1
|
Deshetty UM, Ray S, Singh S, Buch S, Periyasamy P. Opioid abuse and SIV infection in non-human primates. J Neurovirol 2023; 29:377-388. [PMID: 37418108 PMCID: PMC10729652 DOI: 10.1007/s13365-023-01153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Human immunodeficiency virus (HIV) and drug abuse are intertwined epidemics, leading to compromised adherence to combined antiretroviral therapy (cART) and exacerbation of NeuroHIV. As opioid abuse causes increased viral replication and load, leading to a further compromised immune system in people living with HIV (PLWH), it is paramount to address this comorbidity to reduce the NeuroHIV pathogenesis. Non-human primates are well-suited models to study mechanisms involved in HIV neuropathogenesis and provide a better understanding of the underlying mechanisms involved in the comorbidity of HIV and drug abuse, leading to the development of more effective treatments for PLWH. Additionally, using broader behavioral tests in these models can mimic mild NeuroHIV and aid in studying other neurocognitive diseases without encephalitis. The simian immunodeficiency virus (SIV)-infected rhesus macaque model is instrumental in studying the effects of opioid abuse on PLWH due to its similarity to HIV infection. The review highlights the importance of using non-human primate models to study the comorbidity of opioid abuse and HIV infection. It also emphasizes the need to consider modifiable risk factors such as gut homeostasis and pulmonary pathogenesis associated with SIV infection and opioid abuse in this model. Moreover, the review suggests that these non-human primate models can also be used in developing effective treatment strategies for NeuroHIV and opioid addiction. Therefore, non-human primate models can significantly contribute to understanding the complex interplay between HIV infection, opioid abuse, and associated comorbidities.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
2
|
Moretti S, Virtuoso S, Sernicola L, Farcomeni S, Maggiorella MT, Borsetti A. Advances in SIV/SHIV Non-Human Primate Models of NeuroAIDS. Pathogens 2021; 10:pathogens10081018. [PMID: 34451482 PMCID: PMC8398602 DOI: 10.3390/pathogens10081018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023] Open
Abstract
Non-human primates (NHPs) are the most relevant model of Acquired Immunodeficiency Syndrome (AIDS) and neuroAIDS, being of great importance in explaining the pathogenesis of HIV-induced nervous system damage. Simian Immunodeficiency Virus (SIV)/ Simian-Human Immunodeficiency Virus (SHIV)-infected monkeys have provided evidence of complex interactions between the virus and host that include host immune response, viral genetic diversity, and genetic susceptibility, which may explain virus-associated central nervous system (CNS) pathology and HIV-associated neurocognitive disorders (HAND). In this article, we review the recent progress contributions obtained using monkey models of HIV infection of the CNS, neuropathogenesis and SIV encephalitis (SIVE), with an emphasis on pharmacologic therapies and dependable markers that predict development of CNS AIDS.
Collapse
|
3
|
Early Antiretroviral Therapy Prevents Viral Infection of Monocytes and Inflammation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Virol 2020; 94:JVI.01478-20. [PMID: 32907978 DOI: 10.1128/jvi.01478-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Despite early antiretroviral therapy (ART), treatment interruption is associated with viral rebound, indicating early viral reservoir (VR) seeding and absence of full eradication of human immunodeficiency virus type 1 (HIV-1) that may persist in tissues. Herein, we address the contributing role of monocytes in maintaining VRs under ART, since these cells may represent a source of viral dissemination due to their ability to replenish mucosal tissues in response to injury. To this aim, monocytes with classical (CD14+), intermediate (CD14+ CD16+), and nonclassical (CD16+) phenotypes and CD4+ T cells were sorted from the blood, spleen, and intestines of untreated and early-ART-treated simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) before and after ART interruption. Cell-associated SIV DNA and RNA were quantified. We demonstrated that in the absence of ART, monocytes were productively infected with replication-competent SIV, especially in the spleen. Reciprocally, early ART efficiently (i) prevented the establishment of monocyte VRs in the blood, spleen, and intestines and (ii) reduced systemic inflammation, as indicated by changes in interleukin-18 (IL-18) and IL-1 receptor antagonist (IL-1Ra) plasma levels. ART interruption was associated with a rebound in viremia that led to the rapid productive infection of both CD4+ T cells and monocytes. Altogether, our results reveal the benefits of early ART initiation in limiting the contribution of monocytes to VRs and SIV-associated inflammation.IMPORTANCE Despite the administration of antiretroviral therapy (ART), HIV persists in treated individuals and ART interruption is associated with viral rebound. Persistent chronic immune activation and inflammation contribute to disease morbidity. Whereas monocytes are infected by HIV/SIV, their role as viral reservoirs (VRs) in visceral tissues has been poorly explored. Our work demonstrates that monocyte cell subsets in the blood, spleen, and intestines do not significantly contribute to the establishment of early VRs in SIV-infected rhesus macaques treated with ART. By preventing the infection of these cells, early ART reduces systemic inflammation. However, following ART interruption, monocytes are rapidly reinfected. Altogether, our findings shed new light on the benefits of early ART initiation in limiting VR and inflammation.
