1
|
Xu Q, Guo D, Shi M, Wang Y, Yang P, Jia Y, Sun L, Liu Y, Chang X, He Y, Hui L, Zhang Y, Zhu Z. Genetically Determined Plasma Hepatocyte Growth Factor Levels Are Associated With the Risk and Prognosis of Ischemic Stroke. Stroke 2024; 55:1535-1542. [PMID: 38572663 DOI: 10.1161/strokeaha.123.045430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Observational studies suggest that hepatocyte growth factor (HGF) is associated with the risk and prognosis of ischemic stroke, but the causality of these associations remains unclear. Therefore, we conducted Mendelian randomization (MR) analyses to explore the associations of genetically determined plasma HGF levels with the risk and prognosis of ischemic stroke. METHODS A total of 13 single-nucleotide polymorphisms associated with plasma HGF were selected as genetic instruments based on the data from a genome-wide association study with 21 758 European participants. Summary data about the risk of ischemic stroke were obtained from the MEGASTROKE (Multiancestry Genome-Wide Association Study of Stroke) Consortium with 34 217 ischemic stroke cases and 406 111 controls of European ancestry, and summary data about the prognosis of ischemic stroke were obtained from the GISCOME study (Genetics of Ischaemic Stroke Functional Outcome) with 6165 European patients with ischemic stroke. We conducted an inverse-variance weighted Mendelian randomization analysis followed by a series of sensitivity analyses to evaluate the associations of genetically determined plasma HGF with the risk and prognosis of ischemic stroke. RESULTS The primary analyses showed that genetically determined high HGF was associated with an increased risk of ischemic stroke (odds ratio per SD increase, 1.11 [95% CI, 1.04-1.19]; P=1.10×10-3) and poor prognosis of ischemic stroke (odds ratio per SD increase, 2.43 [95% CI, 1.76-3.52]; P=6.35×10-8). In the secondary analysis, genetically determined plasma HGF was associated with a high risk of large atherosclerotic stroke (odds ratio per SD increase, 1.39 [95% CI, 1.18-1.63]; P=5.08×10-5) but not small vessel stroke and cardioembolic stroke. Mendelian randomization-Egger regression showed no directional pleiotropy for all associations, and the sensitivity analyses with different Mendelian randomization methods further confirmed these findings. CONCLUSIONS We found positive associations of genetically determined plasma HGF with the risk and prognosis of ischemic stroke, suggesting that HGF might be implicated in the occurrence and development of ischemic stroke.
Collapse
Affiliation(s)
- Qingyun Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology (Q.X., M.S., Y.W., P.Y., Y.J., L.S., Y.L., X.C., Y.H., Y.Z., Z.Z.), Suzhou Medical College of Soochow University, China
| | - Daoxia Guo
- School of Nursing (D.G.), Suzhou Medical College of Soochow University, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology (Q.X., M.S., Y.W., P.Y., Y.J., L.S., Y.L., X.C., Y.H., Y.Z., Z.Z.), Suzhou Medical College of Soochow University, China
| | - Yinan Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology (Q.X., M.S., Y.W., P.Y., Y.J., L.S., Y.L., X.C., Y.H., Y.Z., Z.Z.), Suzhou Medical College of Soochow University, China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology (Q.X., M.S., Y.W., P.Y., Y.J., L.S., Y.L., X.C., Y.H., Y.Z., Z.Z.), Suzhou Medical College of Soochow University, China
| | - Yiming Jia
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology (Q.X., M.S., Y.W., P.Y., Y.J., L.S., Y.L., X.C., Y.H., Y.Z., Z.Z.), Suzhou Medical College of Soochow University, China
| | - Lulu Sun
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology (Q.X., M.S., Y.W., P.Y., Y.J., L.S., Y.L., X.C., Y.H., Y.Z., Z.Z.), Suzhou Medical College of Soochow University, China
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology (Q.X., M.S., Y.W., P.Y., Y.J., L.S., Y.L., X.C., Y.H., Y.Z., Z.Z.), Suzhou Medical College of Soochow University, China
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology (Q.X., M.S., Y.W., P.Y., Y.J., L.S., Y.L., X.C., Y.H., Y.Z., Z.Z.), Suzhou Medical College of Soochow University, China
| | - Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology (Q.X., M.S., Y.W., P.Y., Y.J., L.S., Y.L., X.C., Y.H., Y.Z., Z.Z.), Suzhou Medical College of Soochow University, China
| | - Li Hui
- School of Nursing (D.G.), Suzhou Medical College of Soochow University, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology (Q.X., M.S., Y.W., P.Y., Y.J., L.S., Y.L., X.C., Y.H., Y.Z., Z.Z.), Suzhou Medical College of Soochow University, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology (Q.X., M.S., Y.W., P.Y., Y.J., L.S., Y.L., X.C., Y.H., Y.Z., Z.Z.), Suzhou Medical College of Soochow University, China
| |
Collapse
|
2
|
Chen Y, Shen J, Nilsson AH, Goncalves I, Edsfeldt A, Engström G, Zaigham S, Melander O, Orho-Melander M, Rauch U, Venuraju SM, Lahiri A, Liang C, Nilsson J. Circulating Hepatocyte Growth Factor Reflects Activation of Vascular Repair in Response to Stress. JACC Basic Transl Sci 2022; 7:747-762. [PMID: 36061342 PMCID: PMC9436817 DOI: 10.1016/j.jacbts.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/19/2022]
Abstract
HGF is released by stressed human vascular cells and promotes vascular cell repair responses in autocrine and/or paracrine ways. Subjects with a low capacity to express HGF in response to systemic stress have an increased cardiovascular risk. Human atherosclerotic plaques with a low content of HGF have a more unstable phenotype. The present study shows that subjects with a low ability to express HGF in response to metabolic stress have an increased risk to suffer cardiovascular events.
