1
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
2
|
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020309. [PMID: 36837510 PMCID: PMC9967176 DOI: 10.3390/medicina59020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: A subject with diabetes and obesity is a class of the metabolic disorder. The current investigation aimed to elucidate the potential biomarker and prognostic targets in subjects with diabetes and obesity. Materials and Methods: The next-generation sequencing (NGS) data of GSE132831 was downloaded from Gene Expression Omnibus (GEO) database. Functional enrichment analysis of DEGs was conducted with ToppGene. The protein-protein interactions network, module analysis, target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed. Furthermore, hub genes were validated by receiver operating characteristic (ROC) analysis. A total of 872 DEGs, including 439 up-regulated genes and 433 down-regulated genes were observed. Results: Second, functional enrichment analysis showed that these DEGs are mainly involved in the axon guidance, neutrophil degranulation, plasma membrane bounded cell projection organization and cell activation. The top ten hub genes (MYH9, FLNA, DCTN1, CLTC, ERBB2, TCF4, VIM, LRRK2, IFI16 and CAV1) could be utilized as potential diagnostic indicators for subjects with diabetes and obesity. The hub genes were validated in subjects with diabetes and obesity. Conclusion: This investigation found effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting new and key therapeutic targets for subjects with diabetes and obesity.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga 577501, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag 582101, Karnataka, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
- Correspondence: ; Tel.: +91-9480073398
| | - Shivakumar Kotrashetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
3
|
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia, hypotonia, learning disability, as well as a range of psychiatric conditions. The conservation of the PWS genetic interval on chromosome 15q11-q13 in human, and a cluster of genes on mouse chromosome 7, has facilitated the use of mice as animal models for PWS. Some models faithfully mimic the loss of all gene expression from the paternally inherited PWS genetic interval, whereas others target smaller regions or individual genes. Collectively, these models have provided insight into the mechanisms, many of which lead to alterations in hypothalamic function, underlying the core symptoms of PWS, including growth retardation, hyperphagia and metabolism, reproductive maturation and endophenotypes of relevance to behavioral and psychiatric problems. Here we review and summarize these studies.
Collapse
Affiliation(s)
- Simona Zahova
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anthony R Isles
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
4
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
5
|
Lopez-Mejia IC, Castillo-Armengol J, Lagarrigue S, Fajas L. Role of cell cycle regulators in adipose tissue and whole body energy homeostasis. Cell Mol Life Sci 2018; 75:975-987. [PMID: 28988292 PMCID: PMC11105252 DOI: 10.1007/s00018-017-2668-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 05/22/2024]
Abstract
In the course of the last decades, metabolism research has demonstrated that adipose tissue is not an inactive tissue. Rather, adipocytes are key actors of whole body energy homeostasis. Numerous novel regulators of adipose tissue differentiation and function have been identified. With the constant increase of obesity and associated disorders, the interest in adipose tissue function alterations in the XXIst century has become of paramount importance. Recent data suggest that adipocyte differentiation, adipose tissue browning and mitochondrial function, lipogenesis and lipolysis are strongly modulated by the cell division machinery. This review will focus on the function of cell cycle regulators in adipocyte differentiation, adipose tissue function and whole body energy homeostasis; with particular attention in mouse studies.
Collapse
Affiliation(s)
- I C Lopez-Mejia
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - J Castillo-Armengol
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - S Lagarrigue
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - L Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Bile acids, obesity, and the metabolic syndrome. Best Pract Res Clin Gastroenterol 2014; 28:573-83. [PMID: 25194176 PMCID: PMC4159616 DOI: 10.1016/j.bpg.2014.07.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 01/31/2023]
Abstract
Bile acids are increasingly recognized as key regulators of systemic metabolism. While bile acids have long been known to play important and direct roles in nutrient absorption, bile acids also serve as signalling molecules. Bile acid interactions with the nuclear hormone receptor farnesoid X receptor (FXR) and the membrane receptor G-protein-coupled bile acid receptor 5 (TGR5) can regulate incretin hormone and fibroblast growth factor 19 (FGF19) secretion, cholesterol metabolism, and systemic energy expenditure. Bile acid levels and distribution are altered in type 2 diabetes and increased following bariatric procedures, in parallel with reduced body weight and improved insulin sensitivity and glycaemic control. Thus, modulation of bile acid levels and signalling, using bile acid binding resins, TGR5 agonists, and FXR agonists, may serve as a potent therapeutic approach for the treatment of obesity, type 2 diabetes, and other components of the metabolic syndrome in humans.