Collapse
|
4
|
Quitadamo B, Peters PJ, Koch M, Luzuriaga K, Cheng-Mayer C, Clapham PR, Gonzalez-Perez MP. No detection of CD4-independent human immunodeficiency virus 1 envelope glycoproteins in brain tissue of patients with or without neurological complications. Arch Virol 2018; 164:473-482. [PMID: 30415390 PMCID: PMC6369005 DOI: 10.1007/s00705-018-4094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/20/2018] [Indexed: 11/27/2022]
Abstract
Macrophage (mac)-tropic human immnunodeficiency virus type 1 (HIV-1) and simian immnunodeficiency virus (SIV) in brain are associated with neurological disease. Mac-tropic HIV-1 evolves enhanced CD4 interactions that enable macrophage infection via CD4, which is in low abundance. In contrast, mac-tropic SIV is associated with CD4-independent infection via direct CCR5 binding. Recently, mac-tropic simian-human immunodeficiency virus (SHIV) from macaque brain was also reported to infect cells via CCR5 without CD4. Since SHIV envelope proteins (Envs) are derived from HIV-1, we tested more than 100 HIV-1 clade B Envs for infection of CD4-negative, CCR5+ Cf2Th/CCR5 cells. However, no infection was detected. Our data suggest that there are differences in the evolution of mac-tropism in SIV and SHIV compared to HIV-1 clade B due to enhanced interactions with CCR5 and CD4, respectively.
Collapse
Affiliation(s)
- Briana Quitadamo
- Biotech 2, Program in Molecular Medicine, University of Massachusetts Medical School, Suite 315, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Paul J Peters
- Biotech 2, Program in Molecular Medicine, University of Massachusetts Medical School, Suite 315, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Matthew Koch
- Biotech 2, Program in Molecular Medicine, University of Massachusetts Medical School, Suite 315, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Katherine Luzuriaga
- Biotech 2, University of Massachusetts Medical School, Suite 318, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Cecilia Cheng-Mayer
- The Aaron Diamond AIDS Research Center, 455 First Avenue, 7th Floor, New York, NY, 10016, USA
| | - Paul R Clapham
- Biotech 2, Program in Molecular Medicine, University of Massachusetts Medical School, Suite 315, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Maria Paz Gonzalez-Perez
- Biotech 2, Program in Molecular Medicine, University of Massachusetts Medical School, Suite 315, 373 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
5
|
Matsuda K, Riddick NE, Lee CA, Puryear SB, Wu F, Lafont BAP, Whitted S, Hirsch VM. A SIV molecular clone that targets the CNS and induces neuroAIDS in rhesus macaques. PLoS Pathog 2017; 13:e1006538. [PMID: 28787449 PMCID: PMC5560746 DOI: 10.1371/journal.ppat.1006538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/17/2017] [Accepted: 07/18/2017] [Indexed: 11/30/2022] Open
Abstract
Despite effective control of plasma viremia with the use of combination antiretroviral therapies (cART), minor cognitive and motor disorders (MCMD) persist as a significant clinical problem in HIV-infected patients. Non-human primate models are therefore required to study mechanisms of disease progression in the central nervous system (CNS). We isolated a strain of simian immunodeficiency virus (SIV), SIVsm804E, which induces neuroAIDS in a high proportion of rhesus macaques and identified enhanced antagonism of the host innate factor BST-2 as an important factor in the macrophage tropism and initial neuro-invasion of this isolate. In the present study, we further developed this model by deriving a molecular clone SIVsm804E-CL757 (CL757). This clone induced neurological disorders in high frequencies but without rapid disease progression and thus is more reflective of the tempo of neuroAIDS in HIV-infection. NeuroAIDS was also induced in macaques co-inoculated with CL757 and the parental AIDS-inducing, but non-neurovirulent SIVsmE543-3 (E543-3). Molecular analysis of macaques infected with CL757 revealed compartmentalization of virus populations between the CNS and the periphery. CL757 exclusively targeted the CNS whereas E543-3 was restricted to the periphery consistent with a role for viral determinants in the mechanisms of neuroinvasion. CL757 would be a useful model to investigate disease progression in the CNS and as a model to study virus reservoirs in the CNS. Despite effective control of plasma viremia with the use of combination antiretroviral therapies, neurologic disease resulting from HIV-infection of the central nervous system (CNS) persists as a significant clinical problem. Non-human primate models are therefore required to study mechanisms of disease progression in the CNS. We generated an infectious molecular clone (CL757) of an SIV isolate from the brain of a macaque with neuroAIDS. This cloned virus induced neurological disorders in 50% of rhesus macaques infected but without rapid disease progression often seen in other commonly used animal models. Molecular analysis of tissues from macaques infected with CL757 revealed that the variants isolated from the CNS and the periphery became genetically distinct from one another. When co-inoculated with an AIDS-inducing, non-neurovirulent clone (E543-3), CL757 targeted the CNS consistent with its neurovirulence. CL757 would be a useful model to investigate disease progression in the CNS and as a model to study virus reservoirs in the CNS.