Hepatocyte growth factor (HGF) is released by stressed human vascular cells and promotes vascular cell repair responses in both autocrine and paracrine ways. Subjects with a low capacity to express HGF in response to systemic stress have an increased cardiovascular risk. Human atherosclerotic plaques with a low content of HGF have a more unstable phenotype. The present study shows that subjects with a low ability to express HGF in response to metabolic stress have an increased risk to suffer myocardial infarction and stroke.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junyan Shen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Isabel Goncalves
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Cardiology, Skåne University Hospital, Scania, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Suneela Zaigham
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | | | - Uwe Rauch
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Avijit Lahiri
- British Cardiac Research Trust, London, United Kingdom
| | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- Dr Chun Liang, Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Shenyang Road, Shanghai, China.
| | - Jan Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Address for correspondence: Dr Jan Nilsson, Department of Clinical Sciences Lund University, Malmö, Box 50332, 202 13 Malmö, Sweden.
| |
Collapse
|
3
|
Al-Ahmar I, Mohamed N, Elshony H. Paradoxical role of hepatocyte growth factor in ischemic stroke: stroke risk/stroke recovery. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hepatocyte growth factor (HGF) has an obvious pathological role in atherosclerosis and plaque instability leading to an acute ischemic stroke; however, its beneficial role in stroke recovery is still restricted to experimental studies. The aim of the current study was to investigate the association between HGF and carotid atherosclerosis and evaluate its value as a prognostic marker of ischemic stroke and its role in stroke recovery.
Results
This case–control study was done on 100 patients with first time anterior circulation ischemic stroke, subjected to clinical and laboratory evaluation of atherosclerosis risk factors. Brain imaging, cardiac work-up and ultrasonographic assessment of carotid atherosclerosis (using intimal medial thickness and plaque score) were all done. Clinical evaluation of initial stroke severity, using National Institutes of Health Stroke Scale (NIHSS), and stroke outcome after 3 m, using Modified Rankin Scale (MRS), was performed. Measurement of HGF serum concentration was done to all stroke patients within 24 h of stroke onset and compared to results of 100 matched healthy subjects aged more than 50 years. HGF was significantly higher in stroke patients than healthy controls and in atherothrombotic than cardioembolic stroke group and its level was significantly correlated with atherosclerosis risk factors, degree of carotid atherosclerosis and better stroke outcome; however, it was not significantly correlated with initial stroke severity.
Conclusion
HGF is strongly associated with carotid atherosclerosis and other atherosclerosis risk factors and subsequent atherothrombotic stroke. Also, it can be used as a good prognostic marker in atherothrombotic stroke suggesting its role in stroke recovery but more studies are needed to explore this beneficial role as well as its therapeutic potentials in ischemic stroke patients.
Collapse
|
4
|
He Y, Jiao D, Chen P, Li N, Jin C. The relationship of lumen diameter and neointimal hyperplasia with inflation pressure. Technol Health Care 2019; 27:407-415. [PMID: 30829623 DOI: 10.3233/thc-181184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yu He
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dan Jiao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Chen
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Na Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chunxiang Jin
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
He Y, Mei L, Jin Y, Li XP, Jin C. Overexpression of Hepatocyte Growth Factor mRNA Induced by Gene Transfer Attenuates Neointimal Hyperplasia After Balloon Injury. Hum Gene Ther 2018; 29:816-827. [PMID: 29382231 DOI: 10.1089/hum.2017.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hepatic growth factor (HGF) has been widely used in studies on arterial remodeling after injury, and results turn out to be inconsistent. The changes of endogenous HGF expression after injury also remain controversial. This study clarified the role of exogenous human HGF (hHGF) gene transfer in neointimal hyperplasia and investigated the associated alterations of endogenous HGF and c-Met expressions under endothelial denudation with or without hHGF gene transfer using a balloon-injured rabbit aorta model. Sixty-one rabbits were randomly divided into normal controls, endothelial injury, endothelial injury with hHGF, or the control vector gene transfer groups. On weeks 1, 2, 4, and 8 after injury, neointimal hyperplasia and endothelialization were evaluated by the ratio of neointimal area to medial area (N/M ratio), CD31-positive staining, α-smooth muscle actin, and endothelial nitric oxide synthase expressions using histological analysis, immunohistochemistry staining, or real-time quantitative reverse transcriptase polymerase chain reaction. Endogenous rabbit HGF (rHGF) and c-Met expressions were detected with immunohistochemistry staining and quantitative reverse transcriptase polymerase chain reaction. It was found that expressions of endogeneous rHGF and c-Met in endothelial injury upregulated with peak levels on week 2 or week 4 after injury (p < 0.01). On week 1 after hHGF transfer, neointimal hyperplasia was significantly inhibited (p < 0.001), with decreased α-smooth muscle actin expression (p < 0.05) and improved endothelial cells regeneration and function (p < 0.01). More remarkable overexpression of endogenous rHGF and c-Met mRNAs were detected, and lowered positive staining of rHGF and c-Met was shown in the neointima (p < 0.05). These results demonstrated hHGF gene transfer induced further overexpression of endogenous rHGF and c-Met mRNAs but lowered immunoreactivities of rHGF and c-Met in the neointima, thus leading to significant attenuation of neointimal hyperplasia.
Collapse
Affiliation(s)
- Yu He
- 1 Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, China
| | - Li Mei
- 2 Department of Ultrasound, the First Hospital of Jilin University , Changchun, China
| | - Ying Jin
- 3 Department of Surgery, the First Hospital of Jilin University , Changchun, China
| | - Xiao-Ping Li
- 1 Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, China
| | - Chunxiang Jin
- 1 Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, China
| |
Collapse
|
6
|
Abstract
Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the treatment of both coronary and peripheral artery disease.
