1
|
Maslivetc VA, Nabiul Hasan M, Boari A, Zejnelovski A, Evidente A, Sun D, Kornienko A. Ophiobolin A derivatives with enhanced activities under tumor-relevant acidic conditions. Bioorg Med Chem Lett 2024; 110:129863. [PMID: 38942129 DOI: 10.1016/j.bmcl.2024.129863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Glioblastoma (GBM) is the most common form of malignant primary brain tumor and is one of the most lethal cancers. The difficulty in treating GBM stems from its highly developed mechanisms of drug resistance. Our research team has recently identified the fungal secondary metabolite ophiobolin A (OpA) as an agent with significant activity against drug-resistant GBM cells. However, the OpA's mode of action is likely based on covalent modification of its intracellular target(s) and thus possible off-target reactivity needs to be addressed. This work involves the investigation of an acid-sensitive OpA analogue approach that exploits the elevated acidity of the GBM microenvironment to enhance the selectivity for tumor targeting. This project identified analogues that showed selectivity at killing GBM cells grown in cultures at reduced pH compared to those maintained under normal neutral conditions. These studies are expected to facilitate the development of OpA as an anti-GBM agent by investigating its potential use in an acid-sensitive analogue form with enhanced selectivity for tumor targeting.
Collapse
Affiliation(s)
- Vladimir A Maslivetc
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Angela Boari
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| | - Arben Zejnelovski
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15260, USA; Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA.
| |
Collapse
|
2
|
Alauddin M, Okumura T, Rajaxavier J, Khozooei S, Pöschel S, Takeda S, Singh Y, Brucker SY, Wallwiener D, Koch A, Salker MS. Gut Bacterial Metabolite Urolithin A Decreases Actin Polymerization and Migration in Cancer Cells. Mol Nutr Food Res 2020; 64:e1900390. [PMID: 31976617 DOI: 10.1002/mnfr.201900390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 12/11/2019] [Indexed: 12/12/2022]
Abstract
SCOPE Urolithin A (UA) is a gut-derived bacterial metabolite from ellagic acid found in pomegranates, berries, and nuts can downregulate cell proliferation and migration. Cell proliferation and cell motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explores whether UA can modify actin cytoskeleton in cancer cells. METHODS The effect of UA on globular over filamentous actin ratio is determined utilizing Western blotting, immunofluorescence, and flow cytometry. Rac1 and PAK1 levels are measured by quantitative RT-PCR and immunoblotting. As a result, a 24 h treatment with UA (20 µm) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin and wound healing. The effect of UA on actin polymerization is mimicked by pharmacological inhibition of Rac1 and PAK1. The effect is also mirrored by knock down using siRNA. CONCLUSION UA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization and migration. Thus, use of dietary UA in cancer prevention or as adjuvant therapy is promising.
Collapse
Affiliation(s)
- Md Alauddin
- Department of Women's Health, Eberhard Karls University of Tuebingen, Tübingen, 72076, Germany
| | - Toshiyuki Okumura
- Department of Women's Health, Eberhard Karls University of Tuebingen, Tübingen, 72076, Germany.,Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Janet Rajaxavier
- Department of Women's Health, Eberhard Karls University of Tuebingen, Tübingen, 72076, Germany
| | - Shayan Khozooei
- Department of Women's Health, Eberhard Karls University of Tuebingen, Tübingen, 72076, Germany
| | - Simone Pöschel
- Image Stream Core Facility, Eberhard Karls University of Tuebingen, Tübingen, 72076, Germany
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University of Tuebingen, Tübingen, 72076, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University of Tuebingen, Tübingen, 72076, Germany
| | - Diethelm Wallwiener
- Department of Women's Health, Eberhard Karls University of Tuebingen, Tübingen, 72076, Germany
| | - André Koch
- Department of Women's Health, Eberhard Karls University of Tuebingen, Tübingen, 72076, Germany
| | - Madhuri S Salker
- Department of Women's Health, Eberhard Karls University of Tuebingen, Tübingen, 72076, Germany
| |
Collapse
|
3
|
Matthews JD, Owens JA, Naudin CR, Saeedi BJ, Alam A, Reedy AR, Hinrichs BH, Sumagin R, Neish AS, Jones RM. Neutrophil-Derived Reactive Oxygen Orchestrates Epithelial Cell Signaling Events during Intestinal Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2221-2232. [PMID: 31472109 PMCID: PMC6892184 DOI: 10.1016/j.ajpath.2019.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/18/2019] [Accepted: 07/30/2019] [Indexed: 01/17/2023]
Abstract
Recent evidence has demonstrated that reactive oxygen (eg, hydrogen peroxide) can activate host cell signaling pathways that function in repair. We show that mice deficient in their capacity to generate reactive oxygen by the NADPH oxidase 2 holoenzyme, an enzyme complex highly expressed in neutrophils and macrophages, have disrupted capacity to orchestrate signaling events that function in mucosal repair. Similar observations were made for mice after neutrophil depletion, pinpointing this cell type as the source of the reactive oxygen driving oxidation-reduction protein signaling in the epithelium. To simulate epithelial exposure to high levels of reactive oxygen produced by neutrophils and gain new insight into this oxidation-reduction signaling, epithelial cells were treated with hydrogen peroxide, biochemical experiments were conducted, and a proteome-wide screen was performed using isotope-coded affinity tags to detect proteins oxidized after exposure. This analysis implicated signaling pathways regulating focal adhesions, cell junctions, and maintenance of the cytoskeleton. These pathways are also known to act via coordinated phosphorylation events within proteins that constitute the focal adhesion complex, including focal adhesion kinase and Crk-associated substrate. We identified the Rho family small GTP-binding protein Ras-related C3 botulinum toxin substrate 1 and p21 activated kinases 2 as operational in these signaling and localization pathways. These data support the hypothesis that reactive oxygen species from neutrophils can orchestrate epithelial cell-signaling events functioning in intestinal repair.