Collapse
|
7
|
Sales V, Patti ME. The Ups and Downs of Insulin Resistance and Type 2 Diabetes: Lessons from Genomic Analyses in Humans. CURRENT CARDIOVASCULAR RISK REPORTS 2012; 7:46-59. [PMID: 23459395 DOI: 10.1007/s12170-012-0283-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We are in the midst of a worldwide epidemic of type 2 diabetes (T2D) and obesity. Understanding the mechanisms underlying these diseases is critical if we are to halt their progression and ultimately prevent their development. The advent and widespread implementation of microarray technology has allowed analysis of small samples of human skeletal muscle, adipose, liver, pancreas and blood. While patterns differ in each tissue, several dominant themes have emerged from these studies, including altered expression of genes indicating increased inflammation and altered lipid and mitochondrial oxidative metabolism and insulin signaling in patients with T2D, and in some cases, in those at risk for disease. Unraveling which changes in gene expression are primary, and which are secondary to an insulin resistant or diabetes metabolic milieu remains a scientific challenge but we are one step closer.
Collapse
Affiliation(s)
- Vicencia Sales
- Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School ; Department of Biophysics, Federal University of São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
| | | |
Collapse
|
8
|
Bush JR, Wevrick R. Loss of the Prader-Willi obesity syndrome protein necdin promotes adipogenesis. Gene 2012; 497:45-51. [PMID: 22305984 DOI: 10.1016/j.gene.2012.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/19/2012] [Indexed: 01/07/2023]
Abstract
We investigated the role of necdin during adipogenic differentiation. Necdin is one of several genes inactivated in children with Prader-Willi syndrome, who are predisposed to increased adiposity at the expense of lean mass. Necdin promotes neuronal and muscle differentiation and survival through interactions with a variety of proteins, including cell surface receptors, modifiers of protein stability, and transcription factors. In pre-adipocytes, necdin over-expression inhibits adipogenesis, while reducing necdin levels enhances adipogenic differentiation in tissue culture cells. We now directly demonstrate a role for necdin in inhibiting adipogenesis using cells derived from necdin deficient mice.
Collapse
Affiliation(s)
- Jason Russell Bush
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
9
|
Pamuklar ZN, Chen J, Muehlbauer M, Spagnoli A, Torquati A. Necdin-E2F4 interaction provides insulin-sensitizing effect after weight loss induced by gastric bypass surgery. Surg Obes Relat Dis 2011; 9:94-9. [PMID: 22138333 DOI: 10.1016/j.soard.2011.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND The insulin-like growth factor-1 (IGF-1) signaling pathway promotes adipocyte differentiation and, therefore, insulin sensitivity by suppression of necdin expression, which represses peroxisome proliferator-activated receptor-gamma promoter activity by interaction with E2F4 in mouse adipocytes. The aim of the present study was to test the hypothesis that this pathway represents one of the mechanisms by which Roux-en-Y gastric bypass surgery (RYGB) induces resolution of insulin resistance. METHODS Clinical samples were collected and the key biomarkers measured to test the hypothesis that the IGF-1 pathway represents 1 of the mechanisms by which RYGB induces resolution of insulin resistance in obese individuals. RESULTS Free IGF-1 levels were significantly greater in the post-RYGB patients than in the pre-RYGB obese patients (2.55 ± 1.54 versus 1.32 ± .65 μg/L, P = .03) and similar to that in normal weight controls (2.54 ± 1.27 μg/L). Necdin and E2F4 gene expression in the adipose tissue was significantly downregulated after RYGB compared with obese and were similar to the levels observed in the controls. In mature human adipocytes cultured in vitro, treatment with des-IGF-1 induced downregulation of necdin and E2F4 gene expression in a dose-dependent manner (P = .01). CONCLUSION After RYGB, the insulin/IGF-1 signaling pathway is activated and could account for the observed decrease in the expression of necdin, which represses peroxisome proliferator-activated receptor-gamma promoter activity by interaction with E2F4. This could represent one of the mechanisms that induce resolution of insulin resistance after RYGB.