Collapse
|
7
|
Involvement of activation of C-met signaling pathway in CD151-induced HUVECs angiogenesis. ACTA ACUST UNITED AC 2015; 35:35-41. [PMID: 25673190 DOI: 10.1007/s11596-015-1385-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/27/2014] [Indexed: 12/16/2022]
Abstract
CD151 is a member of the tetraspanin family that is implicated as a promoter of pathological or physiological angiogenesis. C-Met is expressed on a variety of cells including vascular endothelial cells (VECs) and up-regulated during angiogenesis. In this study, we investigated whether CD151 regulated migration, proliferation, tube formation and angiogenesis of human umbilical VECs (HUVECs) with activation of C-Met. Moreover, we studied whether CD151 could affect the angiogenic molecules such as nitric oxide (NO), vascular cell adhesion molecule-1 (VCAM-1) and vascular endothelial growth factor (VEGF). The expression of CD151 was determined by Western blotting. The cell proliferation assay was performed using the cell counting kit-8 (CCK-8) method and cell migration was assessed in microchemotaxis chambers by using fetal bovine serum (FBS) as the chemotactic stimulus. The angiogenic molecules were evaluated using ELISA. The NO level was detected using NO detection kit. The potential involvement of various signaling pathways was explored using relevant antibodies. We found that proliferation, migration and tube formation of HUVECs were promoted by CD151 with activation of C-Met, FAK and CDC42, while they were suppressed with CD151 knockdown by RNAi. Similarly, the levels of NO, VCAM-1 and VEGF in HUVECs were increased by CD151, but they were inhibited with CD151 knockdown by RNAi. These data suggested that CD151 could promote migration, proliferation, tube formation and angiogenesis of HUVECs, which was possibly related to the C-Met signaling pathways.
Collapse
|
8
|
Jang YH, You DH, Nam MJ. Protective effects of HGF gene-expressing human mesenchymal stem cells in acetaminophen-treated hepatocytes. Growth Factors 2015; 33:319-25. [PMID: 26567452 DOI: 10.3109/08977194.2015.1080695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSC) secrete a great variety of cytokines that have beneficial paracrine actions. Hepatocyte growth factor (HGF) promotes proliferation in several cell types. The aim of the present study was to investigate the protective effect of HGF gene-transfected MSC (HGF-MSC) in acetaminophen (AAP)-treated hepatocytes. We transfected the HGF gene into MSCs and confirmed HGF expression by RT-PCR and western blot. The concentration of HGF in HGF-MSC conditioned media (HGFCM) was upregulated compared with that in control MSCCM samples. Cell viability was increased in HGFCM-treated hepatocytes. Expression of Mcl-1, an anti-apoptosis protein, was increased and expression of pro-apoptosis proteins (Bad, Bik and Bid) was decreased in HGFCM-treated hepatocytes. HGF-MSC had protective effects on AAP-induced hepatocyte damage by enhancing proliferation. These results suggest that HGF-expressing MSCs may provide regenerative potential for liver cell damage.
Collapse
Affiliation(s)
- Yun Ho Jang
- a Department of Biological Science , Gachon University , Seongnam , South Korea and
| | - Dong Hun You
- a Department of Biological Science , Gachon University , Seongnam , South Korea and
| | - Myeong Jin Nam
- a Department of Biological Science , Gachon University , Seongnam , South Korea and
- b HanCell Inc. , Incheon , South Korea
| |
Collapse
|
9
|
Peña-Silva RA, Chalouhi N, Wegman-Points L, Ali M, Mitchell I, Pierce GL, Chu Y, Ballas ZK, Heistad D, Hasan D. Novel role for endogenous hepatocyte growth factor in the pathogenesis of intracranial aneurysms. Hypertension 2014; 65:587-93. [PMID: 25510828 DOI: 10.1161/hypertensionaha.114.04681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inflammation plays a key role in formation and rupture of intracranial aneurysms. Because hepatocyte growth factor (HGF) protects against vascular inflammation, we sought to assess the role of endogenous HGF in the pathogenesis of intracranial aneurysms. Circulating HGF concentrations in blood samples drawn from the lumen of human intracranial aneurysms or femoral arteries were compared in 16 patients. Tissue from superficial temporal arteries and ruptured or unruptured intracranial aneurysms collected from patients undergoing clipping (n=10) were immunostained with antibodies to HGF and its receptor c-Met. Intracranial aneurysms were induced in mice treated with PF-04217903 (a c-Met antagonist) or vehicle. Expression of inflammatory molecules was also measured in cultured human endothelial, smooth muscle cells and monocytes treated with lipopolysaccharides in presence or absence of HGF and PF-04217903. We found that HGF concentrations were significantly higher in blood collected from human intracranial aneurysms (1076±656 pg/mL) than in femoral arteries (196±436 pg/mL; P<0.001). HGF and c-Met were detected by immunostaining in superficial temporal arteries and in both ruptured and unruptured human intracranial aneurysms. A c-Met antagonist did not alter the formation of intracranial aneurysms (P>0.05), but significantly increased the prevalence of subarachnoid hemorrhage and decreased survival in mice (P<0.05). HGF attenuated expression of vascular cell adhesion molecule-1 (P<0.05) and E-Selectin (P<0.05) in human aortic endothelial cells. In conclusion, plasma HGF concentrations are elevated in intracranial aneurysms. HGF and c-Met are expressed in superficial temporal arteries and in intracranial aneurysms. HGF signaling through c-Met may decrease inflammation in endothelial cells and protect against intracranial aneurysm rupture.
