1
|
Yue Q, Leng X, Xie N, Zhang Z, Yang D, Hoi MPM. Endothelial Dysfunctions in Blood-Brain Barrier Breakdown in Alzheimer's Disease: From Mechanisms to Potential Therapies. CNS Neurosci Ther 2024; 30:e70079. [PMID: 39548663 PMCID: PMC11567945 DOI: 10.1111/cns.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 11/18/2024] Open
Abstract
Recent research has shown the presence of blood-brain barrier (BBB) breakdown in Alzheimer's disease (AD). BBB is a dynamic interface consisting of a continuous monolayer of brain endothelial cells (BECs) enveloped by pericytes and astrocytes. The restricted permeability of BBB strictly controls the exchange of substances between blood and brain parenchyma, which is crucial for brain homeostasis by excluding blood-derived detrimental factors and pumping out brain-derived toxic molecules. BBB breakdown in AD is featured as a series of BEC pathologies such as increased paracellular permeability, abnormal levels and functions of transporters, and inflammatory or oxidative profile, which may disturb the substance transportation across BBB, thereafter induce CNS disorders such as hypometabolism, Aβ accumulation, and neuroinflammation, eventually aggravate cognitive decline. Therefore, it seems important to protect BEC properties for BBB maintenance and neuroprotection. In this review, we thoroughly summarized the pathological alterations of BEC properties reported in AD patients and numerous AD models, including paracellular permeability, influx and efflux transporters, and inflammatory and oxidative profiles, and probably associated underlying mechanisms. Then we reviewed current therapeutic agents that are effective in ameliorating a series of BEC pathologies, and ultimately protecting BBB integrity and cognitive functions. Regarding the current drug development for AD proceeds extremely hard, this review aims to discuss the therapeutic potentials of targeting BEC pathologies and BBB maintenance for AD treatment, therefore expecting to shed a light on the future AD drug development by targeting BEC pathologies and BBB protection.
Collapse
Affiliation(s)
- Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
| | - Xinyue Leng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Deguang Yang
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
2
|
Chen T, Dai Y, Hu C, Lin Z, Wang S, Yang J, Zeng L, Li S, Li W. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024; 21:60. [PMID: 39030617 PMCID: PMC11264766 DOI: 10.1186/s12987-024-00557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Maintaining the structural and functional integrity of the blood-brain barrier (BBB) is vital for neuronal equilibrium and optimal brain function. Disruptions to BBB performance are implicated in the pathology of neurodegenerative diseases. MAIN BODY Early indicators of multiple neurodegenerative disorders in humans and animal models include impaired BBB stability, regional cerebral blood flow shortfalls, and vascular inflammation associated with BBB dysfunction. Understanding the cellular and molecular mechanisms of BBB dysfunction in brain disorders is crucial for elucidating the sustenance of neural computations under pathological conditions and for developing treatments for these diseases. This paper initially explores the cellular and molecular definition of the BBB, along with the signaling pathways regulating BBB stability, cerebral blood flow, and vascular inflammation. Subsequently, we review current insights into BBB dynamics in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The paper concludes by proposing a unified mechanism whereby BBB dysfunction contributes to neurodegenerative disorders, highlights potential BBB-focused therapeutic strategies and targets, and outlines lessons learned and future research directions. CONCLUSIONS BBB breakdown significantly impacts the development and progression of neurodegenerative diseases, and unraveling the cellular and molecular mechanisms underlying BBB dysfunction is vital to elucidate how neural computations are sustained under pathological conditions and to devise therapeutic approaches.
Collapse
Affiliation(s)
- Tongli Chen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yan Dai
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chenghao Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zihao Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shengzhe Wang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Shanshan Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Weiyun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
3
|
Lei T, Yang Z, Li H, Qin M, Gao H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev 2024; 207:115219. [PMID: 38401847 DOI: 10.1016/j.addr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that vascular pathological changes play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The dysfunction of the cerebral vasculature occurs in the early course of AD, characterized by alterations in vascular morphology, diminished cerebral blood flow (CBF), impairment of the neurovascular unit (NVU), vasculature inflammation, and cerebral amyloid angiopathy. Vascular dysfunction not only facilitates the influx of neurotoxic substances into the brain, triggering inflammation and immune responses but also hampers the efflux of toxic proteins such as Aβ from the brain, thereby contributing to neurodegenerative changes in AD. Furthermore, these vascular changes significantly impact drug delivery and distribution within the brain. Therefore, developing targeted delivery systems or therapeutic strategies based on vascular alterations may potentially represent a novel breakthrough in AD treatment. This review comprehensively examines various aspects of vascular alterations in AD and outlines the current interactions between nanoparticles and pathological changes of vascular.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Bhandari M, Tiwari RK, Chanda S, Bonde GV. Targeting angiogenesis, inflammation, and oxidative stress in Alzheimer's diseases. TARGETING ANGIOGENESIS, INFLAMMATION, AND OXIDATIVE STRESS IN CHRONIC DISEASES 2024:215-249. [DOI: 10.1016/b978-0-443-13587-3.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Estudillo E, López-Ornelas A, Rodríguez-Oviedo A, Gutiérrez de la Cruz N, Vargas-Hernández MA, Jiménez A. Thinking outside the black box: are the brain endothelial cells the new main target in Alzheimer's disease? Neural Regen Res 2023; 18:2592-2598. [PMID: 37449594 DOI: 10.4103/1673-5374.373672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The blood-brain barrier is the interface through which the brain interacts with the milieu and consists mainly of a sophisticated network of brain endothelial cells that forms blood vessels and selectively moves molecules inside and outside the brain through multiple mechanisms of transport. Although brain endothelial cell function is crucial for brain homeostasis, their role in neurodegenerative diseases has historically not been considered with the same importance as other brain cells such as microglia, astroglia, neurons, or even molecules such as amyloid beta, Tau, or alpha-synuclein. Alzheimer's disease is the most common neurodegenerative disease, and brain endothelial cell dysfunction has been reported by several groups. However, its impairment has barely been considered as a potential therapeutic target. Here we review the most recent advances in the relationship between Alzheimer's disease and brain endothelial cells commitment and analyze the possible mechanisms through which their alterations contribute to this neurodegenerative disease, highlighting their inflammatory phenotype and the possibility of an impaired secretory pattern of brain endothelial cells that could contribute to the progression of this ailment. Finally, we discuss why shall brain endothelial cells be appreciated as a therapeutic target instead of solely an obstacle for delivering treatments to the injured brain in Alzheimer's disease.