Collapse
Affiliation(s)
- Zehra N Pamuklar
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina 27704, USA
| | | | | | | | | |
Collapse
|
10
|
Cypess AM, Zhang H, Schulz TJ, Huang TL, Espinoza DO, Kristiansen K, Unterman TG, Tseng YH. Insulin/IGF-I regulation of necdin and brown adipocyte differentiation via CREB- and FoxO1-associated pathways. Endocrinology 2011; 152:3680-9. [PMID: 21862615 PMCID: PMC3176640 DOI: 10.1210/en.2011-1229] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Brown adipose tissue plays an important role in obesity, insulin resistance, and diabetes. We have previously shown that the transition from brown preadipocytes to mature adipocytes is mediated in part by insulin receptor substrate (IRS)-1 and the cell cycle regulator protein necdin. In this study, we used pharmacological inhibitors and adenoviral dominant negative constructs to demonstrate that this transition involves IRS-1 activation of Ras and ERK1/2, resulting in phosphorylation of cAMP response element-binding protein (CREB) and suppression of necdin expression. This signaling did not include an elevation of intracellular calcium. A constitutively active form of CREB expressed in IRS-1 knockout cells decreased necdin promoter activity, necdin mRNA, and necdin protein levels, leading to a partial restoration of differentiation. By contrast, forkhead box protein (Fox)O1, which is regulated by the phosphoinositide 3 kinase-Akt pathway, increased necdin promoter activity. Based on reporter gene assays using truncations of the necdin promoter and chromatin immunoprecipitation studies, we demonstrated that CREB and FoxO1 are recruited to the necdin promoter, likely interacting with specific consensus sequences in the proximal region. Based on these results, we propose that insulin/IGF-I act through IRS-1 phosphorylation to stimulate differentiation of brown preadipocytes via two complementary pathways: 1) the Ras-ERK1/2 pathway to activate CREB and 2) the phosphoinositide 3 kinase-Akt pathway to deactivate FoxO1. These two pathways combine to decrease necdin levels and permit the clonal expansion and coordinated gene expression necessary to complete brown adipocyte differentiation.
Collapse
Affiliation(s)
- Aaron M Cypess
- Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis. Mol Cell Biol 2010; 30:4224-33. [PMID: 20584981 DOI: 10.1128/mcb.00363-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and BMP signaling systems in brown adipogenesis, we examined the effect of BMP7 in insulin receptor substrate 1 (IRS-1)-deficient brown preadipocytes, which exhibit a severe defect in differentiation. Treatment of these cells with BMP7 for 3 days prior to adipogenic induction restored differentiation and expression of brown adipogenic markers. The high level of adipogenic inhibitor preadipocyte factor 1 (Pref-1) in IRS-1-null cells was markedly reduced by 3 days of BMP7 treatment, and analysis of the 1.3-kb pref-1 promoter revealed 9 putative Smad binding elements (SBEs), suggesting that BMP7 could directly suppress Pref-1 expression, thereby allowing the initiation of the adipogenic program. Using a series of sequential deletion mutants of the pref-1 promoter linked to the luciferase gene and chromatin immunoprecipitation, we demonstrate that the promoter-proximal SBE (-192/-184) was critical in mediating BMP7's suppressive effect on pref-1 transcription. Together, these data suggest cross talk between the insulin and BMP signaling systems by which BMP7 can rescue brown adipogenesis in cells with insulin resistance.
Collapse
|
12
|
MacIsaac KD, Lo KA, Gordon W, Motola S, Mazor T, Fraenkel E. A quantitative model of transcriptional regulation reveals the influence of binding location on expression. PLoS Comput Biol 2010; 6:e1000773. [PMID: 20442865 PMCID: PMC2861697 DOI: 10.1371/journal.pcbi.1000773] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 03/30/2010] [Indexed: 11/19/2022] Open
Abstract
Understanding the mechanistic basis of transcriptional regulation has been a central focus of molecular biology since its inception. New high-throughput chromatin immunoprecipitation experiments have revealed that most regulatory proteins bind thousands of sites in mammalian genomes. However, the functional significance of these binding sites remains unclear. We present a quantitative model of transcriptional regulation that suggests the contribution of each binding site to tissue-specific gene expression depends strongly on its position relative to the transcription start site. For three cell types, we show that, by considering binding position, it is possible to predict relative expression levels between cell types with an accuracy approaching the level of agreement between different experimental platforms. Our model suggests that, for the transcription factors profiled in these cell types, a regulatory site's influence on expression falls off almost linearly with distance from the transcription start site in a 10 kilobase range. Binding to both evolutionarily conserved and non-conserved sequences contributes significantly to transcriptional regulation. Our approach also reveals the quantitative, tissue-specific role of individual proteins in activating or repressing transcription. These results suggest that regulator binding position plays a previously unappreciated role in influencing expression and blurs the classical distinction between proximal promoter and distal binding events. Gene expression is controlled, in large part, by regulatory proteins called transcription factors that bind specific sites in the genome. A major focus of molecular biology has been understanding how these transcription factors interact with the cell's transcriptional machinery, the genome, and with each other to turn genes' expression on and off in various physiological contexts. Previous approaches for modeling transcriptional regulation have focused on the complex combinatorial interactions between groups of transcription factors at regulatory sites, or on the specific activating or repressive functions of individual proteins. In this work, we present a new modeling framework and demonstrate that an equally important, and previously overlooked, consideration in predicting the effect that a regulatory site has on gene expression is simply its location relative to the transcription start site of nearby genes. Our results show that, in general, the closer a binding event is to a gene's transcription start site, the more it influences expression. We also show that considering the particular proteins bound at a regulatory site helps predict the expression of nearby genes. However, considering the sequence conservation level of these sites does not lead to more accurate predictions.