Collapse
Affiliation(s)
- Kenta Matsuda
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Nadeene E. Riddick
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Cheri A. Lee
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Sarah B. Puryear
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Fan Wu
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Bernard A. P. Lafont
- Viral Immunology Section, OD, NIAID, NIH, Bethesda, MD, United States of America
| | - Sonya Whitted
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Vanessa M. Hirsch
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zayyad Z, Spudich S. Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 2015; 12:16-24. [PMID: 25604237 PMCID: PMC4741099 DOI: 10.1007/s11904-014-0255-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Early in the HIV epidemic, the central nervous system (CNS) was recognized as a target of infection and injury in the advanced stages of disease. Though the most severe forms of HIV-associated neurocognitive disorder (HAND) related to severe immunosuppression are rare in the current era of widespread combination antiretroviral therapy (cART), evidence now supports pathological involvement of the CNS throughout the course of infection. Recent work suggests that the stage for HIV neuropathogenesis may be set with initial viral entry into the CNS, followed by initiation of pathogenetic processes including neuroinflammation and neurotoxicity, and establishment of local, compartmentalized HIV replication that may reflect a tissue reservoir for HIV. Key questions still exist as to when HIV establishes local infection in the CNS, which CNS cells are the primary targets of HIV, and what mechanistic processes underlie the injury to neurons that produce clinical symptoms of HAND. Advances in these areas will provide opportunities for improved treatment of patients with established HAND, prevention of neurological disease in those with early stage infection, and understanding of HIV tissue reservoirs that will aid efforts at HIV eradication.
Collapse
Affiliation(s)
- Zaina Zayyad
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA,
| | | |
Collapse
|
7
|
Matsuda K, Dang Q, Brown CR, Keele BF, Wu F, Ourmanov I, Goeken R, Whitted S, Riddick NE, Buckler-White A, Hirsch VM. Characterization of simian immunodeficiency virus (SIV) that induces SIV encephalitis in rhesus macaques with high frequency: role of TRIM5 and major histocompatibility complex genotypes and early entry to the brain. J Virol 2014; 88:13201-11. [PMID: 25187546 PMCID: PMC4249079 DOI: 10.1128/jvi.01996-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/27/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Although nonhuman primate models of neuro-AIDS have made tremendous contributions to our understanding of disease progression in the central nervous system (CNS) of human immunodeficiency virus type 1 (HIV-1)-infected individuals, each model holds advantages and limitations. In this study, in vivo passage of SIVsmE543 was conducted to obtain a viral isolate that can induce neuropathology in rhesus macaques. After a series of four in vivo passages in rhesus macaques, we have successfully isolated SIVsm804E. SIVsm804E shows efficient replication in peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MDMs) in vitro and induces neuro-AIDS in high frequencies in vivo. Analysis of the acute phase of infection revealed that SIVsm804E establishes infection in the CNS during the early phase of the infection, which was not observed in the animals infected with the parental SIVsmE543-3. Comprehensive analysis of disease progression in the animals used in the study suggested that host major histocompatibility complex class I (MHC-I) and TRIM5α genotypes influence the disease progression in the CNS. Taken together, our findings show that we have successfully isolated a new strain of simian immunodeficiency virus (SIV) that is capable of establishing infection in the CNS at early stage of infection and causes neuropathology in infected rhesus macaques at a high frequency (83%) using a single inoculum, when animals with restrictive MHC-I or TRIM5α genotypes are excluded. SIVsm804E has the potential to augment some of the limitations of existing nonhuman primate neuro-AIDS models. IMPORTANCE Human immunodeficiency virus (HIV) is associated with a high frequency of neurologic complications due to infection of the central nervous system (CNS). Although the use of antiviral treatment has reduced the incidence of severe complications, milder disease of the CNS continues to be a significant problem. Animal models to study development of neurologic disease are needed. This article describes the development of a novel virus isolate that induces neurologic disease in a high proportion of rhesus macaques infected without the need for prior immunomodulation as is required for some other models.