Collapse
Affiliation(s)
- Jason D Matthews
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Joshua A Owens
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Crystal R Naudin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Bejan J Saeedi
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Ashfaqul Alam
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - April R Reedy
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Benjamin H Hinrichs
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago Illinois
| | - Andrew S Neish
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Rheinallt M Jones
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
4
|
Mohanty P, Bhatnagar S. Structure of focal adhesion kinase in healthy heart versus pathological cardiac hypertrophy: A modeling and simulation study. J Mol Graph Model 2017; 80:15-24. [PMID: 29306139 DOI: 10.1016/j.jmgm.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Focal adhesion kinase (FAK) is required for signaling in the heart. S910 phosphorylated FAK is known to cause pathological cardiac hypertrophy. The switching of FAK between its inactive (-i), activated (-a) and hyperactive (-h) state is controlled by phosphorylation. FAK consists of three domains, namely: FERM, Kinase, and FAT joined by linkers L1 and L2. The structural basis of FAK phosphorylation and signaling to the downstream pathways is not understood. In this work, we carried out homology modeling and domain assembly of full length human iFAK and aFAK. 100 ns classical molecular dynamic simulations were performed using AMBER14 and effect of S910 phosphorylation on FAK was investigated. The iFAK model superposed on a small angel X-ray scattering (SAXS) derived model with RMSD of 1.18 Å for 590 Cα atoms. aFAK showed S910 phosphorylation site in L2 shielded by FERM. S910 phosphorylation in hFAK led to its exposure accompanied by a large conformational change and exposing the previously buried Grb2 interaction site responsible for causing cardiac hypertrophy. The models of FAK are in agreement with diverse experimental data and observed differences in biological action. Understanding the structure activity relationships of FAK in response to phosphorylation is important for its future therapeutic modulation.
Collapse
Affiliation(s)
- Pallavi Mohanty
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi 110078, India.
| |
Collapse
|
5
|
van Smeden J, Dijkhoff IM, Helder RWJ, Al-Khakany H, Boer DEC, Schreuder A, Kallemeijn WW, Absalah S, Overkleeft HS, Aerts JMFG, Bouwstra JA. In situ visualization of glucocerebrosidase in human skin tissue: zymography versus activity-based probe labeling. J Lipid Res 2017; 58:2299-2309. [PMID: 29025868 DOI: 10.1194/jlr.m079376] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/06/2017] [Indexed: 12/15/2022] Open
Abstract
Epidermal β-glucocerebrosidase (GBA1), an acid β-glucosidase normally located in lysosomes, converts (glucosyl)ceramides into ceramides, which is crucial to generate an optimal barrier function of the outermost skin layer, the stratum corneum (SC). Here we report on two developed in situ methods to localize active GBA in human epidermis: i) an optimized zymography method that is less labor intensive and visualizes enzymatic activity with higher resolution than currently reported methods using either substrate 4-methylumbelliferyl-β-D-glucopyranoside or resorufin-β-D-glucopyranoside; and ii) a novel technique to visualize active GBA1 molecules by their specific labeling with a fluorescent activity-based probe (ABP), MDW941. The latter method pro-ved to be more robust and sensitive, provided higher resolution microscopic images, and was less prone to sample preparation effects. Moreover, in contrast to the zymography substrates that react with various β-glucosidases, MDW941 specifically labeled GBA1. We demonstrate that active GBA1 in the epidermis is primarily located in the extracellular lipid matrix at the interface of the viable epidermis and the lower layers of the SC. With ABP-labeling, we observed reduced GBA1 activity in 3D-cultured skin models when supplemented with the reversible inhibitor, isofagomine, irrespective of GBA expression. This inhibition affected the SC ceramide composition: MS analysis revealed an inhibitor-dependent increase in the glucosylceramide:ceramide ratio.