Collapse
Affiliation(s)
- Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México; Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City, Mexico
| | | | - Neptali Gutiérrez de la Cruz
- Laboratorio de Morfología; Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya, Lomas de Sotelo, Miguel Hidalgo, Mexico City, Mexico
| | - Marco Antonio Vargas-Hernández
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya, Lomas de Sotelo, Miguel Hidalgo, Mexico City, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico
| |
Collapse
|
6
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
7
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
8
|
Ishihara K, Takata K, Mizutani KI. Involvement of an Aberrant Vascular System in Neurodevelopmental, Neuropsychiatric, and Neuro-Degenerative Diseases. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010221. [PMID: 36676170 PMCID: PMC9866034 DOI: 10.3390/life13010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4656
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| |
Collapse
|
9
|
Opportunities and challenges in delivering biologics for Alzheimer's disease by low-intensity ultrasound. Adv Drug Deliv Rev 2022; 189:114517. [PMID: 36030018 DOI: 10.1016/j.addr.2022.114517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023]
Abstract
Low-intensity ultrasound combined with intravenously injected microbubbles (US+MB) is a novel treatment modality for brain disorders, including Alzheimer's disease (AD), safely and transiently allowing therapeutic agents to overcome the blood-brain barrier (BBB) that constitutes a major barrier for therapeutic agents. Here, we first provide an update on immunotherapies in AD and how US+MB has been applied to AD mouse models and in clinical trials, considering the ultrasound and microbubble parameter space. In the second half of the review, we compare different in vitro BBB models and discuss strategies for combining US+MB with BBB modulators (targeting molecules such as claudin-5), and highlight the insight provided by super-resolution microscopy. Finally, we conclude with a short discussion on how in vitro findings can inform the design of animal studies, and how the insight gained may aid treatment optimization in the clinical ultrasound space.
Collapse
|
10
|
Zamolodchikov D, Duffield M, Macdonald LE, Alessandri-Haber N. Accumulation of high molecular weight kininogen in the brains of Alzheimer's disease patients may affect microglial function by altering phagocytosis and lysosomal cathepsin activity. Alzheimers Dement 2022; 18:1919-1929. [PMID: 34978145 DOI: 10.1002/alz.12531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 01/28/2023]
Abstract
Increased activation of the contact system protein high molecular weight kininogen (HK) has been shown in plasma and cerebrospinal fluid of Alzheimer's disease (AD) patients, but its potential role in the brain has not been explored. We assessed HK levels in brain tissue from 20 AD patients and controls and modeled the effects of HK on microglia-like cells in culture. We show increased levels of HK in the hippocampus of AD patients, which colocalized with amyloid beta (Aβ) deposits and activated microglia. Treatment of microglia with HK led to cell clustering and elevated levels of phagocytosed Aβ. We demonstrate that microglia internalize HK and traffic it to lysosomes, which is accompanied by reduced activity of lysosomal cathepsins L and S. Our results suggest that HK accumulation in the AD hippocampus may alter microglial uptake and degradation of Aβ fibrils, possibly contributing to microglial dysfunction in AD.
Collapse
|
11
|
Abstract
Thrombin facilitates the aggregation of platelet in hemostatic processes and participates in the regulation of cell signaling. Therefore, the development of thrombin sensors is conducive to comprehending the role of thrombin in the course of a disease. Biosensors based on aptamers screened by SELEX have exhibited superiority for thrombin detection. In this review, we summarized the aptamer-based sensors for thrombin detection which rely on the specific recognitions between thrombin and aptamer. Meanwhile, the unique advantages of different sensors including optical and electrochemical sensors were also highlighted. Especially, these sensors based on electrochemistry have the potential to be miniaturized, and thus have gained comprehensive attention. Furthermore, concerns about aptamer-based sensors for thrombin detection, prospects of the future and promising avenues in this field were also presented.
Collapse
|
12
|
The amyloid peptide β disrupts intercellular junctions and increases endothelial permeability in a NADPH oxidase 1-dependent manner. Redox Biol 2022; 52:102287. [PMID: 35358850 PMCID: PMC8966210 DOI: 10.1016/j.redox.2022.102287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia and is associated with the accumulation of amyloid peptide β in the brain parenchyma. Vascular damage and microvascular thrombosis contribute to the neuronal degeneration and the loss of brain function typical of this disease. In this study, we utilised a murine model of Alzheimer's disease to evaluate the neurovascular effects of this disease. Upon detection of an increase in the phosphorylation of the endothelial surface receptor VE-cadherin, we focused our attention on endothelial cells and utilised two types of human endothelial cells cultured in vitro: 1) human umbilical vein endothelial cells (HUVECs) and 2) human brain microvascular endothelial cells (hBMECs). Using an electrical current impedance system (ECIS) and FITC-albumin permeability assays, we discovered that the treatment of human endothelial cells with amyloid peptide β causes a loss in their barrier function, which is oxidative stress-dependent and similarly to our observation in mouse brain associates with VE-cadherin phosphorylation. The activation of the superoxide anion-generating enzyme NADPH oxidase 1 is responsible for the oxidative stress that leads to the disruption of barrier function in human endothelial cells in vitro. In summary, we have identified a novel molecular mechanism explaining how the accumulation of amyloid peptide β in the brain parenchyma may induce the loss of neurovascular barrier function, which has been observed in patients. Neurovascular leakiness plays an important role in brain inflammation and neuronal degeneration driving the progression of the Alzheimer's disease. Therefore, this study provides a novel and promising target for the development of a pharmacological treatment to protect neurovascular function and reduce the progression of the neurodegeneration in Alzheimer's patients. Amyloid peptide β induces oxidative changes in mouse hippocampus. The endothelial barrier function is impaired by amyloid peptide β. Oxidative stress is critical for the increase in endothelial monolayer permeability. NADPH oxidase 1 mediates the endothelial barrier damage caused by amyloid peptide β.
Collapse
|
13
|
Wu Q, Yang L, Xie L, Shang J, He S, Liu J, Wang F. Modular Assembly of a Concatenated DNA Circuit for In Vivo Amplified Aptasensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200983. [PMID: 35460185 DOI: 10.1002/smll.202200983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Probing endogenous molecular profiles in living entities is of fundamental significance to decipher biological functions and exploit novel theranostics. Despite programmable nucleic acid-based aptasensing systems across the breadth of molecular imaging, an aptasensing system enabling in vivo imaging with high sensitivity, accuracy, and adaptability is highly required yet is still in its infancy. Artificial catalytic DNA circuits that can modularly integrate to generate multiple outputs from a single input in an isothermal autonomous manner, have supplemented powerful toolkits for intracellular biosensing research. Herein, a multilayer nonenzymatic catalytic DNA circuits-based aptasensing system is devised for in situ imaging of a bioactive molecule in living mice by assembling branched DNA copolymers with high-molecular-weight and high-signal-gain based on avalanche-mimicking hybridization chain reactions (HCRs). The HCRs aptasensing circuit performs as a general and powerful sensing platform for precise analysis of a series of bioactive molecules due to its inherent rich recognition repertoire and hierarchical reaction accelerations. With tumor-targeting capsule encapsulation, the HCRs aptasensing circuit is specifically delivered into tumor cells and allowed the high-contrast imaging of intracellular adenosine triphosphate in living mice, highlighting its potential for visualizing these clinically important biomolecules and for studying the associated physiological processes.