Collapse
Affiliation(s)
- Kenta Matsuda
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Que Dang
- Division of AIDS, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Fan Wu
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Ilnour Ourmanov
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Robert Goeken
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Sonya Whitted
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Nadeene E Riddick
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Vanessa M Hirsch
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Emergence of CD4 independence envelopes and astrocyte infection in R5 simian-human immunodeficiency virus model of encephalitis. J Virol 2014; 88:8407-20. [PMID: 24829360 DOI: 10.1128/jvi.01237-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) infection in the central nervous system (CNS) is characterized by replication in macrophages or brain microglia that express low levels of the CD4 receptor and is the cause of HIV-associated dementia and related cognitive and motor disorders that affect 20 to 30% of treatment-naive patients with AIDS. Independent viral envelope evolution in the brain has been reported, with the need for robust replication in resident CD4(low) cells, as well as CD4-negative cells, such as astrocytes, proposed as a major selective pressure. We previously reported giant-cell encephalitis in subtype B and C R5 simian-human immunodeficiency virus (SHIV)-infected macaques (SHIV-induced encephalitis [SHIVE]) that experienced very high chronic viral loads and progressed rapidly to AIDS, with varying degrees of macrophage or microglia infection and activation of these immune cells, as well as astrocytes, in the CNS. In this study, we characterized envelopes (Env) amplified from the brains of subtype B and C R5 SHIVE macaques. We obtained data in support of an association between severe neuropathological changes, robust macrophage and microglia infection, and evolution to CD4 independence. Moreover, the degree of Env CD4 independence appeared to correlate with the extent of astrocyte infection in vivo. These findings further our knowledge of the CNS viral population phenotypes that are associated with the severity of HIV/SHIV-induced neurological injury and improve our understanding of the mechanism of HIV-1 cellular tropism and persistence in the brain. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) infection of astrocytes in the brain has been suggested to be important in HIV persistence and neuropathogenesis but has not been definitively demonstrated in an animal model of HIV-induced encephalitis (HIVE). Here, we describe a new nonhuman primate (NHP) model of R5 simian-human immunodeficiency virus (SHIV)-induced encephalitis (SHIVE) with several classical HIVE features that include astrocyte infection. We further show an association between severe neuropathological changes, robust resident microglia infection, and evolution to CD4 independence of viruses in the central nervous system (CNS), with expansion to infection of truly CD4-negative cells in vivo. These findings support the use of the R5 SHIVE models to study the contribution of the HIV envelope and viral clades to neurovirulence and residual virus replication in the CNS, providing information that should guide efforts to eradicate HIV from the body.
Collapse
|
9
|
Increased toll-like receptor signaling pathways characterize CD8+ cells in rapidly progressive SIV infection. BIOMED RESEARCH INTERNATIONAL 2012; 2013:796014. [PMID: 23484159 PMCID: PMC3591242 DOI: 10.1155/2013/796014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 11/09/2012] [Indexed: 01/21/2023]
Abstract
Similar to HIV infection in humans, SIV infection in macaques induces progressive loss of immune cell components and function, resulting in immune deficiency in nearly all untreated infected subjects. In SIV-infected macaques, 25% of animals develop terminal AIDS within 6 months of infection. The factors responsible for the development of such rapid progression are unknown. We have previously found that defects in CD8+ T cells detectable from early infection correlate to rapid progression to simian AIDS. The transcriptional screening of molecular fingerprints on different steps along the activation/effector process of splenic CD8+ cells at termination revealed a distinction in rapid compared to regular progressors, which was characterized by a decrease in classic T cell receptor (TCR) components, and an increase in Toll-like receptor (TLR) and apoptotic pathways. A TLR pathway screening in lymphoid and myeloid cells from both the spleen and from the central nervous system of infected macaques revealed that the upregulation of TLR is not in the innate immune compartment, but rather in lymphoid cells that contain adaptive immune cells. Our findings suggest that opposing effects of TCR specific signaling and TLR engagement may drive the CD8 phenotypic failure that determines a rapid disease course in HIV infection.
Collapse
|
10
|
Proteomic biosignatures for monocyte-macrophage differentiation. Cell Immunol 2011; 271:239-55. [PMID: 21788015 DOI: 10.1016/j.cellimm.2011.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/01/2011] [Indexed: 12/13/2022]
Abstract
We used pulsed stable isotope labeling of amino acids in cell culture (pSILAC) to assess protein dynamics during monocyte-macrophage differentiation. pSILAC allows metabolic labeling of newly synthesized proteins. Such de novo protein production was evaluated from 3 to 7 days in culture. Proteins were identified by liquid chromatography-tandem mass spectrometry then quantified by MaxQuant. Protein-protein linkages were then assessed by Ingenuity Pathway Analysis. Proteins identified were linked to cell homeostasis, free radical scavenging, molecular protein transport, carbohydrate metabolism, small molecule chemistry, and cell morphology. The data demonstrates specific biologic events that are linked to monocyte transformation in a defined biologic system.
Collapse
|
11
|
Reynolds MR, Piaskowski SM, Weisgrau KL, Weiler AM, Friedrich TC, Rakasz EG. Ex vivo analysis of SIV-infected cells by flow cytometry. Cytometry A 2011; 77:1059-66. [PMID: 20722008 DOI: 10.1002/cyto.a.20960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deciphering the complex interactions between human and simian immunodeficiency viruses (HIV/SIV) and their host cells is crucial to the development of improved therapies and vaccines. Investigating these relationships has been complicated by the inability to directly analyze infected cells among freshly isolated peripheral blood lymphocytes. Here, we describe a method to detect cells productively infected with SIVmac239 ex vivo from the blood or lymph nodes by flow cytometry. Using this method, we show a close correlation between the frequency of productively infected cells in both sample type and the plasma viral load. We define that the minimum threshold for detecting productively infected cells in lymph nodes by flow cytometry requires a plasma virus concentration of ∼2.5 × 10(4) vRNA copy Equivalents (Eq)/ml. Conversely, an approximately 2 logs higher plasma viral load is needed to detect productively infected cells in the peripheral blood. This novel protocol provides a direct analytical tool to assess interactions between SIV and host cells, which is of key importance to investigators in AIDS research.