Collapse
Affiliation(s)
- Jeroen van Smeden
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Irini M Dijkhoff
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Richard W J Helder
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hanin Al-Khakany
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Daphne E C Boer
- Medical Biochemistry Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Anne Schreuder
- Medical Biochemistry Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Wouter W Kallemeijn
- Medical Biochemistry Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Samira Absalah
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Medical Biochemistry Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Joke A Bouwstra
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Lee YJ, Kim SJ, Kwon KW, Lee WM, Im WJ, Sohn UD. Inhibitory effect of FSLLRY-NH 2 on inflammatory responses induced by hydrogen peroxide in HepG2 cells. Arch Pharm Res 2017. [PMID: 28643288 DOI: 10.1007/s12272-017-0927-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proteinase activated receptor 2 (PAR2), which is localized in the GI tract, the respiratory system, and the kidney tubules is a G protein-coupled receptor associated with inflammation, metabolism, and disease. The aim of this study was to explore the role of PAR2 in hydrogen peroxide (H2O2)-induced HepG2 cells by using FSLLRY-NH2 a PAR2 antagonist. H2O2 treatment resulted in induction of PAR2 in esophageal, gastric, and liver cells, with the most robust response being in HepG2 cells. Furthermore, this effect was dose-dependent in HepG2 cells. Treatment with H2O2 at concentrations above 400 μM for 24 h also reduced HepG2 cell viability. H2O2 treatment increased both the protein and mRNA levels of IL-1β, IL-8, and TNF-α, as well as those of SAPK/JNK. The increased levels of these pro-inflammatory genes and SAPK/JNK induced by H2O2 were attenuated in a dose-dependent manner when cells were co-treated with H2O2 and FSLLRY-NH2. In summary, the PAR2 antagonist peptide, FSLLRY-NH2, reduces the level of the pro-inflammatory genes IL-8, IL-1β, and TNF-α induced by H2O2, through the SAPK/JNK pathways in HepG2 cells. These data suggest that a PAR2 antagonist could be an anti-inflammatory agent in HepG2 cells.
Collapse
Affiliation(s)
- Yeon Joo Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Su Jin Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Kyoung Wan Kwon
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Won Mo Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Wi Joon Im
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
7
|
Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol 2017; 43:119-133. [PMID: 28188829 DOI: 10.1016/j.semcancer.2017.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
Interstitial acidification is a hallmark of solid tumor tissues resulting from the combination of different factors, including cellular buffering systems, defective tissue perfusion and high rates of cellular metabolism. Besides contributing to tumor pathogenesis and promoting tumor progression, tumor acidosis constitutes an important intrinsic and extrinsic mechanism modulating therapy sensitivity and drug resistance. In fact, pharmacological properties of anticancer drugs can be affected not only by tissue structure and organization but also by the distribution of the interstitial tumor pH. The acidic tumor environment is believed to create a chemical barrier that limits the effects and activity of many anticancer drugs. In this review article we will discuss the general protumorigenic effects of acidosis, the role of tumor acidosis in the modulation of therapeutic efficacy and potential strategies to overcome pH-dependent therapy-resistance.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
8
|
Petrova A, Capalbo A, Jacquet L, Hazelwood-Smith S, Dafou D, Hobbs C, Arno M, Farcomeni A, Devito L, Badraiq H, Simpson M, McGrath JA, Di WL, Cheng JB, Mauro TM, Ilic D. Induced Pluripotent Stem Cell Differentiation and Three-Dimensional Tissue Formation Attenuate Clonal Epigenetic Differences in Trichohyalin. Stem Cells Dev 2016; 25:1366-75. [PMID: 27460132 PMCID: PMC5035378 DOI: 10.1089/scd.2016.0156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/26/2016] [Indexed: 11/13/2022] Open
Abstract
The epigenetic background of pluripotent stem cells can influence transcriptional and functional behavior. Most of these data have been obtained in standard monolayer cell culture systems. In this study, we used exome sequencing, array comparative genomic hybridization (CGH), miRNA array, DNA methylation array, three-dimensional (3D) tissue engineering, and immunostaining to conduct a comparative analysis of two induced pluripotent stem cell (iPSC) lines used in engineering of 3D human epidermal equivalent (HEE), which more closely approximates epidermis. Exome sequencing and array CGH suggested that their genome was stable following 3 months of feeder-free culture. While the miRNAome was also not affected, ≈7% of CpG sites were differently methylated between the two lines. Analysis of the epidermal differentiation complex, a region on chromosome 1 that contains multiple genes involved in skin barrier maturation (including trichohyalin, TCHH), found that in one of the iPSC clones (iKCL004), TCHH retained a DNA methylation signature characteristic of the original somatic cells, whereas in other iPSC line (iKCL011), the TCHH methylation signature matched that of the human embryonic stem cell line KCL034. The difference between the two iPSC clones in TCHH methylation did not have an obvious effect on its expression in 3D HEE, suggesting that differentiation and tissue formation may mitigate variations in the iPSC methylome.