Collapse
Affiliation(s)
- Qiong Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P. R. China
| | - Lei Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Lingling Xie
- Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing Liu
- Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
14
|
McLarnon JG. A Leaky Blood–Brain Barrier to Fibrinogen Contributes to Oxidative Damage in Alzheimer’s Disease. Antioxidants (Basel) 2021; 11:antiox11010102. [PMID: 35052606 PMCID: PMC8772934 DOI: 10.3390/antiox11010102] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
The intactness of blood–brain barrier (BBB) is compromised in Alzheimer’s disease (AD). Importantly, evidence suggests that the perturbation and abnormalities appearing in BBB can manifest early in the progression of the disease. The disruption of BBB allows extravasation of the plasma protein, fibrinogen, to enter brain parenchyma, eliciting immune reactivity and response. The presence of amyloid-β (Aβ) peptide leads to the formation of abnormal aggregates of fibrin resistant to degradation. Furthermore, Aβ deposits act on the contact system of blood coagulation, altering levels of thrombin, fibrin clots and neuroinflammation. The neurovascular unit (NVU) comprises an ensemble of brain cells which interact with infiltrating fibrinogen. In particular, interaction of resident immune cell microglia with fibrinogen, fibrin and Aβ results in the production of reactive oxygen species (ROS), a neurotoxic effector in AD brain. Overall, fibrinogen infiltration through a leaky BBB in AD animal models and in human AD tissue is associated with manifold abnormalities including persistent fibrin aggregation and clots, microglial-mediated production of ROS and diminished viability of neurons and synaptic connectivity. An objective of this review is to better understand how processes associated with BBB leakiness to fibrinogen link vascular pathology with neuronal and synaptic damage in AD.
Collapse
Affiliation(s)
- James G McLarnon
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| |
Collapse
|
15
|
Wu X, Zeng H, Cai L, Chen G. Role of the Extracellular Traps in Central Nervous System. Front Immunol 2021; 12:783882. [PMID: 34868063 PMCID: PMC8635093 DOI: 10.3389/fimmu.2021.783882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
It has been reported that several immune cells can release chromatin and granular proteins into extracellular space in response to the stimulation, forming extracellular traps (ETs). The cells involved in the extracellular trap formation are recognized including neutropils, macrophages, basophils, eosinophils, and mast cells. With the development of research related to central nervous system, the role of ETs has been valued in neuroinflammation, blood–brain barrier, and other fields. Meanwhile, it has been found that microglial cells as the resident immune cells of the central nervous system can also release ETs, updating the original understanding. This review aims to clarify the role of the ETs in the central nervous system, especially in neuroinflammation and blood–brain barrier.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Neurological Surgery The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurological Surgery The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingxin Cai
- Department of Neurological Surgery The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurological Surgery The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Boyarko B, Hook V. Human Tau Isoforms and Proteolysis for Production of Toxic Tau Fragments in Neurodegeneration. Front Neurosci 2021; 15:702788. [PMID: 34744602 PMCID: PMC8566764 DOI: 10.3389/fnins.2021.702788] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/09/2021] [Indexed: 01/27/2023] Open
Abstract
The human tau protein is implicated in a wide range of neurodegenerative “tauopathy” diseases, consisting of Alzheimer’s disease (AD) and frontotemporal lobar degeneration which includes progressive supranuclear palsy, corticobasal degeneration, Pick’s disease, and FTLD-tau (frontotemporal dementia with parkinsonism caused by MAPT mutations). Tau gene transcripts in the human brain undergo alternative splicing to yield 6 different tau protein isoforms that are expressed in different ratios in neurodegeneration which result in tau pathology of paired-helical filaments, neurofibrillary tangles, and tau fibrillar aggregates with detrimental microtubule destabilization. Protease-mediated tau truncation is an important post-translational modification (PTM) which drives neurodegeneration in a tau fragment-dependent manner. While numerous tau fragments have been identified, knowledge of the proteolytic steps that convert each parent tau isoform into specific truncated tau fragments has not yet been fully defined. An improved understanding of the relationships between tau isoforms and their proteolytic processing to generate neurotoxic tau fragments is important to the field. This review evaluates tau isoform expression patterns including PTMs and mutations that influence proteolysis of tau to generate toxic fragments that drive cognitive deficits in AD and other tauopathy models. This assessment identifies the gap in the field on understanding the details of proteolytic steps used to convert each tau isoform into fragments. Knowledge of the processing mechanisms of tau isoforms can lead to new protease targeted drug strategies to prevent the formation of toxic tau fragments in tauopathy neurodegenerative diseases.
Collapse
Affiliation(s)
- Ben Boyarko
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.,Department of Neurosciences and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Vittal Rao H, Bihaqi SW, Iannucci J, Sen A, Grammas P. Thrombin Signaling Contributes to High Glucose-Induced Injury of Human Brain Microvascular Endothelial Cells. J Alzheimers Dis 2021; 79:211-224. [PMID: 33252072 DOI: 10.3233/jad-200658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes is one of the strongest disease-related risk factors for Alzheimer's disease (AD). In diabetics, hyperglycemia-induced microvascular complications are the major cause of end-organ injury, contributing to morbidity and mortality. Microvascular pathology is also an important and early feature of AD. The cerebral microvasculature may be a point of convergence of both diseases. Several lines of evidence also implicate thrombin in AD as well as in diabetes. OBJECTIVE Our objective was to investigate the role of thrombin in glucose-induced brain microvascular endothelial injury. METHODS Cultured Human brain microvascular endothelial cells (HBMVECs) were treated with 30 mM glucose±100 nM thrombin and±250 nM Dabigatran or inhibitors of PAR1, p38MAPK, MMP2, or MMP9. Cytotoxicity and thrombin activity assays on supernatants and western blotting for protein expression in lysates were performed. RESULTS reatment of HBMVECs with 30 mM glucose increased thrombin activity and expression of inflammatory proteins TNFα, IL-6, and MMPs 2 and 9; this elevation was reduced by the thrombin inhibitor dabigatran. Direct treatment of brain endothelial cells with thrombin upregulated p38MAPK and CREB, and induced TNFα, IL6, MMP2, and MMP9 as well as oxidative stress proteins NOX4 and iNOS. Inhibition of thrombin, thrombin receptor PAR1 or p38MAPK decrease expression of inflammatory and oxidative stress proteins, implying that thrombin may play a central role in glucose-induced endothelial injury. CONCLUSION Since preventing brain endothelial injury would preserve blood-brain barrier integrity, prevent neuroinflammation, and retain intact functioning of the neurovascular unit, inhibiting thrombin, or its downstream signaling effectors, could be a therapeutic strategy for mitigating diabetes-induced dementia.
