qRT-PCR, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The levels of phosphorylated JAK2, STAT1 and STAT3, and JAK/STAT signaling downstream genes were examined by immunoblotting and qRT-PCR. Results In rat glomerular mesangial cells, VD treatment can repress the tyrosine phosphorylation of JAK2, STAT1 and STAT3. VD inhibited TGF-β and fibronectin expression which was rescued by vitamin d receptor (VDR) siRNA and STATs inhibitor perficitinib. The JAK/STAT signaling downstream protein coding genes including SOCS1, SOCS3 and type IV collagen were repressed by VD. Meanwhile, the expression of non-coding RNAs such as miR-181a, miR-181b, was repressed by VD, and the expression of miR-34a and Let-7b was upregulated by VD.
Conclusion Vitamin D (VD) treatment inhibits the function of HG on fibronectin production through regulating JAK/STAT pathway. These results provide direct evidences that VD protects glomerular mesangial cells from high glucose-induced injury through repressing JAK/STAT signaling, which has the potential for clinical DN treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s11255-020-02728-z.
Collapse
|
27
|
D Prabhu Y, Bhati M, Vellingiri B, Valsala Gopalakrishnan A. The effect of γ-linolenic acid on Polycystic Ovary Syndrome associated Focal Segmental Glomerulosclerosis via TGF-β pathway. Life Sci 2021; 276:119456. [PMID: 33811895 DOI: 10.1016/j.lfs.2021.119456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND In recent years, female infertility from Polycystic Ovary Syndrome (PCOS) has gained scientific interest. PCOS alters the metabolic and endocrine functioning in females. The elevation in androgens can damage the androgen receptors present on the kidney giving rise to renal disorders like Focal Segmental Glomerulosclerosis (FSGS). Transforming Growth Factor Beta (TGF-β) in the ovary is activated by activin for Follicle Stimulating Hormone (FSH) secretion and in the kidney by thrombospondin 1 (TSP1) for cell growth and apoptosis. Studies show that gamma-linolenic acid (GLA) effectively treats breast cancer, eczema, inflammatory conditions and PCOS. AIM The study aimed to find out the possibility of FSGS development in PCOS and to understand the effect of GLA on FSGS via the TGF-β pathway. METHOD To carry out the study, the dehydroepiandrosterone (DHEA) induced PCOS model was used. Three groups namely vehicle control, DHEA, and DHEA+GLA, were used with six animals in each. TGF-β1, TGF-β2, and TSP1 genes were studied using real-time PCR. RESULTS The study showed an increase in the level of renal fibrosis biomarker, TSP1, in the DHEA group, which was further decreased by an anti-inflammatory agent, GLA. The TGF-β1 and TGF-β2 genes associated with the TGF-β pathway were seen to be increased in DHEA-induced PCOS rats which showed a possible relation between the two conditions. CONCLUSION The study shows a possible development of renal fibrosis in the DHEA-induced PCOS model. The GLA might act as a ligand to regulate TGF-β signaling in glomerulosclerosis in a DHEA-induced PCOS model.
Collapse
Affiliation(s)
- Yogamaya D Prabhu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Monica Bhati
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
28
|
Fuchs MAA, Broeker KAE, Schrankl J, Burzlaff N, Willam C, Wagner C, Kurtz A. Inhibition of transforming growth factor β1 signaling in resident interstitial cells attenuates profibrotic gene expression and preserves erythropoietin production during experimental kidney fibrosis in mice. Kidney Int 2021; 100:122-137. [PMID: 33705825 DOI: 10.1016/j.kint.2021.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Kidney fibrosis is characterized by the development of myofibroblasts originating from resident kidney and immigrating cells. Myofibroblast formation and extracellular matrix production during kidney damage are triggered by various cytokines. Among these, transforming growth factor β1 (TGFβ1) is considered a central trigger for kidney fibrosis. We found a highly upregulated expression of TGFβ1 and TGFβ receptor 2 (TGFβ-R2) mRNAs in kidney interstitial cells in experimental fibrosis. Here, we investigated the contribution of TGFβ1 signaling in resident kidney interstitial cells to organ fibrosis using the models of adenine induced nephropathy and unilateral ureteral occlusion in mice. For this purpose TGFβ1 signaling was interrupted by inducible deletion of the TGFβ-R2 gene in interstitial cells expressing the fibroblast marker platelet derived growth factor receptor-β. Expression of profibrotic genes was attenuated up to 50% in kidneys lacking TGFβ-R2 in cells positive for platelet derived growth factor receptor-β. Additionally, deletion of TGFβ-R2 prevented the decline of erythropoietin production in ureter ligated kidneys. Notably, fibrosis associated expression of α-smooth muscle actin as a myofibroblast marker and deposits of extracellular collagens were not altered in mice with targeted deletion of TGFβ-R2. Thus, our findings suggest an enhancing effect of TGFβ1 signaling in resident interstitial cells that contributes to profibrotic gene expression and the downregulation of erythropoietin production, but not to the development of myofibroblasts during kidney fibrosis.