Collapse
Affiliation(s)
- Anastasia Petrova
- Assisted Conception Unit, Stem Cell Laboratory, Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
- St John's Institute of Dermatology, King's College London, London, United Kingdom
- Immunobiology Unit, Institute of Child Health, University College London, London, United Kingdom
| | | | - Laureen Jacquet
- Assisted Conception Unit, Stem Cell Laboratory, Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Simon Hazelwood-Smith
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Dimitra Dafou
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Carl Hobbs
- Histology Laboratory, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Matthew Arno
- Genomics Centre, King's College London, London, United Kingdom
| | - Alessio Farcomeni
- Statistics Section, Department of Public Health and Infectious Diseases, Sapienza–University of Rome, Rome, Italy
| | - Liani Devito
- Assisted Conception Unit, Stem Cell Laboratory, Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Heba Badraiq
- Assisted Conception Unit, Stem Cell Laboratory, Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Michael Simpson
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Wei-Li Di
- Immunobiology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Jeffrey B Cheng
- Department of Dermatology, Veteran Affairs Medical Center, University of California San Francisco, San Francisco, California
| | - Theodora M Mauro
- Department of Dermatology, Veteran Affairs Medical Center, University of California San Francisco, San Francisco, California
| | - Dusko Ilic
- Assisted Conception Unit, Stem Cell Laboratory, Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Celli A, Crumrine D, Meyer JM, Mauro TM. Endoplasmic Reticulum Calcium Regulates Epidermal Barrier Response and Desmosomal Structure. J Invest Dermatol 2016; 136:1840-1847. [PMID: 27255610 PMCID: PMC5070468 DOI: 10.1016/j.jid.2016.05.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 11/15/2022]
Abstract
Ca(2+) fluxes direct keratinocyte differentiation, cell-to-cell adhesion, migration, and epidermal barrier homeostasis. We previously showed that intracellular Ca(2+) stores constitute a major portion of the calcium gradient especially in the stratum granulosum. Loss of the calcium gradient triggers epidermal barrier homeostatic responses. In this report, using unfixed ex vivo epidermis and human epidermal equivalents we show that endoplasmic reticulum (ER) Ca(2+) is released in response to barrier perturbation, and that this release constitutes the major shift in epidermal Ca(2+) seen after barrier perturbation. We find that ER Ca(2+) release correlates with a transient increase in extracellular Ca(2+). Lastly, we show that ER calcium release resulting from barrier perturbation triggers transient desmosomal remodeling, seen as an increase in extracellular space and a loss of the desmosomal intercellular midline. Topical application of thapsigargin, which inhibits the ER Ca(2+) ATPase activity without compromising barrier integrity, also leads to desmosomal remodeling and loss of the midline structure. These experiments establish the ER Ca(2+) store as a master regulator of the Ca(2+) gradient response to epidermal barrier perturbation, and suggest that ER Ca(2+) homeostasis also modulates normal desmosomal reorganization, both at rest and after acute barrier perturbation.