Collapse
Affiliation(s)
- Ricardo A Peña-Silva
- From the Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogotá, Colombia (R.A.P.-S.); Department of Neurosurgery, Thomas Jefferson University School of Medicine, Philadelphia, PA (N.C.); Department of Health and Human Physiology, University of Iowa, Iowa City (L.W.-P., G.L.P.); Departments of Neurosurgery (M.A., I.M., Y.C., D. Hasan) and Medicine (Y.C., Z.K.B., D. Heistad), University of Iowa Carver College of Medicine, Iowa City; and Department of Medicine, VA Medical Center, Iowa City, IA (Z.K.B.)
| | - Nohra Chalouhi
- From the Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogotá, Colombia (R.A.P.-S.); Department of Neurosurgery, Thomas Jefferson University School of Medicine, Philadelphia, PA (N.C.); Department of Health and Human Physiology, University of Iowa, Iowa City (L.W.-P., G.L.P.); Departments of Neurosurgery (M.A., I.M., Y.C., D. Hasan) and Medicine (Y.C., Z.K.B., D. Heistad), University of Iowa Carver College of Medicine, Iowa City; and Department of Medicine, VA Medical Center, Iowa City, IA (Z.K.B.)
| | - Lauren Wegman-Points
- From the Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogotá, Colombia (R.A.P.-S.); Department of Neurosurgery, Thomas Jefferson University School of Medicine, Philadelphia, PA (N.C.); Department of Health and Human Physiology, University of Iowa, Iowa City (L.W.-P., G.L.P.); Departments of Neurosurgery (M.A., I.M., Y.C., D. Hasan) and Medicine (Y.C., Z.K.B., D. Heistad), University of Iowa Carver College of Medicine, Iowa City; and Department of Medicine, VA Medical Center, Iowa City, IA (Z.K.B.)
| | - Muhammad Ali
- From the Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogotá, Colombia (R.A.P.-S.); Department of Neurosurgery, Thomas Jefferson University School of Medicine, Philadelphia, PA (N.C.); Department of Health and Human Physiology, University of Iowa, Iowa City (L.W.-P., G.L.P.); Departments of Neurosurgery (M.A., I.M., Y.C., D. Hasan) and Medicine (Y.C., Z.K.B., D. Heistad), University of Iowa Carver College of Medicine, Iowa City; and Department of Medicine, VA Medical Center, Iowa City, IA (Z.K.B.)
| | - Ian Mitchell
- From the Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogotá, Colombia (R.A.P.-S.); Department of Neurosurgery, Thomas Jefferson University School of Medicine, Philadelphia, PA (N.C.); Department of Health and Human Physiology, University of Iowa, Iowa City (L.W.-P., G.L.P.); Departments of Neurosurgery (M.A., I.M., Y.C., D. Hasan) and Medicine (Y.C., Z.K.B., D. Heistad), University of Iowa Carver College of Medicine, Iowa City; and Department of Medicine, VA Medical Center, Iowa City, IA (Z.K.B.)
| | - Gary L Pierce
- From the Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogotá, Colombia (R.A.P.-S.); Department of Neurosurgery, Thomas Jefferson University School of Medicine, Philadelphia, PA (N.C.); Department of Health and Human Physiology, University of Iowa, Iowa City (L.W.-P., G.L.P.); Departments of Neurosurgery (M.A., I.M., Y.C., D. Hasan) and Medicine (Y.C., Z.K.B., D. Heistad), University of Iowa Carver College of Medicine, Iowa City; and Department of Medicine, VA Medical Center, Iowa City, IA (Z.K.B.)
| | - Yi Chu
- From the Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogotá, Colombia (R.A.P.-S.); Department of Neurosurgery, Thomas Jefferson University School of Medicine, Philadelphia, PA (N.C.); Department of Health and Human Physiology, University of Iowa, Iowa City (L.W.-P., G.L.P.); Departments of Neurosurgery (M.A., I.M., Y.C., D. Hasan) and Medicine (Y.C., Z.K.B., D. Heistad), University of Iowa Carver College of Medicine, Iowa City; and Department of Medicine, VA Medical Center, Iowa City, IA (Z.K.B.)
| | - Zuhair K Ballas
- From the Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogotá, Colombia (R.A.P.-S.); Department of Neurosurgery, Thomas Jefferson University School of Medicine, Philadelphia, PA (N.C.); Department of Health and Human Physiology, University of Iowa, Iowa City (L.W.-P., G.L.P.); Departments of Neurosurgery (M.A., I.M., Y.C., D. Hasan) and Medicine (Y.C., Z.K.B., D. Heistad), University of Iowa Carver College of Medicine, Iowa City; and Department of Medicine, VA Medical Center, Iowa City, IA (Z.K.B.)
| | - Donald Heistad
- From the Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogotá, Colombia (R.A.P.-S.); Department of Neurosurgery, Thomas Jefferson University School of Medicine, Philadelphia, PA (N.C.); Department of Health and Human Physiology, University of Iowa, Iowa City (L.W.-P., G.L.P.); Departments of Neurosurgery (M.A., I.M., Y.C., D. Hasan) and Medicine (Y.C., Z.K.B., D. Heistad), University of Iowa Carver College of Medicine, Iowa City; and Department of Medicine, VA Medical Center, Iowa City, IA (Z.K.B.)
| | - David Hasan
- From the Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogotá, Colombia (R.A.P.-S.); Department of Neurosurgery, Thomas Jefferson University School of Medicine, Philadelphia, PA (N.C.); Department of Health and Human Physiology, University of Iowa, Iowa City (L.W.-P., G.L.P.); Departments of Neurosurgery (M.A., I.M., Y.C., D. Hasan) and Medicine (Y.C., Z.K.B., D. Heistad), University of Iowa Carver College of Medicine, Iowa City; and Department of Medicine, VA Medical Center, Iowa City, IA (Z.K.B.).
| |
Collapse
|
10
|
Liu CJ, Jones DS, Tsai PC, Venkataramana A, Cochran JR. An engineered dimeric fragment of hepatocyte growth factor is a potent c-MET agonist. FEBS Lett 2014; 588:4831-7. [PMID: 25451235 DOI: 10.1016/j.febslet.2014.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/02/2014] [Accepted: 11/12/2014] [Indexed: 02/06/2023]
Abstract
Hepatocyte growth factor (HGF), through activation of the c-MET receptor, mediates biological processes critical for tissue regeneration; however, its clinical application is limited by protein instability and poor recombinant expression. We previously engineered an HGF fragment (eNK1) that possesses increased stability and expression yield and developed a c-MET agonist by coupling eNK1 through an introduced cysteine residue. Here, we further characterize this eNK1 dimer and show it elicits significantly greater c-MET activation, cell migration, and proliferation than the eNK1 monomer. The efficacy of the eNK1 dimer was similar to HGF, suggesting its promise as a c-MET agonist.