Collapse
Affiliation(s)
- Haripriya Vittal Rao
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Syed Waseem Bihaqi
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA.,Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Jaclyn Iannucci
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA.,Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Paula Grammas
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
18
|
Szu JI, Obenaus A. Cerebrovascular phenotypes in mouse models of Alzheimer's disease. J Cereb Blood Flow Metab 2021; 41:1821-1841. [PMID: 33557692 PMCID: PMC8327123 DOI: 10.1177/0271678x21992462] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurological degenerative disorder and is the most common cause of dementia in the elderly. Clinically, AD manifests with memory and cognitive decline associated with deposition of hallmark amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although the mechanisms underlying AD remains unclear, two hypotheses have been proposed. The established amyloid hypothesis states that Aβ accumulation is the basis of AD and leads to formation of NFTs. In contrast, the two-hit vascular hypothesis suggests that early vascular damage leads to increased accumulation of Aβ deposits in the brain. Multiple studies have reported significant morphological changes of the cerebrovasculature which can result in severe functional deficits. In this review, we delve into known structural and functional vascular alterations in various mouse models of AD and the cellular and molecular constituents that influence these changes to further disease progression. Many studies shed light on the direct impact of Aβ on the cerebrovasculature and how it is disrupted during the progression of AD. However, more research directed towards an improved understanding of how the cerebrovasculature is modified over the time course of AD is needed prior to developing future interventional strategies.
Collapse
Affiliation(s)
- Jenny I Szu
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
| | - André Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
19
|
Moore EE, Jefferson AL. Impact of Cardiovascular Hemodynamics on Cognitive Aging. Arterioscler Thromb Vasc Biol 2021; 41:1255-1264. [PMID: 33567862 PMCID: PMC7990698 DOI: 10.1161/atvbaha.120.311909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Elizabeth E. Moore
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Medical Scientist Training Program, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Angela L. Jefferson
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Cao H, Seto SW, Bhuyan DJ, Chan HH, Song W. Effects of Thrombin on the Neurovascular Unit in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:973-984. [PMID: 33392917 DOI: 10.1007/s10571-020-01019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia is a cerebrovascular disease with high morbidity and mortality that poses a significant burden on society and the economy. About 60% of cerebral ischemia is caused by thrombus, and the formation of thrombus proceeds from insoluble fibrin, following its transformation from liquid fibrinogen. In thrombus-induced ischemia, increased permeability of the blood-brain barrier (BBB), followed by the extravasation of blood components into the brain results in an altered brain microenvironment. Changes in the brain microenvironment affect brain function and the neurovascular unit (NVU), the working unit of the brain. Recent studies have reported that coagulation factors interact with the NVU and its components, but the specific function of this interaction is highly speculative and warrants further investigations. In this article, we reviewed the role of coagulation factors in cerebral ischemia and the role of coagulation factors in thrombosis. Additionally, the influence of thrombin on the NVU is introduced, as well as in the function of NVU, which may help to explore part of brain injury mechanism during ischemia. Lastly, we propose some novel therapeutic approaches on ischemic stroke by reducing the risk of coagulation.
Collapse
Affiliation(s)
- Hui Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China
| | - Sai Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China.,NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Hoi Huen Chan
- Hong Kong Community College, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wenting Song
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China.
| |
Collapse
|
21
|
Floare ML, Allen SP. Why TDP-43? Why Not? Mechanisms of Metabolic Dysfunction in Amyotrophic Lateral Sclerosis. Neurosci Insights 2020; 15:2633105520957302. [PMID: 32995749 PMCID: PMC7503004 DOI: 10.1177/2633105520957302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder for which there is no effective curative treatment available and minimal palliative care. Mutations in the gene encoding the TAR DNA-binding protein 43 (TDP-43) are a well-recognized genetic cause of ALS, and an imbalance in energy homeostasis correlates closely to disease susceptibility and progression. Considering previous research supporting a plethora of downstream cellular impairments originating in the histopathological signature of TDP-43, and the solid evidence around metabolic dysfunction in ALS, a causal association between TDP-43 pathology and metabolic dysfunction cannot be ruled out. Here we discuss how TDP-43 contributes on a molecular level to these impairments in energy homeostasis, and whether the protein's pathological effects on cellular metabolism differ from those of other genetic risk factors associated with ALS such as superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9orf72) and fused in sarcoma (FUS).
Collapse
Affiliation(s)
- Mara-Luciana Floare
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Scott P. Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
22
|
Fessel J. Caveolae, CD109, and endothelial cells as targets for treating Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12066. [PMID: 32995471 PMCID: PMC7506987 DOI: 10.1002/trc2.12066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Reduced functionality of transforming growth factor β (TGF-β) is a major pathogenetic component of Alzheimer's disease (AD). The reduction is caused by an ≈50% decrease in the AD brain of the TGF-β receptor, TGFBR, causing a bottleneck effect that reduces the downstream actions of TGF-β, which is highly disadvantageous for brain function. Degradation of TGFBR occurs in caveolae with participation by caveolin-1 (Cav-1) and CD109. Mechanisms for this are discussed. In the cerebral microcirculation, endothelial cells (which are rich in caveolae) carry CD109 as a surface marker that co-precipitates with Cav-1. Atorvastatin reduced Cav-1 by 75% and, because Cav-1 and CD109 co-immunoprecipitate reciprocally, atorvastatin would also reduce the level of CD109. Administration of atorvastatin as a component of combination therapy would diminish the degradation of TGFBR and thereby benefit patients with AD.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine University of California School of Medicine San Francisco California USA
| |
Collapse
|
23
|
Matsumoto J, Dohgu S, Takata F, Iwao T, Kimura I, Tomohiro M, Aono K, Kataoka Y, Yamauchi A. Serum amyloid A-induced blood-brain barrier dysfunction associated with decreased claudin-5 expression in rat brain endothelial cells and its inhibition by high-density lipoprotein in vitro. Neurosci Lett 2020; 738:135352. [PMID: 32931862 DOI: 10.1016/j.neulet.2020.135352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier (BBB) is the multicellular interface located between the peripheral circulation and the brain parenchyma. BBB dysfunction is reported in many CNS diseases, such cognitive impairment, depression, Alzheimer's disease (AD), and multiple sclerosis (MS). Emerging evidence indicates that liver-derived inflammatory mediators are upregulated in neurological diseases with BBB dysfunction. Serum amyloid A (SAA), an acute phase protein secreted by hepatocytes, could be a candidate inflammatory signaling molecule transmitted from the liver to the brain; however, its contribution to BBB dysfunction is poorly understood. The present study aimed to elucidate the involvement of SAA in BBB impairment in an in vitro BBB model using rat brain microvascular endothelial cells (RBECs). We demonstrated that Apo-SAA significantly decreased transendothelial electrical resistance (TEER) and increased sodium fluorescein (Na-F) permeability in RBEC monolayers. Apo-SAA also decreased claudin-5 expression levels in RBECs. Furthermore, the Apo-SAA-mediated impairment of the BBB with decreased claudin-5 expression was inhibited by the addition of a high-density lipoprotein (HDL) related to SAA in plasma. These findings suggest that HDL counteracts the effects of SAA on BBB function. Therefore, the functional imbalance between SAA and HDL may induce BBB impairment, thereby triggering development of neuroinflammation. SAA could be a significant endogenous mediator in the liver-to-brain inflammation axis.