Collapse
Affiliation(s)
| | | | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
29
|
Chen YT, Jhao PY, Hung CT, Wu YF, Lin SJ, Chiang WC, Lin SL, Yang KC. Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts. J Clin Invest 2021; 131:143645. [PMID: 33465051 DOI: 10.1172/jci143645] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/13/2021] [Indexed: 01/18/2023] Open
Abstract
Renal fibrosis, a common pathological manifestation of virtually all types of chronic kidney disease (CKD), often results in diffuse kidney scarring and predisposes to end-stage renal disease. Currently, there is no effective therapy against renal fibrosis. Recently, our laboratory identified an ER-resident protein, thioredoxin domain containing 5 (TXNDC5), as a critical mediator of cardiac fibrosis. Transcriptome analyses of renal biopsy specimens from patients with CKD revealed marked TXNDC5 upregulation in fibrotic kidneys, suggesting a potential role of TXNDC5 in renal fibrosis. Employing multiple fluorescence reporter mouse lines, we showed that TXNDC5 was specifically upregulated in collagen-secreting fibroblasts in fibrotic mouse kidneys. In addition, we showed that TXNDC5 was required for TGF-β1-induced fibrogenic responses in human kidney fibroblasts (HKFs), whereas TXNDC5 overexpression was sufficient to promote HKF activation, proliferation, and collagen production. Mechanistically, we showed that TXNDC5, transcriptionally controlled by the ATF6-dependent ER stress pathway, mediated its profibrogenic effects by enforcing TGF-β signaling activity through posttranslational stabilization and upregulation of type I TGF-β receptor in kidney fibroblasts. Using a tamoxifen-inducible, fibroblast-specific Txndc5 knockout mouse line, we demonstrated that deletion of Txndc5 in kidney fibroblasts mitigated the progression of established kidney fibrosis, suggesting the therapeutic potential of TXNDC5 targeting for renal fibrosis and CKD.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Yu Jhao
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Ting Hung
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yueh-Feng Wu
- Research Center for Developmental Biology and Regenerative Medicine and.,Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Sung-Jan Lin
- Research Center for Developmental Biology and Regenerative Medicine and.,Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wen-Chih Chiang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Research Center for Developmental Biology and Regenerative Medicine and.,Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Integrated Diagnostics and Therapeutics and
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine and.,Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
30
|
Sisto M, Ribatti D, Lisi S. Organ Fibrosis and Autoimmunity: The Role of Inflammation in TGFβ-Dependent EMT. Biomolecules 2021; 11:biom11020310. [PMID: 33670735 PMCID: PMC7922523 DOI: 10.3390/biom11020310] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances in our understanding of the molecular pathways that control the link of inflammation with organ fibrosis and autoimmune diseases point to the epithelial to mesenchymal transition (EMT) as the common association in the progression of these diseases characterized by an intense inflammatory response. EMT, a process in which epithelial cells are gradually transformed to mesenchymal cells, is a major contributor to the pathogenesis of fibrosis. Importantly, the chronic inflammatory microenvironment has emerged as a decisive factor in the induction of pathological EMT. Transforming growth factor-β (TGF-β), a multifunctional cytokine, plays a crucial role in the induction of fibrosis, often associated with chronic phases of inflammatory diseases, contributing to marked fibrotic changes that severely impair normal tissue architecture and function. The understanding of molecular mechanisms underlying EMT-dependent fibrosis has both a basic and a translational relevance, since it may be useful to design therapies aimed at counteracting organ deterioration and failure. To this end, we reviewed the recent literature to better elucidate the molecular response to inflammatory/fibrogenic signals in autoimmune diseases in order to further the specific regulation of EMT-dependent fibrosis in more targeted therapies.
Collapse
|
31
|
Maity S, Das F, Kasinath BS, Ghosh-Choudhury N, Ghosh Choudhury G. TGFβ acts through PDGFRβ to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J Biol Chem 2020; 295:14262-14278. [PMID: 32732288 DOI: 10.1074/jbc.ra120.014994] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Interaction of transforming growth factor-β (TGFβ)-induced canonical signaling with the noncanonical kinase cascades regulates glomerular hypertrophy and matrix protein deposition, which are early features of glomerulosclerosis. However, the specific target downstream of the TGFβ receptor involved in the noncanonical signaling is unknown. Here, we show that TGFβ increased the catalytic loop phosphorylation of platelet-derived growth factor receptor β (PDGFRβ), a receptor tyrosine kinase expressed abundantly in glomerular mesangial cells. TGFβ increased phosphorylation of the PI 3-kinase-interacting Tyr-751 residue of PDGFRβ, thus activating Akt. Inhibition of PDGFRβ using a pharmacological inhibitor and siRNAs blocked TGFβ-stimulated phosphorylation of proline-rich Akt substrate of 40 kDa (PRAS40), an intrinsic inhibitory component of mTORC1, and prevented activation of mTORC1 in the absence of any effect on Smad 2/3 phosphorylation. Expression of constitutively active myristoylated Akt reversed the siPDGFRβ-mediated inhibition of mTORC1 activity; however, co-expression of the phospho-deficient mutant of PRAS40 inhibited the effect of myristoylated Akt, suggesting a definitive role of PRAS40 phosphorylation in mTORC1 activation downstream of PDGFRβ in mesangial cells. Additionally, we demonstrate that PDGFRβ-initiated phosphorylation of PRAS40 is required for TGFβ-induced mesangial cell hypertrophy and fibronectin and collagen I (α2) production. Increased activating phosphorylation of PDGFRβ is also associated with enhanced TGFβ expression and mTORC1 activation in the kidney cortex and glomeruli of diabetic mice and rats, respectively. Thus, pursuing TGFβ noncanonical signaling, we identified how TGFβ receptor I achieves mTORC1 activation through PDGFRβ-mediated Akt/PRAS40 phosphorylation to spur mesangial cell hypertrophy and matrix protein accumulation. These findings provide support for targeting PDGFRβ in TGFβ-driven renal fibrosis.