Collapse
Affiliation(s)
- Cassie J Liu
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States
| | - Douglas S Jones
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Ping-Chuan Tsai
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | | | - Jennifer R Cochran
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States; Department of Bioengineering, Stanford University, Stanford, CA, United States.
| |
Collapse
|
11
|
Konya H, Miuchi M, Satani K, Matsutani S, Tsunoda T, Yano Y, Katsuno T, Hamaguchi T, Miyagawa JI, Namba M. Hepatocyte growth factor, a biomarker of macroangiopathy in diabetes mellitus. World J Diabetes 2014; 5:678-688. [PMID: 25317245 PMCID: PMC4138591 DOI: 10.4239/wjd.v5.i5.678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/01/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
Atherosclerotic involvements are an essential causal element of prospect in diabetes mellitus (DM), with carotid atherosclerosis (CA) being a common risk-factor for prospective crisis of coronary artery diseases (CAD) and/or cerebral infarction (CI) in DM subjects. From another point of view, several reports have supplied augmenting proof that hepatocyte growth factor (HGF) has a physiopathological part in DM involvements. HGF has been a mesenchymal-derived polyphenic factor which modulates development, motion, and morphosis of diverse cells, and has been regarded as a humor intermediator of epithelial-mesenchymal interplays. The serum concentrations of HGF have been elevated in subjects with CAD and CI, especially during the acute phase of both disturbances. In our study with 89 type 2 DM patients, the association between serum concentrations of HGF and risk-factors for macrovascular complications inclusive of CA were examined. The average of serum HGF levels in the subjects was more elevated than the reference interval. The serum HGF concentrations associated positively with both intimal-media thickness (IMT) (r = 0.24, P = 0.0248) and plaque score (r = 0.27, P = 0.0126), indicating a relationship between the elevated HGF concentrations and advancement of CA involvements. Multivariate statistical analysis accentuated that serum concentrations of HGF would be associated independently with IMT (standardized = 0.28, P = 0.0499). The review indicates what is presently known regarding serum HGF might be a new and meaningful biomarker of macroangiopathy in DM subjects.
Collapse
|
12
|
Usatyuk PV, Fu P, Mohan V, Epshtein Y, Jacobson JR, Gomez-Cambronero J, Wary KK, Bindokas V, Dudek SM, Salgia R, Garcia JGN, Natarajan V. Role of c-Met/phosphatidylinositol 3-kinase (PI3k)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells. J Biol Chem 2014; 289:13476-91. [PMID: 24634221 DOI: 10.1074/jbc.m113.527556] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) mediated signaling promotes cell proliferation and migration in a variety of cell types and plays a key role in tumorigenesis. As cell migration is important to angiogenesis, we characterized HGF-mediated effects on the formation of lamellipodia, a pre-requisite for migration using human lung microvascular endothelial cells (HLMVECs). HGF, in a dose-dependent manner, induced c-Met phosphorylation (Tyr-1234/1235, Tyr-1349, Ser-985, Tyr-1003, and Tyr-1313), activation of PI3k (phospho-Yp85) and Akt (phospho-Thr-308 and phospho-Ser-473) and potentiated lamellipodia formation and HLMVEC migration. Inhibition of c-Met kinase by SU11274 significantly attenuated c-Met, PI3k, and Akt phosphorylation, suppressed lamellipodia formation and endothelial cell migration. LY294002, an inhibitor of PI3k, abolished HGF-induced PI3k (Tyr-458), and Akt (Thr-308 and Ser-473) phosphorylation and suppressed lamellipodia formation. Furthermore, HGF stimulated p47(phox)/Cortactin/Rac1 translocation to lamellipodia and ROS generation. Moreover, inhibition of c-Met/PI3k/Akt signaling axis and NADPH oxidase attenuated HGF- induced lamellipodia formation, ROS generation and cell migration. Ex vivo experiments with mouse aortic rings revealed a role for c-Met signaling in HGF-induced sprouting and lamellipodia formation. Taken together, these data provide evidence in support of a significant role for HGF-induced c-Met/PI3k/Akt signaling and NADPH oxidase activation in lamellipodia formation and motility of lung endothelial cells.