Collapse
Affiliation(s)
- Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Takuro Iwao
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Ikuya Kimura
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Misaki Tomohiro
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Kentaro Aono
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
24
|
Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer's Disease. Front Neurosci 2020; 14:762. [PMID: 32792902 PMCID: PMC7393221 DOI: 10.3389/fnins.2020.00762] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The societal burden of Alzheimer’s disease (AD) is staggering, with current estimates suggesting that 50 million people world-wide have AD. Identification of new therapeutic targets is a critical barrier to the development of disease-modifying therapies. A large body of data implicates vascular pathology and cardiovascular risk factors in the development of AD, indicating that there are likely shared pathological mediators. Inflammation plays a role in both cardiovascular disease and AD, and recent evidence has implicated elements of the coagulation system in the regulation of inflammation. In particular, the multifunctional serine protease thrombin has been found to act as a mediator of vascular dysfunction and inflammation in both the periphery and the central nervous system. In the periphery, thrombin contributes to the development of cardiovascular disease, including atherosclerosis and diabetes, by inducing endothelial dysfunction and related inflammation. In the brain, thrombin has been found to act on endothelial cells of the blood brain barrier, microglia, astrocytes, and neurons in a manner that promotes vascular dysfunction, inflammation, and neurodegeneration. Thrombin is elevated in the AD brain, and thrombin signaling has been linked to both tau and amyloid beta, pathological hallmarks of the disease. In AD mouse models, inhibiting thrombin preserves cognition and endothelial function and reduces neuroinflammation. Evidence linking atrial fibrillation with AD and dementia indicates that anticoagulant therapy may reduce the risk of dementia, with targeting thrombin shown to be particularly effective. It is time for “outside-the-box” thinking about how vascular risk factors, such as atherosclerosis and diabetes, as well as the coagulation and inflammatory pathways interact to promote increased AD risk. In this review, we present evidence that thrombin is a convergence point for AD risk factors and as such that thrombin-based therapeutics could target multiple points of AD pathology, including neurodegeneration, vascular activation, and neuroinflammation. The urgent need for disease-modifying drugs in AD demands new thinking about disease pathogenesis and an exploration of novel drug targets, we propose that thrombin inhibition is an innovative tactic in the therapeutic battle against this devastating disease.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - William Renehan
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
25
|
Kim SB, Heo JI, Kim H, Kim KS. Acetylation of PGC1α by Histone Deacetylase 1 Downregulation Is Implicated in Radiation-Induced Senescence of Brain Endothelial Cells. J Gerontol A Biol Sci Med Sci 2020; 74:787-793. [PMID: 30016403 DOI: 10.1093/gerona/gly167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) is a potent transcription factor for mitochondrial function, lipid metabolism, and detoxification in a variety of tissues. PGC1α also promotes brain cell proliferation and memory. However, how PGC1α is involved in aging is not well known. In brain endothelial cells, we found that PGC1α knockdown accelerated DNA damage-induced senescence, evidenced by an increase in senescence-associated β-galactosidase-positive cells and a decrease in cell proliferation and adenosine triphosphate production. PGC1α knockdown delayed DNA damage repair mechanisms compared with the wild-type condition as shown by γ-H2AX foci staining assay. Overexpression of PGC1α reduced senescence-associated β-galactosidase-positive cells and increased the proliferation of senescent cells. Although PGC1α protein levels were not decreased, PGC1 acetylation was increased by ionizing radiation treatment and aging. Histone deacetylase 1 (HDAC1) expression was decreased by ionizing radiation treatment and aging, and downregulation of HDAC1 induced acetylation of PGC1α. HDAC1 knockdown affected sirtuin 1 expression and decreased its deacetylation of PGC1α. In the mouse brain cortex, acetylation of PGC1α was increased by ionizing radiation treatment. These results suggest that acetylation of PGC1α is induced by DNA damage agents such as ionizing radiation, which deregulates mitochondrial mechanisms and metabolism, resulting in acceleration of radiation-induced senescence. Therefore, acetylation of PGC1α may be a cause of brain disorders and has the potential to serve as a therapeutic target for radiation-induced senescence after radiation cancer therapy.
Collapse
Affiliation(s)
- Su-Bin Kim
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong-Ik Heo
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul
| | - Hyunggee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kwang Seok Kim
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul
| |
Collapse
|
26
|
De D, Bhattacharjee P, Das H, Kumar KS, Biswas SC, Bhattacharyya D. Destabilization of β-amyloid aggregates by thrombin derived peptide: plausible role of thrombin in neuroprotection. FEBS J 2020; 287:2386-2413. [PMID: 31747135 DOI: 10.1111/febs.15149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 09/04/2019] [Accepted: 11/19/2019] [Indexed: 01/06/2023]
Abstract
β-amyloid (Aβ) aggregates involved in Alzheimer's disease (AD) are resistant to proteases but could be destabilized by small peptides designed to target specific hydrophobic regions of Aβ that take part in aggregate assembly. Since thrombin and AD are intricately connected, and elastase modulates thrombin activity, elastase-digested thrombin peptides were verified for intervention in the Aβ-aggregation pathway. Intact or elastase-digested thrombin destabilized Aβ fibril, as demonstrated by thioflavin T assay. Peptides were synthesized employing thrombin as a template, of which, a hexapeptide (T3) showed maximum destabilization at 1 µm. ExPASy peptide cutter software coupled with mass spectrometric analysis confirmed the generation of T3 peptide from elastase-digested thrombin. TEM micrographs revealed that 30-day incubation of preformed Aβ fibrils or monomers with T3 resulted in destabilization or inhibition, respectively, leading mostly to particles of 1.74 ± 0.17 nm, which roughly corresponded to Aβ monomer. Surface plasmon resonance employing CM5 chip coupled with Aβ40 mouse monoclonal antibody showed a drop in response when T3 was incubated with Aβ fibrils between 2 and 8 h. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and confocal microscopy demonstrated the ability of T3 to rescue neuroblastoma cells from Aβ oligomer-induced cytotoxic damage. Although no [Aβ-T3] adduct could be detected by mass spectrometry, an initial interaction appeared to facilitate the process of destabilization/inhibition of aggregation. T3 was comparable to standard β-sheet breaker peptides, LPFFD and KLVFF in terms of Aβ aggregate destabilization. High hydrophobicity values coupled with recognition and breaking elements make T3 a potential candidate for future therapeutic applications.