Collapse
Affiliation(s)
- Soumya Maity
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | | | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA .,Department of Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
32
|
Bhati M, D Prabhu Y, Renu K, Vellingiri B, Thiagarajan P, Panda A, Chakraborty R, Myakala H, Valsala Gopalakrishnan A. Role of TGF-β signalling in PCOS associated focal segmental glomerulosclerosis. Clin Chim Acta 2020; 510:244-251. [PMID: 32682803 DOI: 10.1016/j.cca.2020.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Research on polycystic ovarian syndrome (PCOS) remains intense due to its evolving impact on metabolism, reproduction and cardiovascular function. Changes in metabolic pathways can also significantly impact renal function including the development of Focal Segmental Glomerulosclerosis (FSGS), one of the most highly investigated renal diseases. In FSGS, scarring of the glomerulus vascular tuft damages the kidneys. Onset of FSGS may either be congenital or due to other disorders that affect the metabolism and normal kidney function. Both PCOS and FSGS appear to be associated with Transforming Growth Factor-β (TGF-β) signalling. Over-expression of TGF-β may be due to the activation of the thrombospondin 1 (TSP1) gene, which increases the probability of developing renal disorders. Higher androgen levels in PCOS may also cause podocyte damage thus directly impacting development of FSGS. This article reviews the role of TGF-β's in PCOS and FSGS and explores the inter-relationship between these two disorders.
Collapse
Affiliation(s)
- Monica Bhati
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Yogamaya D Prabhu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Kaviyarasi Renu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics & Stem Cell Lab, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, India
| | - Padma Thiagarajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Aditi Panda
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India.
| |
Collapse
|
33
|
Zhang J, Zhang L, Zha D, Wu X. Inhibition of miRNA‑135a‑5p ameliorates TGF‑β1‑induced human renal fibrosis by targeting SIRT1 in diabetic nephropathy. Int J Mol Med 2020; 46:1063-1073. [PMID: 32705273 PMCID: PMC7387088 DOI: 10.3892/ijmm.2020.4647] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
miRNA-135a-5p upregulation has been identified in renal fibrosis in diabetic nephropathy (DN) with an incompletely known mechanism. Previous data showed that Sirtuin 1 (SIRT1) serves as a novel therapeutic target for DN and interact with the transforming growth factor-β/mothers against decapentaplegic homolog (TGF-β/Smad) signaling pathway. The aim of this study was to investigate the regulatory relationship between miR-135a-5p and SIRT1. The expression of miR-135a-5p and SIRT1 was detected using reverse transcription-quantitative PCR and western blotting. The renal fibrosis and Smad3 signaling pathway were assessed by western blotting, by analyzing protein expression of collegen1A1, α-smooth muscle actin (α-SMA), fibronectin (FN), epithelial-cadherin, Smad3 and phosphorylated Smad3 (p-Smad3). The target binding between miR-135a-5p and SIRT1 was predicted on TargetScan Human software, and confirmed by dual-luciferase reporter assay and RNA immu-noprecipitation. The results demonstrated miR-135a-5p is upregulated and SIRT1 was downregulated in the serum and renal tissue of DN patients, and TGFβ1-induced DN cell models in human HK-2 and HMCs. Knockdown of miR-135a-5p and overexpression of SIRT1 could inhibit TGFβ1-induced renal fibrosis in vitro. Moreover, SIRT1 was a downstream target for miR-135a-5p. Silencing of SIRT1 could abolish the suppressive role of miR-135a-5p knockdown in TGFβ1-induced HK-2 and HMCs. The TGFβ1 induced p-Smad3 expression in HK-2 and HMCs, which could be attenuated by miR-135a-5p knockdown via SIRT1. In conclusion, knockdown of miR-135a-5p inhibits TGFβ1-induced renal fibrosis by targeting SIRT1 and inactivating Smad3 signaling, providing a novel insight into miR-135a-5p as a potential therapeutic approach for DN.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Lian Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dongqing Zha
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
34
|
Yan Q, Zhu K, Zhang L, Fu Q, Chen Z, Liu S, Fu D, Nakazato R, Yoshioka K, Diao B, Ding G, Li X, Wang H. A negative feedback loop between JNK-associated leucine zipper protein and TGF-β1 regulates kidney fibrosis. Commun Biol 2020; 3:288. [PMID: 32504044 PMCID: PMC7275040 DOI: 10.1038/s42003-020-1008-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/17/2020] [Indexed: 12/26/2022] Open
Abstract
Renal fibrosis is controlled by profibrotic and antifibrotic forces. Exploring anti-fibrosis factors and mechanisms is an attractive strategy to prevent organ failure. Here we identified the JNK-associated leucine zipper protein (JLP) as a potential endogenous antifibrotic factor. JLP, predominantly expressed in renal tubular epithelial cells (TECs) in normal human or mouse kidneys, was downregulated in fibrotic kidneys. Jlp deficiency resulted in more severe renal fibrosis in unilateral ureteral obstruction (UUO) mice, while renal fibrosis resistance was observed in TECs-specific transgenic Jlp mice. JLP executes its protective role in renal fibrosis via negatively regulating TGF-β1 expression and autophagy, and the profibrotic effects of ECM production, epithelial-to-mesenchymal transition (EMT), apoptosis and cell cycle arrest in TECs. We further found that TGF-β1 and FGF-2 could negatively regulate the expression of JLP. Our study suggests that JLP plays a central role in renal fibrosis via its negative crosstalk with the profibrotic factor, TGF-β1.