Collapse
Affiliation(s)
- Anna Celli
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA.
| | - Debra Crumrine
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| | - Jason M Meyer
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| | - Theodora M Mauro
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| |
Collapse
|
10
|
LeftyA decreases Actin Polymerization and Stiffness in Human Endometrial Cancer Cells. Sci Rep 2016; 6:29370. [PMID: 27404958 PMCID: PMC4941646 DOI: 10.1038/srep29370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/16/2016] [Indexed: 12/27/2022] Open
Abstract
LeftyA, a cytokine regulating stemness and embryonic differentiation, down-regulates cell proliferation and migration. Cell proliferation and motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explored whether LeftyA modifies actin cytoskeleton, shape and stiffness of Ishikawa cells, a well differentiated endometrial carcinoma cell line. The effect of LeftyA on globular over filamentous actin ratio was determined utilizing Western blotting and flow cytometry. Rac1 and PAK1 transcript levels were measured by qRT-PCR as well as active Rac1 and PAK1 by immunoblotting. Cell stiffness (quantified by the elastic modulus), cell surface area and cell volume were studied by atomic force microscopy (AFM). As a result, 2 hours treatment with LeftyA (25 ng/ml) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin, and decreased cell stiffness, surface area and volume. The effect of LeftyA on actin polymerization was mimicked by pharmacological inhibition of Rac1 and PAK1. In the presence of the Rac1 or PAK1 inhibitor LeftyA did not lead to significant further actin depolymerization. In conclusion, LeftyA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization, cell softening and cell shrinkage.
Collapse
|
11
|
Pedraz-Cuesta E, Fredsted J, Jensen HH, Bornebusch A, Nejsum LN, Kragelund BB, Pedersen SF. Prolactin Signaling Stimulates Invasion via Na(+)/H(+) Exchanger NHE1 in T47D Human Breast Cancer Cells. Mol Endocrinol 2016; 30:693-708. [PMID: 27176613 DOI: 10.1210/me.2015-1299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prolactin (PRL) and its receptor (PRLR) are implicated in breast cancer invasiveness, although their exact roles remain controversial. The Na(+)/H(+) exchanger (NHE1) plays essential roles in cancer cell motility and invasiveness, but the PRLR and NHE1 have not previously been linked. Here we show that in T47D human breast cancer cells, which express high levels of PRLR and NHE1, exposure to PRL led to the activation of Janus kinase-2 (JAK2)/signal transducer and activator of transcription-5 (STAT5), Akt, and ERK1/2 signaling and the rapid formation of peripheral membrane ruffles, known to be associated with cell motility. NHE1 was present in small ruffles prior to PRL treatment and was further recruited to the larger, more dynamic ruffles induced by PRL exposure. In PRL-induced ruffles, NHE1 colocalized with activated Akt, ERK1/2, and the ERK effector p90Ribosomal S kinase (p90RSK), known regulators of NHE1 activity. Stimulation of T47D cells with PRL augmented p90RSK activation, Ser703-phosphorylation of NHE1, NHE1-dependent intracellular pH recovery, pericellular acidification, and NHE1-dependent invasiveness. NHE1 activity and localization to ruffles were attenuated by the inhibition of Akt and/or ERK1/2. In contrast, noncancerous MCF10A breast epithelial cells expressed NHE1 and PRLR at lower levels than T47D cells, and their stimulation with PRL induced neither NHE1 activation nor NHE1-dependent invasiveness. In conclusion, we show for the first time that PRLR activation stimulates breast cancer cell invasiveness via the activation of NHE1. We propose that PRL-induced NHE1 activation and the resulting NHE1-dependent invasiveness may contribute to the metastatic behavior of human breast cancer cells.
Collapse
Affiliation(s)
- Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jacob Fredsted
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Helene H Jensen
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Annika Bornebusch
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lene N Nejsum
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Birthe B Kragelund
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Bosen F, Celli A, Crumrine D, vom Dorp K, Ebel P, Jastrow H, Dörmann P, Winterhager E, Mauro T, Willecke K. Altered epidermal lipid processing and calcium distribution in the KID syndrome mouse model Cx26S17F. FEBS Lett 2015; 589:1904-10. [PMID: 26070424 DOI: 10.1016/j.febslet.2015.05.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022]
Abstract
The keratitis-ichthyosis-deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω-esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome.