Collapse
|
13
|
Tomson PL, Lumley PJ, Alexander MY, Smith AJ, Cooper PR. Hepatocyte growth factor is sequestered in dentine matrix and promotes regeneration-associated events in dental pulp cells. Cytokine 2013; 61:622-9. [DOI: 10.1016/j.cyto.2012.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
|
14
|
Lönn J, Starkhammar Johansson C, Kälvegren H, Brudin L, Skoglund C, Garvin P, Särndahl E, Ravald N, Richter A, Bengtsson T, Nayeri F. Hepatocyte growth factor in patients with coronary artery disease and its relation to periodontal condition. RESULTS IN IMMUNOLOGY 2011; 2:7-12. [PMID: 24371561 DOI: 10.1016/j.rinim.2011.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/24/2022]
Abstract
Hepatocyte growth factor (HGF) is an angiogenic, cardioprotective factor important for tissue and vascular repair. High levels of HGF are associated with chronic inflammatory diseases, such as coronary artery disease (CAD) and periodontitis, and are suggested as a marker of the ongoing atherosclerotic event in patients with CAD. Periodontal disease is more prevalent among patients with CAD than among healthy people. Recent studies indicate a reduced biological activity of HGF in different chronic inflammatory conditions. Biologically active HGF has high affinity to heparan sulfate proteoglycan (HSPG) on cell-membrane and extracellular matrix. The aim of the study was to investigate the serum concentration and the biological activity of HGF with ELISA and surface plasmon resonance (SPR), respectively, before and at various time points after percutaneous coronary intervention (PCI) in patients with CAD, and to examine the relationship with periodontal condition. The periodontal status of the CAD patients was examined, and the presence of P. gingivalis in periodontal pockets was analyzed with PCR. The HGF concentration was significantly higher, at all time-points, in patients with CAD compared to the age-matched controls (P< 0.001), but was independent of periodontal status. The HGF concentration and the affinity to HSPG adversely fluctuated over time, and the biological activity increased one month after intervention in patients without periodontitis. We conclude that elevated concentration of HGF but with reduced biological activity might indicate a chronic inflammatory profile in patients with CAD and periodontitis.
Collapse
Affiliation(s)
- J Lönn
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden ; PEAS Institute, Linköping, Sweden
| | - C Starkhammar Johansson
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Centre for Oral Rehabilitation, Public Dental Health Care, County Council of Östergötland, Linköping, Sweden
| | - H Kälvegren
- Division of Clinical Pathology and Clinical Genetics, Linköping University, Faculty of Health Sciences, Linköping, Sweden
| | - L Brudin
- Department of Medical and Health Sciences, University Hospital, Linköping, Sweden
| | - C Skoglund
- Department of Medical and Health and Sciences, Division of Drug Research, Faculty of Health Sciences, Linköping University, Linköping, Sweden ; Department of Physics, Chemistry and Biology, Division of Molecular Physics and Nanoscience, Linköping University, Linköping, Sweden
| | - P Garvin
- Division of Community Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - E Särndahl
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden ; Department of Cardiology, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - N Ravald
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Centre for Oral Rehabilitation, Public Dental Health Care, County Council of Östergötland, Linköping, Sweden
| | - A Richter
- Department of Cardiology, Heart Center, Linköping University Hospital, Linköping, Sweden
| | - T Bengtsson
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - F Nayeri
- PEAS Institute, Linköping, Sweden ; Department of Molecular and Clinical Medicine, Division of Infectious Diseases, University Hospital, Linköping, Sweden
| |
Collapse
|
15
|
Abstract
Ischemic disease causes a large number of deaths and significant clinical problems worldwide. Therapeutic angiogenesis, strengthened by advances in growth-factor-based therapies, is a promising solution to ischemic pathologies. Major challenges in therapeutic angiogenesis are the lack of stability of native angiogenic proteins and also providing sustained delivery of biologically active proteins at the ischemic sites. This paper will discuss various protein engineering strategies to develop stabilized proangiogenic proteins and several biomaterial technologies used to amplify the angiogenic outcome by delivering biologically active growth factors in a sustained manner.
Collapse
Affiliation(s)
- Rituparna Sinha Roy
- Department of Biological and Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur Campus, P O BCKV Campus Mail Office, West Bengal 741252, India.
| | | | | |
Collapse
|
16
|
Liu Y, Wang T, Yan J, Jiagbogu N, Heideman DA, Canfield AE, Alexander MY. HGF/c-Met signalling promotes Notch3 activation and human vascular smooth muscle cell osteogenic differentiation in vitro. Atherosclerosis 2011; 219:440-7. [PMID: 21920521 PMCID: PMC3925803 DOI: 10.1016/j.atherosclerosis.2011.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 07/21/2011] [Accepted: 08/18/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Vascular calcification is a major clinical problem and elucidating the underlying mechanism is important to improve the prognosis of patients with cardiovascular disease. We aimed to elucidate the role and mechanism of action of Hepatocyte Growth Factor (HGF)/c-Met signalling in vascular calcification and establish whether blocking this pathway could prevent mineralisation of vascular smooth muscle cells (VSMCs) in vitro. METHODS AND RESULTS We demonstrate increased HGF secretion and c-Met up-regulation and phosphorylation during VSMC osteogenic differentiation. Adenoviral-mediated over-expression of HGF (AdHGF) in VSMCs accelerated mineralisation, shown by alizarin red staining, and significantly increased (45)Calcium incorporation (1.96 ± 0.54-fold [P < 0.05]) and alkaline phosphatase (ALP) activity (3.01 ± 0.8-fold [P < 0.05]) compared to controls. AdHGF also significantly elevated mRNA expression of bone-related proteins, Runx2, osteocalcin, BMP2 and osterix in VSMCs. AdHGF-accelerated mineralisation correlated with increased Akt phosphorylation, nuclear translocation of Notch3 intracellular domain (N3IC) and up-regulation of the Notch3 target protein, HES1. In contrast, adenoviral-mediated over-expression of the HGF antagonist, NK4, markedly attenuated VSMC mineralisation, and reduced c-Met phosphorylation, Akt activation and HES1 protein expression compared to AdHGF-treated cells. Furthermore, the Notch inhibitor, DAPT, attenuated N3IC nuclear translocation and AdHGF-induced mineralisation. CONCLUSION We demonstrate HGF induces VSMC osteogenic differentiation via c-Met/Akt/Notch3 signalling, highlighting these pathways as potential targets for intervention of vascular calcification.