Collapse
Affiliation(s)
- Qi Yan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Internal Medicine, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qiang Fu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Liu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dou Fu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ryota Nakazato
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Katsuji Yoshioka
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Guohua Ding
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaogang Li
- Department of Internal Medicine, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
35
|
Rayego-Mateos S, Valdivielso JM. New therapeutic targets in chronic kidney disease progression and renal fibrosis. Expert Opin Ther Targets 2020; 24:655-670. [PMID: 32338087 DOI: 10.1080/14728222.2020.1762173] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The current therapeutic armamentarium to prevent chronic kidney disease (CKD) progression is limited to the control of blood pressure and in diabetic patients, the strict control of glucose levels. Current research is primarily focused on the reduction of inflammation and fibrosis at different levels. AREAS COVERED This article examines the latest progress in this field and places an emphasis on inflammation, oxidative stress, and fibrosis. New therapeutic targets are described and evidence from experimental and clinical studies is summarized. We performed a search in Medline for articles published over the last 10 years. EXPERT OPINION The search for therapeutic targets of renal inflammation is hindered by an incomplete understanding of the pathophysiology. The determination of the specific inducers of inflammation in the kidney is an area of heightened potential. Prevention of the progression of renal fibrosis by blocking TGF-β signaling has been unsuccessful, but the investigation of signaling pathways involved in late stages of fibrosis progression could yield improved results. Preventive strategies such as the modification of microbiota-inducers of uremic toxins involved in CKD progression is a promising field because of the interaction between the gut microbiota and the renal system.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Red De Investigación Renal (Redinren) , Spain.,Vascular and Renal Translational Research Group, Institut De Recerca Biomèdica De Lleida IRBLleida , Lleida, Spain
| | - Jose M Valdivielso
- Red De Investigación Renal (Redinren) , Spain.,Vascular and Renal Translational Research Group, Institut De Recerca Biomèdica De Lleida IRBLleida , Lleida, Spain
| |
Collapse
|
36
|
Lai H, Chen A, Cai H, Fu J, Salem F, Li Y, He JC, Schlondorff D, Lee K. Podocyte and endothelial-specific elimination of BAMBI identifies differential transforming growth factor-β pathways contributing to diabetic glomerulopathy. Kidney Int 2020; 98:601-614. [PMID: 32739209 DOI: 10.1016/j.kint.2020.03.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/28/2022]
Abstract
Transforming growth factor-β (TGF-β) is a central mediator of diabetic nephropathy. The effect of TGF-β, mediated by the type I TGF-β receptor, ALK5, and subsequent Smad2/3 activation results in podocyte apoptosis and loss. Previously, we demonstrated that the genetic deletion of the BMP and Activin Membrane-Bound Inhibitor (BAMBI), a negative modulator TGF-β signaling, accelerates diabetic nephropathy in mice. This was associated with heightened ALK1-mediated activation of Smad1/5 in the glomerular endothelial cells (ECs). Therefore, to evaluate the glomerular cell-specific effects of TGF-β in diabetic nephropathy we examined the effects of the podocyte- or EC-specific loss of Bambi (Pod-Bambi-/- or EC-Bambi-/-) in streptozotocin-induced diabetic mice with endothelial nitric oxide synthase deficiency. Interestingly, although hyperglycemia and body weight loss were similar in all groups of diabetic mice, significant hypertension was present only in the diabetic EC-Bambi-/- mice. While the podocyte or EC-specific loss of BAMBI both accelerated the progression of diabetic nephropathy, the worsened podocyte injury and loss observed in the diabetic Pod-Bambi-/- mice were associated with enhanced Smad3 activation. Increased Smad1/5 activation and EC proliferation were apparent only in the glomeruli of diabetic EC-Bambi-/- mice. The enhanced Smad1/5 activation in diabetic EC-Bambi-/- mice was associated with increased glomerular expression of plasmalemma vesicle-associated protein, pointing to the involvement of immature or dedifferentiated glomerular ECs in diabetic nephropathy. Notably, diabetic EC-Bambi-/- mice displayed podocyte injury and loss that were comparable to diabetic Pod-Bambi-/- mice. Thus, our results highlight the glomerular cell-specific contribution of TGF-β signaling and the intricate cross-talk between injured glomerular cells in the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Han Lai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anqun Chen
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Hong Cai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jia Fu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yu Li
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Kidney Center at James J Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Detlef Schlondorff
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
37
|
Zhao L, Zou Y, Liu F. Transforming Growth Factor-Beta1 in Diabetic Kidney Disease. Front Cell Dev Biol 2020; 8:187. [PMID: 32266267 PMCID: PMC7105573 DOI: 10.3389/fcell.2020.00187] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/05/2020] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Renin-angiotensin-aldosterone system (RAAS) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors have shown efficacy in reducing the risk of ESRD. However, patients vary in their response to RAAS blockades, and the pharmacodynamic responses to SGLT2 inhibitors decline with increasing severity of renal impairment. Thus, effective therapy for DKD is yet unmet. Transforming growth factor-β1 (TGF-β1), expressed by nearly all kidney cell types and infiltrating leukocytes and macrophages, is a pleiotropic cytokine involved in angiogenesis, immunomodulation, and extracellular matrix (ECM) formation. An overactive TGF-β1 signaling pathway has been implicated as a critical profibrotic factor in the progression of chronic kidney disease in human DKD. In animal studies, TGF-β1 neutralizing antibodies and TGF-β1 signaling inhibitors were effective in ameliorating renal fibrosis in DKD. Conversely, a clinical study of TGF-β1 neutralizing antibodies failed to demonstrate renal efficacy in DKD. However, overexpression of latent TGF-β1 led to anti-inflammatory and anti-fibrosis effects in non-DKD. This evidence implied that complete blocking of TGF-β1 signaling abolished its multiple physiological functions, which are highly associated with undesirable adverse events. Ideal strategies for DKD therapy would be either specific and selective inhibition of the profibrotic-related TGF-β1 pathway or blocking conversion of latent TGF-β1 to active TGF-β1.