Collapse
Affiliation(s)
- Matthew R Reynolds
- AIDS Vaccine Research Laboratory, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| | | | | | | | | | | |
Collapse
|
12
|
Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW. Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 2010; 267:109-23. [PMID: 21292246 DOI: 10.1016/j.cellimm.2010.12.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 11/02/2010] [Accepted: 12/18/2010] [Indexed: 01/10/2023]
Abstract
The prevalence of human immunodeficiency virus 1 (HIV) associated neurocognitive disorders resulting from infection of the central nervous system (CNS) by HIV continues to increase despite the success of combination antiretroviral therapy. Although monocytes are known to transport HIV across the blood-brain barrier (BBB) into the CNS, there are few specific markers that identify monocyte subpopulations susceptible to HIV infection and/or capable of infiltrating the CNS. We cultured human peripheral blood monocytes and characterized the expression of the phenotypic markers CD14, CD16, CD11b, Mac387, CD163, CD44v6 and CD166 during monocyte/macrophage (Mo/Mac) maturation/differentiation. We determined that a CD14(+)CD16(+)CD11b(+)Mac387(+) Mo/Mac subpopulation preferentially transmigrates across our in vitro BBB model in response to CCL2. Genes associated with Mo/Mac subpopulations that transmigrate across the BBB and/or are infected by HIV were identified by cDNA microarray analyses. Our findings contribute to the understanding of monocyte maturation, infection and transmigration into the brain during the pathogenesis of NeuroAIDS.
Collapse
Affiliation(s)
- Clarisa M Buckner
- Departments of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
13
|
Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, Gendelman HE, Poluektova L. Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2938-49. [PMID: 21088215 DOI: 10.2353/ajpath.2010.100536] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Few rodent models of human immunodeficiency virus type one (HIV-1) infection can reflect the course of viral infection in humans. To this end, we investigated the relationships between progressive HIV-1 infection, immune compromise, and neuroinflammatory responses in NOD/scid-IL-2Rγ(c)(null) mice reconstituted with human hematopoietic CD34(+) stem cells. Human blood-borne macrophages repopulated the meninges and perivascular spaces of chimeric animals. Viral infection in lymphoid tissue led to the accelerated entry of human cells into the brain, marked neuroinflammation, and HIV-1 replication in human mononuclear phagocytes. A meningitis and less commonly an encephalitis followed cM-T807 antibody-mediated CD8(+) cell depletion. We conclude that HIV-1-infected NOD/scid-IL-2Rγ(c)(null) humanized mice can, at least in part, recapitulate lentiviral neuropathobiology. This model of neuroAIDS reflects the virological, immunological, and early disease-associated neuropathological components of human disease.
Collapse
Affiliation(s)
- Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Annamalai L, Bhaskar V, Pauley DR, Knight H, Williams K, Lentz M, Ratai E, Westmoreland SV, González RG, O'Neil SP. Impact of short-term combined antiretroviral therapy on brain virus burden in simian immunodeficiency virus-infected and CD8+ lymphocyte-depleted rhesus macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:777-91. [PMID: 20595631 DOI: 10.2353/ajpath.2010.091248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antiretroviral drugs suppress virus burden in the cerebrospinal fluid of HIV-infected individuals; however, the direct effect of antiretrovirals on virus replication in brain parenchyma is poorly understood. We investigated the effect of short-term combined antiretroviral therapy (CART) on brain virus burden in rhesus monkeys using the CD8-depletion model of accelerated simian immunodeficiency virus (SIV) encephalitis. Four monkeys received CART (consisting of the nonpenetrating agents PMPA and RCV) for four weeks, beginning 28 days after SIV inoculation. Lower virus burdens were measured by real-time RT-PCR in four of four regions of brain from monkeys that received CART as compared with four SIV-infected, untreated controls; however, the difference was only significant for the frontal cortex (P < 0.05). In contrast, significantly lower virus burdens were measured in plasma and four of five lymphoid compartments from animals that received CART. Surprisingly, despite normalization of neuronal function in treated animals, the numbers of activated macrophages/microglia and the magnitude of TNF-alpha mRNA expression in brain were similar between treated animals and controls. These results suggest that short-term therapy with antiretrovirals that fail to penetrate the blood-cerebrospinal fluid barrier can reduce brain virus burden provided systemic virus burden is suppressed; however, longer treatment may be required to completely resolve encephalitic lesions and microglial activation, which may reflect the longer half-life of the principal target cells of HIV/SIV in the brain (macrophages) versus lymphoid tissues (T lymphocytes).