Collapse
Affiliation(s)
- Felicitas Bosen
- LIMES (Life and Medical Science Institute), Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Anna Celli
- Department of Dermatology, SF-VAMC and UCSF, San Francisco, CA, USA
| | - Debra Crumrine
- Department of Dermatology, SF-VAMC and UCSF, San Francisco, CA, USA
| | - Katharina vom Dorp
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Germany
| | - Philipp Ebel
- LIMES (Life and Medical Science Institute), Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Holger Jastrow
- Electron Microscopy Unit, Imaging Center Essen, University Clinic Essen, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Germany
| | - Elke Winterhager
- Electron Microscopy Unit, Imaging Center Essen, University Clinic Essen, Germany
| | - Theodora Mauro
- Department of Dermatology, SF-VAMC and UCSF, San Francisco, CA, USA
| | - Klaus Willecke
- LIMES (Life and Medical Science Institute), Molecular Genetics, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
13
|
Lönnqvist S, Emanuelsson P, Kratz G. Influence of acidic pH on keratinocyte function and re-epithelialisation of humanin vitrowounds. J Plast Surg Hand Surg 2015; 49:346-52. [DOI: 10.3109/2000656x.2015.1053397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Petrova A, Celli A, Jacquet L, Dafou D, Crumrine D, Hupe M, Arno M, Hobbs C, Cvoro A, Karagiannis P, Devito L, Sun R, Adame LC, Vaughan R, McGrath JA, Mauro TM, Ilic D. 3D In vitro model of a functional epidermal permeability barrier from human embryonic stem cells and induced pluripotent stem cells. Stem Cell Reports 2014; 2:675-89. [PMID: 24936454 PMCID: PMC4050479 DOI: 10.1016/j.stemcr.2014.03.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/23/2022] Open
Abstract
Cornification and epidermal barrier defects are associated with a number of clinically diverse skin disorders. However, a suitable in vitro model for studying normal barrier function and barrier defects is still lacking. Here, we demonstrate the generation of human epidermal equivalents (HEEs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). HEEs are structurally similar to native epidermis, with a functional permeability barrier. We exposed a pure population of hESC/iPSC-derived keratinocytes, whose transcriptome corresponds to the gene signature of normal primary human keratinocytes (NHKs), to a sequential high-to-low humidity environment in an air/liquid interface culture. The resulting HEEs had all of the cellular strata of the human epidermis, with skin barrier properties similar to those of normal skin. Such HEEs generated from disease-specific iPSCs will be an invaluable tool not only for dissecting molecular mechanisms that lead to epidermal barrier defects but also for drug development and screening. Manufacture of HEEs with a functional epidermal barrier in vitro from hESCs/iPSCs Unique model for skin diseases with defective epidermal permeability barriers Easily adaptable model for use in regenerative and aesthetic medicine Cost-effective model for testing new drugs and cosmetics
Collapse
Affiliation(s)
- Anastasia Petrova
- Stem Cell Laboratory, Assisted Conception Unit, Division of Women's Health, Women's Health Academic Centre, King's College London, London SE1 9RT, UK ; St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Anna Celli
- Department of Dermatology, Veteran Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94121, USA
| | - Laureen Jacquet
- Stem Cell Laboratory, Assisted Conception Unit, Division of Women's Health, Women's Health Academic Centre, King's College London, London SE1 9RT, UK
| | - Dimitra Dafou
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Debra Crumrine
- Department of Dermatology, Veteran Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94121, USA
| | - Melanie Hupe
- Department of Dermatology, Veteran Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94121, USA
| | - Matthew Arno
- Genomics Centre, King's College London, London SE1 9NH, UK
| | - Carl Hobbs
- Histology Laboratory, Wolfson Centre for Age-Related Diseases, School of Biomedical Sciences, King's College London, London SE1 1UL, UK
| | - Aleksandra Cvoro
- Genomic Medicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | | | - Liani Devito
- Stem Cell Laboratory, Assisted Conception Unit, Division of Women's Health, Women's Health Academic Centre, King's College London, London SE1 9RT, UK
| | - Richard Sun
- Department of Dermatology, Veteran Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94121, USA
| | - Lillian C Adame
- Department of Dermatology, Veteran Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94121, USA
| | - Robert Vaughan
- Clinical Transplantation Laboratory, GSTS and MRC Centre for Transplantation, King's College London, King's Health Partners, London SE1 9RT, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Theodora M Mauro
- Department of Dermatology, Veteran Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94121, USA
| | - Dusko Ilic
- Stem Cell Laboratory, Assisted Conception Unit, Division of Women's Health, Women's Health Academic Centre, King's College London, London SE1 9RT, UK
| |
Collapse
|
15
|
Ilic D, Bollinger JM, Gelb M, Mauro TM. sPLA2 and the epidermal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:416-21. [PMID: 24269828 DOI: 10.1016/j.bbalip.2013.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/29/2013] [Accepted: 11/06/2013] [Indexed: 11/28/2022]
Abstract
The mammalian epidermis provides both an interface and a protective barrier between the organism and its environment. Lipid, processed into water-impermeable bilayers between the outermost layers of the epidermal cells, forms the major barrier that prevents water from exiting the organism, and also prevents toxins and infectious agents from entering. The secretory phospholipase 2 (sPLA2) enzymes control important processes in skin and other organs, including inflammation and differentiation. sPLA2 activity contributes to epidermal barrier formation and homeostasis by generating free fatty acids, which are required both for formation of lamellar membranes and also for acidification of the stratum corneum (SC). sPLA2 is especially important in controlling SC acidification and establishment of an optimum epidermal barrier during the first postnatal week. Several sPLA2 isoforms are present in the epidermis. We find that two of these isoforms, sPLA2 IIA and sPLA2 IIF, localize to the upper stratum granulosum and increase in response to experimental barrier perturbation. sPLA2F(-/-) mice also demonstrate a more neutral SC pH than do their normal littermates, and their initial recovery from barrier perturbation is delayed. These findings confirm that sPLA2 enzymes perform important roles in epidermal development, and suggest that the sPLA2IIF isoform may be central to SC acidification and barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Dusko Ilic
- Human Embryonic Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, King's College London School of Medicine, London, UK.