Collapse
Affiliation(s)
- Lijun Zhao
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Yutong Zou
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Han DC, Ziyadeh FN. Favorable Treatment Outcome with Neutralizing anti Transforming Growth Factor I:} Antibodies in Experimental Diabetic Kidney Disease. Perit Dial Int 2020. [DOI: 10.1177/089686089901902s39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Dong Cheol Han
- Renal-Electrolyte and Hypertension Division, and Penn Center for Molecular Studies of Kidney Diseases, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, U.S.A
| | - Fuad N. Ziyadeh
- Renal-Electrolyte and Hypertension Division, and Penn Center for Molecular Studies of Kidney Diseases, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
39
|
Saha S. Association between the membrane transporter proteins and type 2 diabetes mellitus. Expert Rev Clin Pharmacol 2020; 13:287-297. [PMID: 32066279 DOI: 10.1080/17512433.2020.1729125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The prevalence rate of diabetes is increasing day by day and the current scenario of the available agents for its treatment has given rise to stimulation in the search for new therapeutic targets and agents. Therefore the present review will examine the role of membrane composition in the pathophysiology of Type 2 Diabetes and the possible therapeutic approaches for this.Areas covered: Glucose transporter proteins (GLUTs) are integral membrane proteins which are responsible for facilitated glucose transport over the plasma membrane into cells. Thus, this chapter is an attempt to interpret the co-relation between membrane transporter proteins and lipid molecules of cell membrane and their implications in type 2 diabetes mellitus. The relationship between the composition controlled flexibility of the membrane in the insertion of GLUTs into cell membrane as well as its fusion with the membrane is the focus of this chapter.Expert opinion: There is increasing data on the central role of phospholipid composition toward T2DM. Plasma membrane lipid composition plays a key role in maintaining the machinery for insulin-independent GLUT insertion into the membrane as well as insulin-dependent GLUT4 containing vesicles. As a therapeutic option, the designing of new chemical entities should be aimed to decrease saturated fatty acids of lipid bilayer phospholipids to target type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
40
|
Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1356893. [PMID: 32148647 PMCID: PMC7042557 DOI: 10.1155/2020/1356893] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a metabolic disorder that majorly affects the endocrine gland, and it is symbolized by hyperglycemia and glucose intolerance owing to deficient insulin secretory responses and beta cell dysfunction. This ailment affects as many as 451 million people worldwide, and it is also one of the leading causes of death. In spite of the immense advances made in the development of orthodox antidiabetic drugs, these drugs are often considered not successful for the management and treatment of T2DM due to the myriad side effects associated with them. Thus, the exploration of medicinal herbs and natural products as therapeutic sources for the treatment of T2DM is promoted because they have little or no side effects. Bioactive molecules isolated from natural sources have been proven to lower blood glucose levels via regulating one or more of the following mechanisms: improvement of beta cell function, insulin resistance, glucose (re)absorption, and glucagon-like peptide-1 homeostasis. In recent times, the mechanisms of action of different bioactive molecules with antidiabetic properties and phytochemistry are gaining a lot of attention in the area of drug discovery. This review article presents an update of the findings from clinical research into medicinal plant therapy for T2DM.
Collapse
|
41
|
Choi KM, Yoo HS. Amelioration of Hyperglycemia-Induced Nephropathy by 3,3'-Diindolylmethane in Diabetic Mice. Molecules 2019; 24:molecules24244474. [PMID: 31817632 PMCID: PMC6943523 DOI: 10.3390/molecules24244474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes mellitus (insulin-dependent diabetes) is characterized by hyperglycemia caused by an insulin deficiency. Diabetic nephropathy is a major complication of hyperglycemia. 3,3′-diindolylmethane (DIM)-a natural compound produced from indole-3-carbinol, found in cruciferous vegetables-enhances glucose uptake by increasing the activation of the insulin signaling pathway in 3T3-L1 adipocytes. In this study, we investigated whether DIM could improve insulin-dependent diabetes and nephropathy in streptozotocin (STZ)-induced diabetic mice. In mice, STZ induced hyperglycemia, hunger, thirst, and abnormally increased kidney weight and serum creatinine, which is a renal functional parameter. DIM decreased STZ-increased high blood glucose levels and food and water intake in diabetic mice. DIM also improved diabetic nephropathy by inhibiting the expression of PKC-α, the marker of albuminuria, and TGF-β1, an indicator of renal hypertrophy, in diabetic mice. Our findings suggest that DIM may ameliorate hyperglycemia and diabetic nephropathy through the inhibition of PKC-α and TGF-β1 signaling.