Collapse
Affiliation(s)
- Kenzie D. MacIsaac
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kinyui A. Lo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - William Gordon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shmulik Motola
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tali Mazor
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Jimenez-Chillaron JC, Isganaitis E, Charalambous M, Gesta S, Pentinat-Pelegrin T, Faucette RR, Otis JP, Chow A, Diaz R, Ferguson-Smith A, Patti ME. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 2009; 58:460-8. [PMID: 19017762 PMCID: PMC2628621 DOI: 10.2337/db08-0490] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Low birth weight (LBW) is associated with increased risk of obesity, diabetes, and cardiovascular disease during adult life. Moreover, this programmed disease risk can progress to subsequent generations. We previously described a mouse model of LBW, produced by maternal caloric undernutrition (UN) during late gestation. LBW offspring (F(1)-UN generation) develop progressive obesity and impaired glucose tolerance (IGT) with aging. We aimed to determine whether such metabolic phenotypes can be transmitted to subsequent generations in an experimental model, even in the absence of altered nutrition during the second pregnancy. RESEARCH DESIGN AND METHODS We intercrossed female and male F(1) adult control (C) and UN mice and characterized metabolic phenotypes in F(2) offspring. RESULTS We demonstrate that 1) reduced birth weight progresses to F(2) offspring through the paternal line (Cfemale -Cmale = 1.64 g; Cfemale -UNmale = 1.57 g, P < 0.05; UNfemale -Cmale = 1.64 g; UNfemale -UNmale = 1.60 g, P < 0.05), 2) obesity progresses through the maternal line (percent body fat: Cfemale -Cmale = 22.4%; Cfemale -UNmale = 22.9%; UNfemale -Cmale = 25.9%, P < 0.05; UNfemale -UNmale = 27.5%, P < 0.05), and 3) IGT progresses through both parental lineages (glucose tolerance test area under curve Cfemale -Cmale = 100; Cfemale -UNmale = 122, P < 0.05; UNfemale -Cmale = 131, P < 0.05; UNfemale -UNmale = 151, P < 0.05). Mechanistically, IGT in both F(1) and F(2) generations is linked to impaired beta-cell function, explained, in part, by dysregulation of Sur1 expression. CONCLUSIONS Maternal undernutrition during pregnancy (F(0)) programs reduced birth weight, IGT, and obesity in both first- and second-generation offspring. Sex-specific transmission of phenotypes implicates complex mechanisms including alterations in the maternal metabolic environment (transmaternal inheritance of obesity), gene expression mediated by developmental and epigenetic pathways (transpaternal inheritance of LBW), or both (IGT).
Collapse
|
14
|
Deponti D, François S, Baesso S, Sciorati C, Innocenzi A, Broccoli V, Muscatelli F, Meneveri R, Clementi E, Cossu G, Brunelli S. Necdin mediates skeletal muscle regeneration by promoting myoblast survival and differentiation. ACTA ACUST UNITED AC 2007; 179:305-19. [PMID: 17954612 PMCID: PMC2064766 DOI: 10.1083/jcb.200701027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regeneration of muscle fibers that are lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. An important cell type involved in muscle regeneration is the satellite cell. Necdin is a protein expressed in satellite cell–derived myogenic precursors during perinatal growth. However, its function in myogenesis is not known. We compare transgenic mice that overexpress necdin in skeletal muscle with both wild-type and necdin null mice. After muscle injury the necdin null mice show a considerable defect in muscle healing, whereas mice that overexpress necdin show a substantial increase in myofiber regeneration. We also find that in muscle, necdin increases myogenin expression, accelerates differentiation, and counteracts myoblast apoptosis. Collectively, these data clarify the function and mechanism of necdin in skeletal muscle and show the importance of necdin in muscle regeneration.