| | - James M Bollinger
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA
| | - Michael Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA.
| | - Theodora M Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco Veterans Medical Center, San Francisco, CA, USA.
| |
Collapse
|
16
|
Choi CH, Webb BA, Chimenti MS, Jacobson MP, Barber DL. pH sensing by FAK-His58 regulates focal adhesion remodeling. ACTA ACUST UNITED AC 2013; 202:849-59. [PMID: 24043700 PMCID: PMC3776353 DOI: 10.1083/jcb.201302131] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intracellular pH (pHi) dynamics regulates diverse cellular processes, including remodeling of focal adhesions. We now report that focal adhesion kinase (FAK), a key regulator of focal adhesion remodeling, is a pH sensor responding to physiological changes in pH. The initial step in FAK activation is autophosphorylation of Tyr397, which increased with higher pHi. We used a genetically encoded biosensor to show increased pH at focal adhesions as they mature during cell spreading. We also show that cells with reduced pHi had attenuated FAK-pY397 as well as defective cell spreading and focal adhesions. Mutagenesis studies indicated FAK-His58 is critical for pH sensing and molecular dynamics simulations suggested a model in which His58 deprotonation drives conformational changes that may modulate accessibility of Tyr397 for autophosphorylation. Expression of FAK-H58A in fibroblasts was sufficient to restore defective autophosphorylation and cell spreading at low pHi. These data are relevant to understanding cancer metastasis, which is dependent on increased pHi and FAK activity.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Department of Cell and Tissue Biology and 2 Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | | | | | | | | |
Collapse
|
17
|
Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, Baba Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2013; 13:89. [PMID: 24004445 PMCID: PMC3849184 DOI: 10.1186/1475-2867-13-89] [Citation(s) in RCA: 885] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/29/2013] [Indexed: 12/18/2022] Open
Abstract
Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a microenvironmental factor participating in tumor progression is reviewed.
Collapse
Affiliation(s)
- Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 963-8611, Koriyama, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Xue L, Aihara E, Wang TC, Montrose MH. Trefoil factor 2 requires Na/H exchanger 2 activity to enhance mouse gastric epithelial repair. J Biol Chem 2011; 286:38375-38382. [PMID: 21900251 DOI: 10.1074/jbc.m111.268219] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Trefoil factor (TFF) peptides are pivotal for gastric restitution after surface epithelial damage, but TFF cellular targets that promote cell migration are poorly understood. Conversely, Na/H exchangers (NHE) are often implicated in cellular migration but have a controversial role in gastric restitution. Using intravital microscopy to create microscopic lesions in the mouse gastric surface epithelium and directly measure epithelial restitution, we evaluated whether TFFs and NHE isoforms share a common pathway to promote epithelial repair. Blocking Na/H exchange (luminal 10 μm 5-(N-ethyl-N-isopropyl) amiloride or 25 μm HOE694) slows restitution 72-83% in wild-type or NHE1(-/-) mice. In contrast, HOE694 has no effect on the intrinsically defective gastric restitution in NHE2(-/-) mice or TFF2(-/-) mice. In TFF2(-/-) mice, NHE2 protein is reduced 23%, NHE2 remains localized to apical membranes of surface epithelium, and NHE1 protein amount or localization is unchanged. The action of topical rat TFF3 to accelerate restitution in TFF2(-/-) mice was inhibited by AMD3100 (CXCR4 receptor antagonist). Furthermore, rat TFF3 did not rescue restitution when NHE2 was inhibited [TFF2(-/-) mice +HOE694, or NHE2(-/-) mice]. HOE694 had no effect on pH at the juxtamucosal surface before or after damage. We conclude that functional NHE2, but not NHE1, is essential for mouse gastric epithelial restitution and that TFFs activate epithelial repair via NHE2.