Collapse
|
42
|
Zhang X, Lu H, Xie S, Wu C, Guo Y, Xiao Y, Zheng S, Zhu H, Zhang Y, Bai Y. Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in kidneys via proliferation-related signalling pathways. Br J Pharmacol 2019; 176:4745-4759. [PMID: 31454852 PMCID: PMC6965682 DOI: 10.1111/bph.14842] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Renal fibrosis acts as the common pathway leading to the development of end-stage renal disease. Previous studies have shown that resveratrol has anti-fibrotic activity, but its potential molecular mechanisms of action are not well understood. EXPERIMENTAL APPROACH The anti-fibrotic effects of resveratrol were assayed in a rat model of unilateral ureteral obstruction (UUO) in vivo and in fibroblasts and tubular epithelial cells (TECs) stimulated by TGF-β1 in vitro. Gene and protein expression levels were analysed by PCR, Western blotting, and immunohistochemical staining. KEY RESULTS Resveratrol inhibits the myofibroblastic phenotype and fibrosis formation in UUO kidneys by targeting fibroblast-myofibroblast differentiation (FMD) and epithelial-mesenchymal transition (EMT). The anti-fibrotic effects of resveratrol correlated with decreased proliferation of TECs in the interstitium and tubules, resulting in suppressed activity of the proliferation-related signalling pathways, including that of the MAPK, PI3K/Akt, Wnt/β-catenin, and JAK2/STAT3 pathways. Resveratrol treatment suppressed TGF-β1-induced FMD and the expression of the myofibroblastic phenotype in fibroblasts in vitro by antagonizing the activation of proliferation-related signalling. Similarly, TGF-β1-mediated overactivation of the proliferation-related signalling in TECs induced EMT, and the myofibroblastic phenotype was suppressed by resveratrol. The anti-fibrotic and anti-proliferative effects of resveratrol were associated with the inactivation of Smad2/3 signalling and resulted in a partial reversal of FMD and EMT and the inhibition of the myofibroblastic phenotype. CONCLUSIONS AND IMPLICATIONS Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in vivo and in vitro via proliferation-related pathways, making it a potential therapeutic agent for preventing renal fibrosis.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Hong Lu
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | | | - Cunzao Wu
- Department of TransplantationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shizhang Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yan Zhang
- Department of TransplantationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Kidney Health, Center for Health AssessmentWenzhou Medical UniversityWenzhouChina
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Kidney Health, Center for Health AssessmentWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
43
|
Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy. Pharmacol Res 2019; 151:104559. [PMID: 31759089 DOI: 10.1016/j.phrs.2019.104559] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
Abstract
Our previous studies indicated that the G-protein-coupled bile acid receptor, Gpbar1 (TGR5), inhibits inflammation by inhibiting the NF-κB signalling pathway, eventually attenuating diabetic nephropathy (DN). Gentiopicroside (GPS), the main active secoiridoid glycoside of Gentiana manshurica Kitagawa, has been demonstrated to inhibit inflammation in various diseases via inhibiting the inflammatory signalling pathways. However, whether GPS inhibits the NF-κB signalling pathway by activating TGR5 and regulates the pathological progression of diabetic renal fibrosis requires further investigation. In this study, we found that GPS significantly reversed the downregulation of TGR5 and inhibited the overproduction of fibronectin (FN), transforming growth factor β1 (TGF-β1), intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) in glomerular mesangial cells (GMCs) exposed to high glucose (HG). Additionally, GPS prevented the phosphorylation and degradation of IκBα, and subsequently inhibited the activation of the NF-κB signalling pathway. Further investigation found that GPS enhanced the stabilization of IκBα by promoting the interaction of β-arrestin2 with IκBα via TGR5 activation, which contributed to the inhibition of NF-κB signalling pathway. Importantly, the depletion of TGR5 blocked the inhibition of the NF-κB signalling pathway and reversed the downregulation of FN, ICAM-1, VCAM-1 and TGF-β1 by GPS in HG-induced GMCs. Moreover, GPS increased the TGR5 protein levels and promoted the interaction between IκBα and β-arrestin2, thereby inhibiting the reduction of IκBα and blocked NF-κB p65 nuclear translocation in the kidneys of STZ-induced diabetic mice. Collectively, these data suggested that GPS regulates the TGR5-β-arrestin2-NF-κB signalling pathway to prevent inflammation in the kidneys of diabetic mice, and ultimately ameliorates the pathological progression of diabetic renal fibrosis.
Collapse
|
44
|
Ghavimishamekh A, Ziamajidi N, Dehghan A, Goodarzi MT, Abbasalipourkabir R. Study of Insulin-Loaded Chitosan Nanoparticle Effects on TGF-β1 and Fibronectin Expression in Kidney Tissue of Type 1 Diabetic Rats. Indian J Clin Biochem 2019; 34:418-426. [PMID: 31686728 PMCID: PMC6801242 DOI: 10.1007/s12291-018-0771-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/16/2018] [Indexed: 11/29/2022]
Abstract
In diabetes, the increasing blood glucose levels through oxidative stress, with increase in inflammatory cytokines and growth factors, such as TGF-β1, can cause long-term complications, including nephropathy. Subcutaneous injection of insulin is a common method used to treat Type 1 diabetes, which can lead to problems such as hypoglycemia and edema. In the present study, we examined the effect of insulin in its two injectable and oral forms on the expression of TGF-β1 and fibronectin in kidney tissue of STZ diabetic rats. A total of 25 male Wistar rats were randomly divided into 5 groups: C: normal control, D: diabetic control, D+NP, oral insulin-loaded trimethyl chitosan nanoparticles (8 IU/kg), and subcutaneously injected insulin (8 IU/kg). The groups were treated from 8th to 10th weeks. After 10 weeks, FBS was measured. Also, the TGF-β1 and fibronectin mRNA expression and serum TGF-β1 protein were examined in the kidney tissue. Structural changes in the kidney tissue were studied using H&E staining. After 10 weeks of diabetes induction, the rats showed significant change in blood glucose, weight, serum TGF-β1, Fibronectin and TGF-β1 expression of kidney in diabetic groups (p < 0.05). Oral insulin-loaded trimethyl chitosan nanoparticles treatment, similar to injected insulin, significantly ameliorate blood glucose and rats' weight (p < 0.05). However, the reduction in fibronectin and TGF-β1 expression and serum TGF-β1 protein by both treatments was not statistically significant (p > 0.05). These data showed that oral insulin-loaded trimethyl chitosan nanoparticles were better therapeutic intervention than injected insulin for Type 1 diabetes.