Collapse
MESH Headings
- Adenoviridae/genetics
- Alkaline Phosphatase/metabolism
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Bone Morphogenetic Protein 2/genetics
- Calcium/metabolism
- Cell Differentiation
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/genetics
- Genetic Vectors
- Hepatocyte Growth Factor/genetics
- Hepatocyte Growth Factor/metabolism
- Homeodomain Proteins/metabolism
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Messenger/metabolism
- Receptor, Notch3
- Receptors, Notch/metabolism
- Signal Transduction
- Sp7 Transcription Factor
- Time Factors
- Transcription Factor HES-1
- Transcription Factors/genetics
- Transfection
- Up-Regulation
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Yiwen Liu
- Cardiovascular Research Group, University of Manchester, UK
| | - Tao Wang
- Medical Genetics Research Group, University of Manchester, UK
| | - Jianyun Yan
- Cardiovascular Research Group, University of Manchester, UK
| | - Naomi Jiagbogu
- Cardiovascular Research Group, University of Manchester, UK
| | | | - Ann E. Canfield
- Cardiovascular Research Group, University of Manchester, UK
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | | |
Collapse
|
17
|
Sala V, Crepaldi T. Novel therapy for myocardial infarction: can HGF/Met be beneficial? Cell Mol Life Sci 2011; 68:1703-17. [PMID: 21327916 PMCID: PMC11114731 DOI: 10.1007/s00018-011-0633-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/19/2011] [Accepted: 01/27/2011] [Indexed: 12/20/2022]
Abstract
Myocardial infarction (MI) is a leading cause of hospitalization worldwide. A recently developed strategy to improve the management of MI is based on the use of growth factors which are able to enhance the intrinsic capacity of the heart to repair itself or regenerate after damage. Among others, hepatocyte growth factor (HGF) has been proposed as a modulator of cardiac repair of damage due to the pleiotropic effects elicited by Met receptor stimulation. In this review we describe the mechanistic basis for autocrine and paracrine protection of HGF in the injured heart. We also analyse the role of HGF/Met in stem cell maintenance and in stem cell therapies for MI. Finally, we summarize the most significant results on the use of HGF in experimental models of heart injury and discuss the potential of the molecule for treating ischaemic heart disease in humans.
Collapse
Affiliation(s)
- V. Sala
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Corso Massimo D’Azeglio 52, 10126 Turin, Italy
| | - T. Crepaldi
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Corso Massimo D’Azeglio 52, 10126 Turin, Italy
| |
Collapse
|
18
|
Shi Y, Song M, Guo R, Wang H, Gao P, Shi W, Huang L. Knockdown of stromal interaction molecule 1 attenuates hepatocyte growth factor-induced endothelial progenitor cell proliferation. Exp Biol Med (Maywood) 2010; 235:317-25. [PMID: 20404049 DOI: 10.1258/ebm.2009.009237] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Increased Ca(2+) entry through store-operated Ca(2+) channels (SOCCs) plays an essential role in the regulation of hepatocyte growth factor (HGF)-induced cell proliferation. Stromal interaction molecule 1 (STIM1) is thought to transmit endoplasmic reticulum (ER) Ca(2+) store depletion signals to the plasma membrane (PM), causing the opening of SOCCs in the PM. However, the relationship between HGF and STIM1 in endothelial progenitor cell (EPC) proliferation remains uncharacterized. The objective of this study was to evaluate the potential involvement of STIM1 in HGF-induced EPC proliferation. For this purpose, we used cultured rat bone marrow-derived EPCs and found that HGF-induced EPC proliferation at low concentrations. Store-operated Ca(2+) entry (SOCE) was elevated in HGF-treated EPCs, and the SOCC inhibitors 2-aminoethoxydiphenyl borate (2-APB) and BTP-2 inhibited the HGF-induced proliferation response. Moreover, STIM1 mRNA and protein expression levels were increased in response to HGF stimulation and knockdown of STMI1 decreased SOCE and prevented HGF-induced EPC proliferation. In conclusion, our data suggest that HGF-induced EPC proliferation is mediated partly via activation of STIM1.
Collapse
Affiliation(s)
- Yankun Shi
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Liu Y, Wilkinson FL, Kirton JP, Jeziorska M, Iizasa H, Sai Y, Nakashima E, Heagerty AM, Canfield AE, Alexander MY. Hepatocyte growth factor and c-Met expression in pericytes: implications for atherosclerotic plaque development. J Pathol 2007; 212:12-9. [PMID: 17405187 DOI: 10.1002/path.2155] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intraplaque neovascularization contributes to the progression of atherosclerosis. Our aim is to understand the mobilization of cells and factors involved in this process. We investigated the localization of hepatocyte growth factor (HGF) and its receptor, c-Met, in human atherosclerotic plaques, together with the effects of HGF on pericyte migration in vitro. Atherosclerotic femoral arterial segments were collected and analysed from 13 subjects who were undergoing lower limb amputation. Pericytes were identified in human lesions using a 3G5 antibody. Immunohistochemical analysis localized HGF mainly around microvessels, in association with some, but not all, CD31-positive endothelial cells. c-Met expression was mainly associated with smooth muscle cells and pericytes, around some, but not all, microvessels within the atherosclerotic lesions; no detection was apparent in normal internal mammary arteries. Using RT-PCR, we demonstrated expression of HGF and c-Met in a rat pericyte cell-line, TR-PCT1, and in primary pericytes. HGF treatment of TR-PCT1 cells induced their migration, but not their proliferation, in a dose-dependent manner (10-100 ng/ml, p<0.01), an effect mediated by activation of the serine/threonine kinase Akt, shown by western blot analysis. Treating the cells with the PI3K inhibitors Wortmannin (0.1 microM) or LY294002 (10 microM) abolished these effects. This work demonstrates the expression of c-Met and HGF in human atherosclerotic arteries, in association with SM-actin-positive cells and CD-31-positive cells, respectively. HGF induces pericyte migration via PI3-kinase and Akt activation in vitro. HGF and c-Met may be involved in neovascularization during plaque development, and may recruit pericytes to neovessels. Since pericytes are thought to mechanically stabilize new blood vessels, these factors may function to protect against haemorrhage.