Collapse
Affiliation(s)
- Lin Xue
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York 10032
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267.
| |
Collapse
|
19
|
Sarigianni M, Tsapas A, Mikhailidis DP, Kaloyianni M, Koliakos G, Paletas K. Involvement of signaling molecules on na/h exchanger-1 activity in human monocytes. Open Cardiovasc Med J 2010; 4:181-8. [PMID: 21160910 PMCID: PMC3002055 DOI: 10.2174/1874192401004010181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 07/30/2010] [Accepted: 08/02/2010] [Indexed: 12/27/2022] Open
Abstract
Background: Sodium/hydrogen exchanger-1 (NHE-1) contributes to maintaining intracellular pH (pHi). We assessed the effect of glucose, insulin, leptin and adrenaline on NHE-1 activity in human monocytes in vitro. These cells play a role in atherogenesis and disturbances in the hormones evaluated are associated with obesity and diabetes. Methods and Results: Monocytes were isolated from 16 healthy obese and 10 lean healthy subjects. NHE-1 activity was estimated by measuring pHi with a fluorescent dye. pHi was assessed pre- and post-incubation with glucose, insulin, leptin and adrenaline. Experiments were repeated after adding a NHE-1 inhibitor (cariporide) or an inhibitor of protein kinase C (PKC), nitric oxide synthase (NOS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, phosphoinositide 3-kinases (PI3K) or actin polymerization. Within the whole study population, glucose enhanced NHE-1 activity by a processes involving PKC, NOS, PI3K and actin polymerization (p = 0.0006 to 0.01). Insulin-mediated activation of NHE-1 (p = <0.0001 to 0.02) required the classical isoforms of PKC, NOS, NADPH oxidase and PI3K. Leptin increased NHE-1 activity (p = 0.0004 to 0.04) through the involvement of PKC and actin polymerization. Adrenaline activated NHE-1 (p = <0.0001 to 0.01) by a process involving the classical isoforms of PKC, NOS and actin polymerization. There were also some differences in responses when lean and obese subjects were compared. Incubation with cariporide attenuated the observed increase in NHE-1 activity. Conclusions: Selective inhibition of NHE-1 in monocytes could become a target for drug action in atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Maria Sarigianni
- Metabolic Diseases Unit, Second Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
20
|
Ste20-related proline/alanine-rich kinase (SPAK) regulated transcriptionally by hyperosmolarity is involved in intestinal barrier function. PLoS One 2009; 4:e5049. [PMID: 19343169 PMCID: PMC2660421 DOI: 10.1371/journal.pone.0005049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/06/2009] [Indexed: 01/01/2023] Open
Abstract
The Ste20-related protein proline/alanine-rich kinase (SPAK) plays important roles in cellular functions such as cell differentiation and regulation of chloride transport, but its roles in pathogenesis of intestinal inflammation remain largely unknown. Here we report significantly increased SPAK expression levels in hyperosmotic environments, such as mucosal biopsy samples from patients with Crohn's disease, as well as colon tissues of C57BL/6 mice and Caco2-BBE cells treated with hyperosmotic medium. NF-kappaB and Sp1-binding sites in the SPAK TATA-less promoter are essential for SPAK mRNA transcription. Hyperosmolarity increases the ability of NF-kappaB and Sp1 to bind to their binding sites. Knock-down of either NF-kappaB or Sp1 by siRNA reduces the hyperosmolarity-induced SPAK expression levels. Furthermore, expression of NF-kappaB, but not Sp1, was upregulated by hyperosmolarity in vivo and in vitro. Nuclear run-on assays showed that hyperosmolarity increases SPAK expression levels at the transcriptional level, without affecting SPAK mRNA stability. Knockdown of SPAK expression by siRNA or overexpression of SPAK in cells and transgenic mice shows that SPAK is involved in intestinal permeability in vitro and in vivo. Together, our data suggest that SPAK, the transcription of which is regulated by hyperosmolarity, plays an important role in epithelial barrier function.
Collapse
|
21
|
Howerton K, Schlaepfer DD, Ilic D. Establishment of cell lines from mouse embryos with early embryonic lethality. ACTA ACUST UNITED AC 2008; 15:379-83. [PMID: 18979299 DOI: 10.1080/15419060802440054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is often difficult to determine molecular mechanisms leading to early embryonic lethality of genetically modified mice due to lack of cells for further analyses. The authors describe here establishment of mouse embryonic fibroblast (MEF) cell lines from gastrulation stage embryos. In this example, using a combination of in vivo and in vitro techniques, the authors successfully generated MEF cell lines that lack both fibronectin (FN) and focal adhesion kinase (FAK).
Collapse
Affiliation(s)
- Kyle Howerton
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|