Collapse
Affiliation(s)
- Azar Ghavimishamekh
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, 65178 Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, 65178 Hamadan, Iran
| | - Arash Dehghan
- Department of Clinical Pathology, School of Medicine, Hamadan University of Medical Sciences, 65178 Hamadan, Iran
| | | | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, 65178 Hamadan, Iran
| |
Collapse
|
45
|
You YK, Luo Q, Wu WF, Zhang JJ, Zhu HJ, Lao L, Lan HY, Chen HY, Cheng YX. Petchiether A attenuates obstructive nephropathy by suppressing TGF-β/Smad3 and NF-κB signalling. J Cell Mol Med 2019; 23:5576-5587. [PMID: 31211499 PMCID: PMC6652659 DOI: 10.1111/jcmm.14454] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/14/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Obstructive nephropathy is the end result of a variety of diseases that block drainage from the kidney(s). Transforming growth factor‐β1 (TGF‐β1)/Smad3‐driven renal fibrosis is the common pathogenesis of obstructive nephropathy. In this study, we identified petchiether A (petA), a novel small‐molecule meroterpenoid from Ganoderma, as a potential inhibitor of TGF‐β1‐induced Smad3 phosphorylation. The obstructive nephropathy was induced by unilateral ureteral obstruction (UUO) in mice. Mice received an intraperitoneal injection of petA/vehicle before and after UUO or sham operation. An in vivo study revealed that petA protected against renal inflammation and fibrosis by reducing the infiltration of macrophages, inhibiting the expression of proinflammatory cytokines (interleukin‐1β and tumour necrosis factor‐α) and reducing extracellular matrix deposition (α‐smooth muscle actin, collagen I and fibronectin) in the obstructed kidney of UUO mice; these changes were associated with suppression of Smad3 and NF‐κB p65 phosphorylation. Petchiether A inhibited Smad3 phosphorylation in vitro and down‐regulated the expression of the fibrotic marker collagen I in TGF‐β1‐treated renal epithelial cells. Further, we found that petA dose‐dependently suppressed Smad3‐responsive promoter activity, indicating that petA inhibits gene expression downstream of the TGF‐β/Smad3 signalling pathway. In conclusion, our findings suggest that petA protects against renal inflammation and fibrosis by selectively inhibiting TGF‐β/Smad3 signalling.
Collapse
Affiliation(s)
- Yong-Ke You
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qi Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei-Feng Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiao-Jiao Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Hong-Jian Zhu
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Lixing Lao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hui Y Lan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hai-Yong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yong-Xian Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
46
|
Ishizawa K, Wang Q, Li J, Xu N, Nemoto Y, Morimoto C, Fujii W, Tamura Y, Fujigaki Y, Tsukamoto K, Fujita T, Uchida S, Shibata S. Inhibition of Sodium Glucose Cotransporter 2 Attenuates the Dysregulation of Kelch-Like 3 and NaCl Cotransporter in Obese Diabetic Mice. J Am Soc Nephrol 2019; 30:782-794. [PMID: 30914436 DOI: 10.1681/asn.2018070703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mechanisms underlying the frequent association between salt-sensitive hypertension and type 2 diabetes remain obscure. We previously found that protein kinase C (PKC) activation phosphorylates Kelch-like 3 (KLHL3), an E3 ubiquitin ligase component, at serine 433. We investigated whether impaired KLHL3 activity results in increased renal salt reabsorption via NaCl cotransporter (NCC). METHODS We used the db/db diabetes mouse model to explore KLHL3's role in renal salt handling in type 2 diabetes and evaluated mechanisms of KLHL3 dysregulation in cultured cells. RESULTS We observed PKC activity in the db/db mouse kidney and phosphorylation of serine 433 in KLHL3 (KLHL3S433-P). This modification prevents binding of with-no-lysine (WNK) kinases; however, total KLHL3 levels were decreased, indicating severely impaired KLHL3 activity. This resulted in WNK accumulation, activating NCC in distal convoluted tubules. Ipragliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, lowered PKC activity in distal convoluted tubule cells and reduced KLHL3S433-P and NCC levels, whereas the thiazolidinedione pioglitazone did not, although the two agents similarly reduced in blood glucose levels. We found that, in human embryonic kidney cells expressing KLHL3 and distal convoluted tubule cells, cellular glucose accumulation increased KLHL3S433-P levels through PKC. Finally, the effect of PKC inhibition in the kidney of db/db mice confirmed PKC's causal role in KLHL3S433-P and NCC induction. CONCLUSIONS Dysregulation of KLHL3 is involved in the pathophysiology of type 2 diabetes. These data offer a rationale for use of thiazide in individuals with diabetes and provide insights into the mechanism for cardiorenal protective effects of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Kenichi Ishizawa
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Qin Wang
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.,Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; and
| | - Jinping Li
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Ning Xu
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshikazu Nemoto
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Chikayuki Morimoto
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Wataru Fujii
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshifuru Tamura
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshihide Fujigaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shunya Uchida
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan; .,Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Yoon JJ, Park JH, Kim HJ, Jin HG, Kim HY, Ahn YM, Kim YC, Lee HS, Lee YJ, Kang DG. Dianthus superbus Improves Glomerular Fibrosis and Renal Dysfunction in Diabetic Nephropathy Model. Nutrients 2019; 11:E553. [PMID: 30841605 PMCID: PMC6471502 DOI: 10.3390/nu11030553] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
Glomerular fibrosis is caused by an accumulation of intercellular spaces containing mesangial matrix proteins through either diffused or nodular changes. Dianthus superbus has been used in traditional medicine as a diuretic, a contraceptive, and an anti-inflammatory agent. The aim of this study was to investigate the effects of Dianthus superbus-EtOAc soluble fraction (DS-EA) on glomerular fibrosis and renal dysfunction, which has been implicated in diabetic nephropathy in human renal mesangial cells and db/db mice. DS-EA was administered to db/db mice at 10 or 50 mg/kg/day for 8 weeks. DS-EA treatment significantly ameliorated blood glucose, insulin, the homeostasis model assessment of insulin resistance (HOMA-IR) index, and HbA1c in diabetic mice. DS-EA decreased albumin excretion, creatinine clearance (Ccr), and plasma creatinine levels. DS-EA also ameliorated the levels of kidney injury molecules-1 (KIM-1) and C-reactive protein. DS-EA reduced the periodic acid-Schiff (PAS) staining intensity and basement membrane thickening in glomeruli of the diabetic nephropathy model. In addition, DS-EA suppressed transforming growth factor-β (TGF-β)/Smad signaling. Collagen type IV, a glomerular fibrosis biomarker, was significantly decreased upon DS-EA administration. DS-EA pretreatment attenuated levels of inflammation factors such as intracellular cell adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1). DS-EA inhibited the translocation of nuclear factor kappa B (NF-κB) in Angiotensin II (Ang II)-stimulated mesangial cells. These findings suggest that DS-EA has a protective effect against renal inflammation and fibrosis. Therefore, DS-EA may serve as a potential therapeutic agent targeting glomerulonephritis and glomerulosclerosis, which lead to diabetic nephropathy.