Collapse
Affiliation(s)
- Lakshmanan Annamalai
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim WK, Sun Y, Do H, Autissier P, Halpern EF, Piatak M, Lifson JD, Burdo TH, McGrath MS, Williams K. Monocyte heterogeneity underlying phenotypic changes in monocytes according to SIV disease stage. J Leukoc Biol 2009; 87:557-67. [PMID: 19843579 DOI: 10.1189/jlb.0209082] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infection by HIV is associated with the expansion of monocytes expressing CD16 antigens, but the significance of this in HIV pathogenesis is largely unknown. In rhesus macaques, at least three subpopulations of blood monocytes were identified based on their expression of CD14 and CD16: CD14(high)CD16(-), CD14(high)CD16(low), and CD14(low)CD16(high). The phenotypes and functions of these subpopulations, including CD16(+) monocytes, were investigated in normal, uninfected rhesus macaques and macaques that were infected with SIV or chimeric SHIV. To assess whether these different monocyte subpopulations expand or contract in AIDS pathogenesis, we conducted a cross-sectional study of 54 SIV- or SHIV-infected macaques and 48 uninfected controls. The absolute numbers of monocyte populations were examined in acutely infected animals, chronically infected animals with no detectable plasma virus RNA, chronically infected animals with detectable plasma virus RNA, and animals that died with AIDS. The absolute numbers of CD14(high)CD16(low) and CD14(low)CD16(high) monocytes were elevated significantly in acutely infected animals and chronically infected animals with detectable plasma virus RNA compared with uninfected controls. Moreover, a significant, positive correlation was evident between the number of CD14(high)CD16(low) or CD14(low)CD16(high) monocytes and plasma viral load in the infected cohort. These data show the dynamic changes of blood monocytes, most notably, CD14(high)CD16(low) monocytes during lentiviral infection, which are specific to disease stage.
Collapse
Affiliation(s)
- Woong-Ki Kim
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Marcondes MCG, Lanigan CMS, Burdo TH, Watry DD, Fox HS. Increased expression of monocyte CD44v6 correlates with the deveopment of encephalitis in rhesus macaques infected with simian immunodeficiency virus. J Infect Dis 2008; 197:1567-76. [PMID: 18471064 DOI: 10.1086/588002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In people infected with human immunodeficiency virus type 1 (HIV-1), the accumulation of macrophages in the brain correlates with encephalitis and dementia. We hypothesized that a pattern of surface marker expression in blood monocytes may serve as a marker for central nervous system (CNS) disease. Using the simian immunodeficiency virus (SIV)-rhesus monkey model, we analyzed functionally relevant surface markers on monocytes and macrophages from the blood and brain in animals that did or did not develop SIV encephalitis. At necropsy, multiple markers (CD44v6, CCR2, and CCR5 on blood monocytes and brain microglia and/or macrophages, and CX3CR1 on blood monocytes) allowed us to distinguish animals with encephalitis from those without. Furthermore, the level of expression of CD44v6 on the 2 main populations of blood monocytes--those that express either low or high levels of CD16--was significantly increased in animals with encephalitis. A longitudinal analysis of blood monocyte markers revealed that as early as 28 days after inoculation, CD44v6 staining could distinguish the 2 groups. This provides a potential peripheral biomarker to identify individuals who may develop the HIV-induced CNS disease. Furthermore, given its role in cellular adhesion and as an osteopontin receptor, CD44v6 upregulation on monocytes offers functional clues to the pathogenesis of such complications, and provides a target for preventative and therapeutic measures.
Collapse
Affiliation(s)
- Maria Cecilia G Marcondes
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, SP302030, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
17
|
CD4 deficits and disease course acceleration can be driven by a collapse of the CD8 response in rhesus macaques infected with simian immunodeficiency virus. AIDS 2008; 22:1441-52. [PMID: 18614867 DOI: 10.1097/qad.0b013e3283052fb5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Defects in memory CD4+ T cells correlate with development of AIDS in monkeys infected with simian immunodeficiency virus, but the early events leading to these deficits are unknown. We explored the role of cells specific to simian immunodeficiency virus and CD8 cells in the determination of CD4 failure and rapid disease course. DESIGN AND METHODS Using MamuA*01-restricted Gag and Tat epitope tetramers, we compared the kinetics of specific response in animals with regular (REG) and rapid (RAP) progression. Expressions of memory, activation and proliferation markers were examined on the global CD8 pool, as well as on CD4 T cells in those animals. In-vivo CD8 depletion in non-MamuA*01 animals was used to investigate CD8 collapse as an event leading to disease progression and CD4 deficits. RESULTS In animals with a rapid disease course, an initial development of cytotoxic T lymphocytes specific to simian immunodeficiency virus is followed by collapse accompanied by global changes in CD8 cells and occurs in synchrony with the characteristic CD4 deficiencies. Antibody-mediated depletion of CD8 cells early after infection with simian immunodeficiency virus induces similar changes in the CD4 cells and rapid development of AIDS. CONCLUSION CD8 collapse at acute time points may result in uncontrolled viral load and development of a defective and insufficient CD4 population. Our results indicate that early breakdown in CD8 cells leads to CD4 deficits and rapid progression to AIDS and suggest that therapeutic approaches should aim at strengthening CD8 T cells early after viral infection.