Collapse
Affiliation(s)
- Y Liu
- Division of Cardiovascular and Endocrine Sciences, University of Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Borawski J, Dubowski M, Pawlak K, Mysliwiec M. Sulodexide induces hepatocyte growth factor release in humans. Eur J Pharmacol 2007; 558:167-71. [PMID: 17258198 DOI: 10.1016/j.ejphar.2006.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 12/03/2006] [Accepted: 12/06/2006] [Indexed: 11/22/2022]
Abstract
Heparin influences numerous pleiotropic growth factors, including hepatocyte growth factor (HGF), partially by their release from endothelial and extracellular matrix stores. The effects of sulodexide, a heparin-like glycosaminoglycan medication of growing importance in medicine, on HGF liberation are not known. We performed a 2-week open-label sulodexide trial in healthy male volunteers. The drug was initially administered intravenously (i.v.) in a single dose of 1200 Lipoprotein Lipase Releasing Units (LRU), then -- orally for 12 days (500 LRU twice a day), and -- again by i.v. route (1200 LRU) on day 14. Intravenous sulodexide injections were repeatedly found to induce marked and reproducible increases in immunoreactive plasma HGF levels (more than 3500% vs baseline after 10 min, and more than 1200% after 120 min), and remained unchanged when measured 120 min following oral sulodexide administration. The percentage increments in plasma HGF evoked by i.v. sulodexide at both time points and on both days inversely correlated with baseline levels of the growth factor. On day 14, the HGF levels after 120 min and their percentage increase vs baseline were strongly and directly dependent on i.v. sulodexide dose per kg of body weight. This study shows that sulodexide has a novel, remarkable and plausibly biologically important stimulating effect on the release of pleiotropic hepatocyte growth factor in humans.
Collapse
Affiliation(s)
- Jacek Borawski
- Department of Nephrology and Transplantation with Dialysis Unit, Medical University, 14 Zurawia St, 15-540 Bialystok, Poland.
| | | | | | | |
Collapse
|
21
|
Kitajima T, Terai H, Ito Y. A fusion protein of hepatocyte growth factor for immobilization to collagen. Biomaterials 2007; 28:1989-97. [PMID: 17239947 DOI: 10.1016/j.biomaterials.2006.12.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2006] [Accepted: 12/31/2006] [Indexed: 10/23/2022]
Abstract
We describe here a fusion protein consisting of hepatocyte growth factor (HGF; an angiogenic factor) and a collagen-binding domain (CBD) polypeptide of fibronectin (FN). This fusion protein (CBD-HGF), produced by a baculovirus expression system, exhibited much stronger collagen binding activity than native HGF in the range of 0.4-6.4microg/ml. Its binding at the lowest concentration exceeded that of HGF at the highest concentration. In addition, the collagen-bound CBD-HGF promoted growth of endothelial cells (ECs) to a greater degree at least 4 days longer than HGF added to the culture medium; about 5-fold greater increase in cell number after 10 days. These findings suggest that the fused CBD moiety not only helped immobilize HGF on collagen but also helped stabilize the fusion molecule, resulting in prolonged activity. The angiogenic activity of CBD-HGF in animal tissues was examined by subcutaneously implanting collagen sponges containing bound CBD-HGF. Blood vessel formation in the sponges after 7 days was 4-6-fold extensive as compared to the control sponges without sample. Implanted sponges with native HGF did not show significant difference from control. These results indicate that CBD-HGF is suitable for in vitro culture of ECs, and that this fusion protein can be used to confer HGF activity on biomaterials for use in tissue engineering.
Collapse
Affiliation(s)
- Takashi Kitajima
- Regenerative Medical Bioreactor Project, Kanagawa Academy of Science and Technology, KSP East 309, Sakado 3-2-1, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| | | | | |
Collapse
|
22
|
Current World Literature. Curr Opin Nephrol Hypertens 2007; 16:52-7. [PMID: 17143072 DOI: 10.1097/mnh.0b013e32801271d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Ohkawara N, Ueda H, Shinozaki S, Kitajima T, Ito Y, Asaoka H, Kawakami A, Kaneko E, Shimokado K. Hepatocyte Growth Factor Fusion Protein Having Collagen-Binding Activity (CBD-HGF) Accelerates Re-endothelialization and Intimal Hyperplasia in Balloon-injured Rat Carotid Artery. J Atheroscler Thromb 2007; 14:185-91. [PMID: 17726293 DOI: 10.5551/jat.e503] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Hepatocyte growth factor (HGF) is known to stimulate endothelial cell proliferation. However, re-endothelialization is not enhanced when the native protein is administered to the injured artery, probably due to the short half-life of HGF at the site of injury. Therefore, the effects of an HGF fusion protein having collagen-binding activity (CBD-HGF) on re-endothelialization and neointimal formation was studied in the balloon-injured rat carotid artery. METHODS The left common carotid artery of male Sprague-Dawley rats was injured with an inflated balloon catheter, and then treated with CBD-HGF 10 microg/mL), HGF (10 micro g/mL) or saline (control) for 15 min. After 14 days, the rats were injected with Evans blue and sacrificed. RESULTS The re-endothelialized area was significantly greater in the CBD-HGF- treated rats than in the control or HGF -treated rats. Neointimal formation was significantly more pronounced in the CBD-HGF treated rats than in other rat groups. Both HGF and CBD-HGF stimulated proliferation of vascular smooth muscle cells as well as endothelial cells in vitro. Consistent with this, cultured smooth muscle cells were shown to express the HGF receptor (c-Met). CONCLUSION CBD-HGF accelerates re-endothelialization and neointimal formation in vivo. CBD fusion protein is a useful vehicle to deliver vascular growth factors to injured arteries.
Collapse
Affiliation(s)
- Nana Ohkawara
- Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|