Collapse
Affiliation(s)
- Jung Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - Ji Hun Park
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - Hye Jin Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Hong-Guang Jin
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332005, China.
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - You Mee Ahn
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - Youn Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - Yun Jung Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Korea.
| |
Collapse
|
48
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
49
|
Sakolish CM, Philip B, Mahler GJ. A human proximal tubule-on-a-chip to study renal disease and toxicity. BIOMICROFLUIDICS 2019; 13:014107. [PMID: 30867877 PMCID: PMC6404920 DOI: 10.1063/1.5083138] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/17/2019] [Indexed: 05/08/2023]
Abstract
Renal disease is a global problem with unsustainable health-care costs. There currently exists a lack of accurate human renal disease models that take into account the complex microenvironment of these tissues. Here, we present a reusable microfluidic model of the human proximal tubule and glomerulus, which allows for the growth of renal epithelial cells in a variety of conditions that are representative of renal disease states including altered glomerular filtration rate, hyperglycemia, nephrolithiasis, and drug-induced nephrotoxicity (cisplatin and cyclosporine). Cells were exposed to these conditions under fluid flow or in traditional static cultures to determine the effects of a dynamic microenvironment on the pathogenesis of these renal disease states. The results indicate varying stress-related responses (α-smooth muscle actin (α-SMA) expression, alkaline phosphatase activity, fibronectin, and neutrophil gelatinase-associated lipocalin secretion) to each of these conditions when comparing cells that had been grown in static and dynamic conditions, potentially indicating more realistic and sensitive predictions of human responses and a requirement for a more complex "fit for purpose" model.
Collapse
Affiliation(s)
| | - Brian Philip
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
- Author to whom correspondence should be addressed: . Tel.: (607) 777-5238
| |
Collapse
|
50
|
Akt2 causes TGFβ-induced deptor downregulation facilitating mTOR to drive podocyte hypertrophy and matrix protein expression. PLoS One 2018; 13:e0207285. [PMID: 30444896 PMCID: PMC6239304 DOI: 10.1371/journal.pone.0207285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
TGFβ promotes podocyte hypertrophy and expression of matrix proteins in fibrotic kidney diseases such as diabetic nephropathy. Both mTORC1 and mTORC2 are hyperactive in response to TGFβ in various renal diseases. Deptor is a component of mTOR complexes and a constitutive inhibitor of their activities. We identified that deptor downregulation by TGFβ maintains hyperactive mTOR in podocytes. To unravel the mechanism, we found that TGFβ -initiated noncanonical signaling controls deptor inhibition. Pharmacological inhibitor of PI 3 kinase, Ly 294002 and pan Akt kinase inhibitor MK 2206 prevented the TGFβ induced downregulation of deptor, resulting in suppression of both mTORC1 and mTORC2 activities. However, specific isoform of Akt involved in this process is not known. We identified Akt2 as predominant isoform expressed in kidney cortex, glomeruli and podocytes. TGFβ time-dependently increased the activating phosphorylation of Akt2. Expression of dominant negative PI 3 kinase and its signaling inhibitor PTEN blocked Akt2 phosphorylation by TGFβ. Inhibition of Akt2 using a phospho-deficient mutant that inactivates its kinase activity, as well as siRNA against the kinase markedly diminished TGFβ -mediated deptor suppression, its association with mTOR and activation of mTORC1 and mTORC2. Importantly, inhibition of Akt2 blocked TGFβ -induced podocyte hypertrophy and expression of the matrix protein fibronectin. This inhibition was reversed by the downregulation of deptor. Interestingly, we detected increased phosphorylation of Akt2 concomitant with TGFβ expression in the kidneys of diabetic rats. Thus, our data identify previously unrecognized Akt2 kinase as a driver of TGFβ induced deptor downregulation and sustained mTORC1 and mTORC2 activation. Furthermore, we provide the first evidence that deptor downstream of Akt2 contributes to podocyte hypertrophy and matrix protein expression found in glomerulosclerosis in different renal diseases.
Collapse
|