Collapse
|
18
|
Kolson DL. YKL-40: a candidate biomarker for simian immunodeficiency virus and human immunodeficiency virus encephalitis? THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:25-9. [PMID: 18583323 DOI: 10.2353/ajpath.2008.080389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Dennis L Kolson
- Department of Neurology, University of Pennsylvania, 280 Clinical Research Bldg., 415 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Bonneh-Barkay D, Bissel SJ, Wang G, Fish KN, Nicholl GCB, Darko SW, Medina-Flores R, Murphey-Corb M, Rajakumar PA, Nyaundi J, Mellors JW, Bowser R, Wiley CA. YKL-40, a marker of simian immunodeficiency virus encephalitis, modulates the biological activity of basic fibroblast growth factor. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:130-43. [PMID: 18556781 DOI: 10.2353/ajpath.2008.080045] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human immunodeficiency virus encephalitis causes dementia in acquired immune deficiency syndrome patients. Using proteomic analysis of postmortem cerebrospinal fluid (CSF) and brain tissue from the simian immunodeficiency virus primate model, we demonstrate here a specific increase in YKL-40 that was tightly associated with lentiviral encephalitis. Longitudinal analysis of CSF from simian immunodeficiency virus-infected pigtailed macaques showed an increase in YKL-40 concentration 2 to 8 weeks before death from encephalitis. This increase in YKL-40 correlated with an increase in CSF viral load; it may therefore represent a biomarker for the development of encephalitis. Analysis of banked human CSF from human immunodeficiency virus-infected patients also demonstrated a correlation between YKL-40 concentration and CSF viral load. In vitro studies demonstrated increased YKL-40 expression and secretion by macrophages and microglia but not by neurons or astrocytes. We found that YKL40 displaced extracellular matrix-bound basic fibroblast growth factor (bFGF) as well as inhibited the mitogenic activity of both fibroblast growth factor receptor 1-expressing BaF3 cells and bFGF-induced axonal branching in hippocampal cultures. Taken together, these findings demonstrate that during lentiviral encephalitis, YKL-40 may interfere with the biological activity of bFGF and potentially of other heparin-binding growth factors and chemokines that can affect neuronal function or survival.
Collapse
Affiliation(s)
- Dafna Bonneh-Barkay
- Departments of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Venneti S, Bonneh-Barkay D, Lopresti BJ, Bissel SJ, Wang G, Mathis CA, Piatak M, Lifson JD, Nyaundi JO, Murphey-Corb M, Wiley CA. Longitudinal in vivo positron emission tomography imaging of infected and activated brain macrophages in a macaque model of human immunodeficiency virus encephalitis correlates with central and peripheral markers of encephalitis and areas of synaptic degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1603-16. [PMID: 18467697 DOI: 10.2353/ajpath.2008.070967] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus encephalitis is characterized by infiltration of the brain with infected and activated macrophages; however, it is not known why disease occurs after variable lengths of infection in 25% of immunosuppressed acquired immune deficiency syndrome patients. We determined in vivo correlates (in peripheral blood and the central nervous system) for the development and progression of lentiviral encephalitis by longitudinally following infected and activated macrophages in the brain using positron emission tomography (PET). Using human postmortem brain tissues from both lentivirus-infected encephalitic patients and cell culture systems, we showed that the PET ligand [(3)H](R)-PK11195 bound specifically to virus-infected and activated macrophages. We longitudinally imaged infected and activated brain macrophages in a cohort of macaques infected with simian immunodeficiency virus using [(11)C](R)-PK11195. [(11)C](R)-PK11195 retention in vivo in the brain correlated with viral burden in the brain and cerebrospinal fluid, and with regions of both presynaptic and postsynaptic damage. Finally, longitudinal changes in [(11)C](R)-PK11195 retention in the brain in vivo correlated with changes in circulating monocytes as well as in both natural killer and memory CD4(+) T cells in the periphery. Our results suggest that development and progression of simian immunodeficiency virus encephalitis in vivo correlates with changes in specific cell subtypes in the periphery. A combination of PET imaging and the assessment of these peripheral immune parameters may facilitate longitudinal assessment of lentiviral encephalitis in living patients as well as evaluation of therapeutic efficacies.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Systemic and brain macrophage infections in relation to the development of simian immunodeficiency virus encephalitis. J Virol 2008; 82:5031-42. [PMID: 18337567 DOI: 10.1128/jvi.02069-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The brains of individuals with lentiviral-associated encephalitis contain an abundance of infected and activated macrophages. It has been hypothesized that encephalitis develops when increased numbers of infected monocytes traffic into the central nervous system (CNS) during the end stages of immunosuppression. The relationships between the infection of brain and systemic macrophages and circulating monocytes and the development of lentiviral encephalitis are unknown. We longitudinally examined the extent of monocyte/macrophage infection in blood and lymph nodes of pigtailed macaques that did or did not develop simian immunodeficiency virus encephalitis (SIVE). Compared to levels in macaques that did not develop SIVE, more ex vivo virus production was detected from monocyte-derived macrophages and nonadherent peripheral blood mononuclear cells (PBMCs) from macaques that did develop SIVE. Prior to death, there was an increase in the number of circulating PBMCs following a rise in cerebrospinal fluid viral load in macaques that did develop SIVE but not in nonencephalitic macaques. At necropsy, macaques with SIVE had more infected macrophages in peripheral organs, with the exception of lymph nodes. T cells and NK cells with cytotoxic potential were more abundant in brains with encephalitis; however, T-cell and NK-cell infiltration in SIVE and human immunodeficiency virus encephalitis was more modest than that observed in classical acute herpes simplex virus encephalitis. These findings support the hypothesis that inherent differences in host systemic and CNS monocyte/macrophage viral production are associated with the development of encephalitis.