Collapse
Affiliation(s)
- Debashree De
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Payel Bhattacharjee
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Hrishita Das
- Division of Cell Biology and Physiology, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Karri Suresh Kumar
- Central Instrument Facility, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Subhas Chandra Biswas
- Division of Cell Biology and Physiology, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| |
Collapse
|
27
|
Boese AC, Hamblin MH, Lee JP. Neural stem cell therapy for neurovascular injury in Alzheimer's disease. Exp Neurol 2019; 324:113112. [PMID: 31730762 DOI: 10.1016/j.expneurol.2019.113112] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by progressive neurodegeneration leading to severe cognitive decline and eventual death. AD pathophysiology is complex, but neurotoxic accumulation of amyloid-β (Aβ) and hyperphosphorylation of Tau are believed to be main drivers of neurodegeneration in AD. The formation and deposition of Aβ plaques occurs in the brain parenchyma as well as in the cerebral vasculature. Thus, proper blood-brain barrier (BBB) and cerebrovascular functioning are crucial for clearance of Aβ from the brain, and neurovascular dysfunction may be a critical component of AD development. Further, neuroinflammation and dysfunction of angiogenesis, neurogenesis, and neurorestorative capabilities play a role in AD pathophysiology. Currently, there is no effective treatment to prevent or restore loss of brain tissue and cognitive decline in patients with AD. Based on multifactorial and complex pathophysiological cascades in multiple Alzheimer's disease stages, effective AD therapies need to focus on targeting early AD pathology and preserving cerebrovascular function. Neural stem cells (NSCs) participate extensively in mammalian brain homeostasis and repair and exhibit pleiotropic intrinsic properties that likely make them attractive candidates for the treatment of AD. In the review, we summarize the current advances in knowledge regarding neurovascular aspects of AD-related neurodegeneration and discuss multiple actions of NSCs from preclinical studies of AD to evaluate their potential for future clinical treatment of AD.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
28
|
Puech C, Delavenne X, He Z, Forest V, Mismetti P, Perek N. Direct oral anticoagulants are associated with limited damage of endothelial cells of the blood-brain barrier mediated by the thrombin/PAR-1 pathway. Brain Res 2019; 1719:57-63. [DOI: 10.1016/j.brainres.2019.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 12/01/2022]
|
29
|
Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral Microvascular Injury: A Potentially Treatable Endophenotype of Traumatic Brain Injury-Induced Neurodegeneration. Neuron 2019; 103:367-379. [PMID: 31394062 PMCID: PMC6688649 DOI: 10.1016/j.neuron.2019.06.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is one the most common human afflictions, contributing to long-term disability in survivors. Emerging data indicate that functional improvement or deterioration can occur years after TBI. In this regard, TBI is recognized as risk factor for late-life neurodegenerative disorders. TBI encompasses a heterogeneous disease process in which diverse injury subtypes and multiple molecular mechanisms overlap. To develop precision medicine approaches where specific pathobiological processes are targeted by mechanistically appropriate therapies, techniques to identify and measure these subtypes are needed. Traumatic microvascular injury is a common but relatively understudied TBI endophenotype. In this review, we describe evidence of microvascular dysfunction in human and animal TBI, explore the role of vascular dysfunction in neurodegenerative disease, and discuss potential opportunities for vascular-directed therapies in ameliorating TBI-related neurodegeneration. We discuss the therapeutic potential of vascular-directed therapies in TBI and the use and limitations of preclinical models to explore these therapies.
Collapse
Affiliation(s)
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
30
|
Thuringer D, Garrido C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection? FASEB J 2019; 33:11629-11639. [PMID: 31348679 DOI: 10.1096/fj.201900895r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to form the blood-brain barrier (BBB). Their compromised function alters the BBB integrity, which is associated with early events in the pathogenesis of cancer, neurodegenerative diseases, and epilepsy. Interestingly, these conditions also induce the expression of heat shock proteins (HSPs). Here we review the contribution of major HSP families to BMEC and BBB function. Although investigators mainly report protective effects of HSPs in brain, contrasted results were obtained in BMEC, which depend both on the HSP and on its location, intra- or extracellular. The therapeutic potential of HSPs must be scrupulously analyzed before targeting them in patients to reduce the progression of brain lesions and improve neurologic outcomes in the long term.-Thuringer, D., Garrido, C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Carmen Garrido
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
31
|
Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat Commun 2019; 10:3224. [PMID: 31324782 PMCID: PMC6642099 DOI: 10.1038/s41467-019-11140-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Proteolytic homeostasis is important at mucosal surfaces, but its actors and their precise role in physiology are poorly understood. Here we report that healthy human and mouse colon epithelia are a major source of active thrombin. We show that mucosal thrombin is directly regulated by the presence of commensal microbiota. Specific inhibition of luminal thrombin activity causes macroscopic and microscopic damage as well as transcriptomic alterations of genes involved in host-microbiota interactions. Further, luminal thrombin inhibition impairs the spatial segregation of microbiota biofilms, allowing bacteria to invade the mucus layer and to translocate across the epithelium. Thrombin cleaves the biofilm matrix of reconstituted mucosa-associated human microbiota. Our results indicate that thrombin constrains biofilms at the intestinal mucosa. Further work is needed to test whether thrombin plays similar roles in other mucosal surfaces, given that lung, bladder and skin epithelia also express thrombin. The roles played by thrombin in the human intestinal mucosa are unclear. Here, the authors show that the commensal microbiota modulates epithelial production of active thrombin, which controls biofilm growth and contributes to protection of the mucosa from bacterial invasion.