Collapse
Affiliation(s)
- Daniela Deponti
- Department of Histology and Medical Embryology, University of Roma-La Sapienza, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas. Curr Opin Endocrinol Diabetes Obes 2007; 14:170-96. [PMID: 17940437 DOI: 10.1097/med.0b013e3280d5f7e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, Hamilton DL, Gimeno RE, Wahlestedt C, Baar K, Nedergaard J, Cannon B. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci U S A 2007; 104:4401-6. [PMID: 17360536 PMCID: PMC1810328 DOI: 10.1073/pnas.0610615104] [Citation(s) in RCA: 532] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Attainment of a brown adipocyte cell phenotype in white adipocytes, with their abundant mitochondria and increased energy expenditure potential, is a legitimate strategy for combating obesity. The unique transcriptional regulators of the primary brown adipocyte phenotype are unknown, limiting our ability to promote brown adipogenesis over white. In the present work, we used microarray analysis strategies to study primary preadipocytes, and we made the striking discovery that brown preadipocytes demonstrate a myogenic transcriptional signature, whereas both brown and white primary preadipocytes demonstrate signatures distinct from those found in immortalized adipogenic models. We found a plausible SIRT1-related transcriptional signature during brown adipocyte differentiation that may contribute to silencing the myogenic signature. In contrast to brown preadipocytes or skeletal muscle cells, white preadipocytes express Tcf21, a transcription factor that has been shown to suppress myogenesis and nuclear receptor activity. In addition, we identified a number of developmental genes that are differentially expressed between brown and white preadipocytes and that have recently been implicated in human obesity. The interlinkage between the myocyte and the brown preadipocyte confirms the distinct origin for brown versus white adipose tissue and also represents a plausible explanation as to why brown adipocytes ultimately specialize in lipid catabolism rather than storage, much like oxidative skeletal muscle tissue.
Collapse
Affiliation(s)
- James A. Timmons
- *Wenner–Gren Institute, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
- School of Life Sciences, Heriot–Watt University, Edinburgh EH14 4AS, Scotland
- Center for Genomics and Bioinformatics, Berzelius Väg 35, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- To whom correspondence may be addressed at:
School of Life Sciences, John Muir Building, Heriot–Watt University, Edinburgh EH14 4AS, Scotland. E-mail:
| | - Kristian Wennmalm
- Center for Genomics and Bioinformatics, Berzelius Väg 35, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ola Larsson
- Center for Genomics and Bioinformatics, Berzelius Väg 35, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tomas B. Walden
- *Wenner–Gren Institute, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
- School of Life Sciences, Heriot–Watt University, Edinburgh EH14 4AS, Scotland
| | - Timo Lassmann
- Center for Genomics and Bioinformatics, Berzelius Väg 35, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Natasa Petrovic
- *Wenner–Gren Institute, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
- Center for Genomics and Bioinformatics, Berzelius Väg 35, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - D. Lee Hamilton
- Division of Molecular Physiology, University of Dundee, Dundee DD1 5EH, Scotland; and
| | - Ruth E. Gimeno
- Millennium Pharmaceuticals, Inc., 40 Landsdowne Street, Cambridge, MA 02139
| | - Claes Wahlestedt
- Center for Genomics and Bioinformatics, Berzelius Väg 35, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Keith Baar
- Division of Molecular Physiology, University of Dundee, Dundee DD1 5EH, Scotland; and
| | - Jan Nedergaard
- *Wenner–Gren Institute, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Barbara Cannon
- *Wenner–Gren Institute, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
- School of Life Sciences, Heriot–Watt University, Edinburgh EH14 4AS, Scotland
- To whom correspondence may be addressed at:
Wenner–Gren Institute, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden. E-mail:
| |
Collapse
|
17
|
Nuclear Hormone Receptor Modulators for the Treatment of Diabetes and Dyslipidemia. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2006. [DOI: 10.1016/s0065-7743(06)41006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|