Collapse
|
22
|
Effect of morphine on the neuropathogenesis of SIVmac infection in Indian Rhesus Macaques. J Neuroimmune Pharmacol 2007; 3:12-25. [PMID: 18247128 DOI: 10.1007/s11481-007-9085-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
Morphine is known to prevent the development of cell-mediated immune (CMI) responses and enhance expression of the CCR5 receptor in monocyte macrophages. We undertook a study to determine the effect of morphine on the neuropathogenesis and immunopathogenesis of simian immunodeficiency virus (SIV) infection in Indian Rhesus Macaques. Hypothetically, the effect of morphine would be to prevent the development of CMI responses to SIV and to enhance the infection in macrophages. Sixteen Rhesus Macaques were divided into three experimental groups: M (morphine only, n = 5), VM (morphine + SIV, n = 6), and V (SIV only, n = 5). Animals in groups M and VM were given 2.5 mg/kg of morphine sulfate, four times daily, for up to 59 weeks. Groups VM and V were inoculated with SIVmacR71/17E 26 weeks after the beginning of morphine administration. Morphine prevented the development of enzyme-linked immunosorbent spot-forming cell CMI responses in contrast to virus control animals, all of which developed CMI. Whereas morphine treatment had no effect on viremia, cerebrospinal fluid viral titers or survival over the time course of the study, the drug was associated with a tendency for greater build-up of virus in the brains of infected animals. Histopathological changes in the brains of animals that developed disease were of a demyelinating type in the VM animals compared to an encephalitic type in the V animals. This difference may have been associated with the immunosuppressive effect of the drug in inhibiting CMI responses.
Collapse
|
23
|
Clay CC, Rodrigues DS, Ho YS, Fallert BA, Janatpour K, Reinhart TA, Esser U. Neuroinvasion of fluorescein-positive monocytes in acute simian immunodeficiency virus infection. J Virol 2007; 81:12040-8. [PMID: 17715237 PMCID: PMC2168770 DOI: 10.1128/jvi.00133-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Monocytes and macrophages play a central role in the pathogenesis of human immunodeficiency virus (HIV)-associated dementia. They represent prominent targets for HIV infection and are thought to facilitate viral neuroinvasion and neuroinflammatory processes. However, many aspects regarding monocyte brain recruitment in HIV infection remain undefined. The nonhuman primate model of AIDS is uniquely suited for examination of the role of monocytes in the pathogenesis of AIDS-associated encephalitis. Nevertheless, an approach to monitor cell migration from peripheral blood into the central nervous system (CNS) in primates had been lacking. Here, upon autologous transfer of fluorescein dye-labeled leukocytes, we demonstrate the trafficking of dye-positive monocytes into the choroid plexus stromata and perivascular spaces in the cerebra of rhesus macaques acutely infected with simian immunodeficiency virus between days 12 and 14 postinfection (p.i.). Dye-positive cells that had migrated expressed the monocyte activation marker CD16 and the macrophage marker CD68. Monocyte neuroinvasion coincided with the presence of the virus in brain tissue and cerebrospinal fluid and with the induction of the proinflammatory mediators CXCL9/MIG and CCL2/MCP-1 in the CNS. Prior to neuroinfiltration, plasma viral load levels peaked on day 11 p.i. Furthermore, the numbers of peripheral blood monocytes rapidly increased between days 4 and 8 p.i., and circulating monocytes exhibited increased functional capacity to produce CCL2/MCP-1. Our findings demonstrate acute monocyte brain infiltration in an animal model of AIDS. Such studies facilitate future examinations of the migratory profile of CNS-homing monocytes, the role of monocytes in virus import into the brain, and the disruption of blood-cerebrospinal fluid and blood-brain barrier functions in primates.
Collapse
Affiliation(s)
- Candice C Clay
- Department of Pathology and Laboratory Medicine, Research III Building, Room 3400A, University of California-Davis Medical Center, 4645 2nd Avenue, Sacramento, CA 95817, USA
| | | | | | | | | | | | | |
Collapse
|