Collapse
|
32
|
Zamolodchikov D, Bai Y, Tang Y, McWhirter JR, Macdonald LE, Alessandri-Haber N. A Short Isoform of Coagulation Factor XII mRNA Is Expressed by Neurons in the Human Brain. Neuroscience 2019; 413:294-307. [PMID: 31181367 DOI: 10.1016/j.neuroscience.2019.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 01/24/2023]
Abstract
Coagulation factor XII (FXII) is synthesized in the liver and secreted into the circulation, where it initiates the contact activation system. Although typically thought to be restricted to the circulation, FXII protein has been found in the brain of Alzheimer's disease (AD) and multiple sclerosis patients. Moreover, activation of the contact system has been detected in the cerebrospinal fluid of these patients as well as in the brain of healthy and AD individuals. While FXII protein has been detected in the brain, its source and its potential role in brain physiology and/or pathology have not been elucidated. Using in situ hybridization, we show that a shorter FXII mRNA isoform is expressed by neurons in human brain and in the brain of FXII humanized mice, with the highest expression observed in pyramidal neurons. This shorter FXII transcript contains an open reading frame coding for the portion of FXII that spans its proline-rich and catalytic domains (FXII297-596). We show that a recombinant version of this shorter FXII protein is activated by plasma kallikrein, reciprocally activates prekallikrein, and converts pro-hepatocyte growth factor (HGF) to active HGF in vitro. HGF-Met signaling plays a role in neuronal development and survival, and its dysregulation has been implicated in neurodevelopmental disorders and neurodegeneration. Taken together, our results show that a short isoform of FXII mRNA is expressed in the brain and raise the possibility that brain-derived FXII may be involved in HGF-Met signaling in neurons.
Collapse
Affiliation(s)
- Daria Zamolodchikov
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| | - Yu Bai
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yajun Tang
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - John R McWhirter
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Lynn E Macdonald
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | | |
Collapse
|
33
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
34
|
Paik S, Somvanshi RK, Kumar U. Somatostatin Maintains Permeability and Integrity of Blood-Brain Barrier in β-Amyloid Induced Toxicity. Mol Neurobiol 2018; 56:292-306. [PMID: 29700775 DOI: 10.1007/s12035-018-1045-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
In Alzheimer's disease (AD), the impaired clearance of β-amyloid peptide (Aβ) due to disrupted tight junction and transporter proteins is the prominent cause of disease progression. Somatostatin (SST) blocks the aggregation of Aβ and inflammation whereas reduction of SST levels in the CSF and brain tissue is associated with impaired cognitive function and memory loss. However, the role of SST in preservation of blood-brain barrier (BBB) integrity and functionality in Aβ-induced toxicity is not known. In the present study using human CMEC/D3 cells, we demonstrate that SST prevents Aβ-induced BBB permeability by regulating LRP1 and RAGE expression and improving the disrupted tight junction proteins. Furthermore, SST abrogates Aβ-induced JNK phosphorylation and expression of MMP2. Taken together, results presented here suggest that SST might serve as a therapeutic intervention in AD via targeting multiple pathways responsible for neurotoxicity, impaired BBB function, and disease progression.
Collapse
Affiliation(s)
- Seungil Paik
- Faculty of Pharmaceutical Sciences, The University of British Columbia, V6T1Z3, Vancouver, BC, Canada
| | - Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, V6T1Z3, Vancouver, BC, Canada
| | - Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, V6T1Z3, Vancouver, BC, Canada.
| |
Collapse
|
35
|
de Wit NM, Vanmol J, Kamermans A, Hendriks JJA, de Vries HE. Inflammation at the blood-brain barrier: The role of liver X receptors. Neurobiol Dis 2017; 107:57-65. [DOI: 10.1016/j.nbd.2016.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/11/2016] [Accepted: 09/17/2016] [Indexed: 02/05/2023] Open
|
36
|
d'Uscio LV, He T, Katusic ZS. Expression and Processing of Amyloid Precursor Protein in Vascular Endothelium. Physiology (Bethesda) 2017; 32:20-32. [PMID: 27927802 DOI: 10.1152/physiol.00021.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is evolutionary conserved protein expressed in endothelial cells of cerebral and peripheral arteries. In this review, we discuss mechanisms responsible for expression and proteolytic cleavage of APP in endothelial cells. We focus on physiological and pathological implications of APP expression in vascular endothelium.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tongrong He
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
37
|
Contribution of thrombin-reactive brain pericytes to blood-brain barrier dysfunction in an in vivo mouse model of obesity-associated diabetes and an in vitro rat model. PLoS One 2017; 12:e0177447. [PMID: 28489922 PMCID: PMC5425209 DOI: 10.1371/journal.pone.0177447] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/27/2017] [Indexed: 12/14/2022] Open
Abstract
Diabetic complications are characterized by the dysfunction of pericytes located around microvascular endothelial cells. The blood–brain barrier (BBB) exhibits hyperpermeability with progression of diabetes. Therefore, brain pericytes at the BBB may be involved in diabetic complications of the central nervous system (CNS). We hypothesized that brain pericytes respond to increased brain thrombin levels in diabetes, leading to BBB dysfunction and diabetic CNS complications. Mice were fed a high-fat diet (HFD) for 2 or 8 weeks to induce obesity. Transport of i.v.-administered sodium fluorescein and 125I-thrombin across the BBB were measured. We evaluated brain endothelial permeability and expression of tight junction proteins in the presence of thrombin–treated brain pericytes using a BBB model of co-cultured rat brain endothelial cells and pericytes. Mice fed a HFD for 8 weeks showed both increased weight gain and impaired glucose tolerance. In parallel, the brain influx rate of sodium fluorescein was significantly greater than that in mice fed a normal diet. HFD feeding inhibited the decline in brain thrombin levels occurring during 6 weeks of feeding. In the HFD fed mice, plasma thrombin levels were significantly increased, by up to 22%. 125I-thrombin was transported across the BBB in normal mice after i.v. injection, with uptake further enhanced by co-injection of unlabeled thrombin. Thrombin-treated brain pericytes increased brain endothelial permeability and caused decreased expression of zona occludens-1 (ZO-1) and occludin and morphological disorganization of ZO-1. Thrombin also increased mRNA expression of interleukin-1β and 6 and tumor necrosis factor-α in brain pericytes. Thrombin can be transported from circulating blood through the BBB, maintaining constant levels in the brain, where it can stimulate pericytes to induce BBB dysfunction. Thus, the brain pericyte–thrombin interaction may play a key role in causing BBB dysfunction in obesity-associated diabetes and represent a therapeutic target for its CNS complications.
Collapse
|
38
|
Role of thrombin-PAR1-PKCθ/δ axis in brain pericytes in thrombin-induced MMP-9 production and blood-brain barrier dysfunction in vitro. Neuroscience 2017; 350:146-157. [PMID: 28344073 DOI: 10.1016/j.neuroscience.2017.03.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 02/08/2023]
Abstract
Thrombin, an essential component in the coagulation cascade, participates in the pathogenesis of brain diseases, such as ischemic stroke, intracerebral hemorrhage, Alzheimer's disease and Parkinson's disease through blood-brain barrier (BBB) dysfunction. It is thought that the thrombin-matrix metalloproteinase (MMP)-9 axis is an important process in the pathogenesis of neurovascular disease, such as BBB dysfunction. We recently reported that brain pericytes are the most MMP-9-releasing cells in response to thrombin stimulation among the BBB-constituting cells. This thrombin-induced MMP-9 release is partially due to protease-activated receptor (PAR1), one of the specific thrombin receptors. Then, we evaluated the intracellular signaling pathways involved in MMP-9 release and the contribution of thrombin-reactive brain pericytes to BBB dysfunction. PKC activator evoked MMP-9 release from brain pericytes. The thrombin-induced MMP-9 release was inhibited by U0126, LY294002, Go6976, and Go6983. However, Go6976 decreased phosphorylation levels of PKCθ and Akt, and Go6983 decreased phosphorylation levels of PKCδ and extracellular signal-regulated kinase (ERK). Additionally, treatment of pericytes with thrombin or PAR1-activating peptide stimulated PKCδ/θ signaling. These substances impaired brain endothelial barrier function in the presence of brain pericytes. Brain pericytes function through two independent downstream signaling pathways via PAR1 activation to release MMP-9 in response to thrombin - the PKCθ-Akt pathway and the PKCδ-ERK1/2 pathway. These pathways participate in PAR1-mediated MMP-9 release from pericytes, which leads to BBB dysfunction. Brain pericytes and their specific signaling pathways could provide novel therapeutic targets for thrombin-induced neurovascular diseases.
Collapse
|
39
|
Pietronigro EC, Della Bianca V, Zenaro E, Constantin G. NETosis in Alzheimer's Disease. Front Immunol 2017; 8:211. [PMID: 28303140 PMCID: PMC5332471 DOI: 10.3389/fimmu.2017.00211] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive deterioration of cognitive functions. Its neuropathological features include amyloid-β (Aβ) accumulation, the formation of neurofibrillary tangles, and the loss of neurons and synapses. Neuroinflammation is a well-established feature of AD pathogenesis, and a better understanding of its mechanisms could facilitate the development of new therapeutic approaches. Recent studies in transgenic mouse models of AD have shown that neutrophils adhere to blood vessels and migrate inside the parenchyma. Moreover, studies in human AD subjects have also shown that neutrophils adhere and spread inside brain vessels and invade the parenchyma, suggesting these cells play a role in AD pathogenesis. Indeed, neutrophil depletion and the therapeutic inhibition of neutrophil trafficking, achieved by blocking LFA-1 integrin in AD mouse models, significantly reduced memory loss and the neuropathological features of AD. We observed that neutrophils release neutrophil extracellular traps (NETs) inside blood vessels and in the parenchyma of AD mice, potentially harming the blood–brain barrier and neural cells. Furthermore, confocal microscopy confirmed the presence of NETs inside the cortical vessels and parenchyma of subjects with AD, providing more evidence that neutrophils and NETs play a role in AD-related tissue destruction. The discovery of NETs inside the AD brain suggests that these formations may exacerbate neuro-inflammatory processes, promoting vascular and parenchymal damage during AD. The inhibition of NET formation has achieved therapeutic benefits in several models of chronic inflammatory diseases, including autoimmune diseases affecting the brain. Therefore, the targeting of NETs may delay AD pathogenesis and offer a novel approach for the treatment of this increasingly prevalent disease.
Collapse
Affiliation(s)
| | - Vittorina Della Bianca
- Department of Medicine, Section of General Pathology, University of Verona , Verona , Italy
| | - Elena Zenaro
- Department of Medicine, Section of General Pathology, University of Verona , Verona , Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona , Verona , Italy
| |
Collapse
|
40
|
Bhat SA, Goel R, Shukla R, Hanif K. Platelet CD40L induces activation of astrocytes and microglia in hypertension. Brain Behav Immun 2017; 59:173-189. [PMID: 27658543 DOI: 10.1016/j.bbi.2016.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022] Open
Abstract
Studies have demonstrated separately that hypertension is associated with platelet activation in the periphery (resulting in accumulation and localized inflammatory response) and glial activation in the brain. We investigated the contribution of platelets in brain inflammation, particularly glial activation in vitro and in a rat model of hypertension. We found that HTN increased the expression of adhesion molecules like JAM-1, ICAM-1, and VCAM-1 on brain endothelium and resulted in the deposition of platelets in the brain. Platelet deposition in hypertensive rats was associated with augmented CD40 and CD40L and activation of astrocytes (GFAP expression) and microglia (Iba-1 expression) in the brain. Platelets isolated from hypertensive rats had significantly higher sCD40L levels and induced more prominent glial activation than platelets from normotensive rats. Activation of platelets with ADP induced sCD40L release and activation of astrocytes and microglia. Moreover, CD40L induced glial (astrocytes and microglia) activation, NFкB and MAPK inflammatory signaling, culminating in neuroinflammation and neuronal injury (increased apoptotic cells). Importantly, injection of ADP-activated platelets into normotensive rats strongly induced activation of astrocytes and microglia and increased plasma sCD40L levels compared with control platelets. On the contrary, inhibition of platelet activation by Clopidogrel or disruption of CD40 signaling prevented astrocyte and microglial activation and provided neuroprotection in both in vivo and in vitro conditions. Thus, we have identified platelet CD40L as a key inflammatory molecule for the induction of astrocyte and microglia activation, the major contributors to inflammation-mediated injury in the brain.
Collapse
Affiliation(s)
- Shahnawaz Ali Bhat
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Ruby Goel
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Rakesh Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Kashif Hanif
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India; National Institute of Pharmaceutical Education and Research, Rae Bareli, India.
| |
Collapse
|
41
|
Brailoiu E, Shipsky MM, Yan G, Abood ME, Brailoiu GC. Mechanisms of modulation of brain microvascular endothelial cells function by thrombin. Brain Res 2016; 1657:167-175. [PMID: 27998795 DOI: 10.1016/j.brainres.2016.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/22/2016] [Accepted: 12/10/2016] [Indexed: 01/08/2023]
Abstract
Brain microvascular endothelial cells are a critical component of the blood-brain barrier. They form a tight monolayer which is essential for maintaining the brain homeostasis. Blood-derived proteases such as thrombin may enter the brain during pathological conditions like trauma, stroke, and inflammation and further disrupts the permeability of the blood-brain barrier, via incompletely characterized mechanisms. We examined the underlying mechanisms evoked by thrombin in rat brain microvascular endothelial cells (RBMVEC). Our results indicate that thrombin, acting on protease-activated receptor 1 (PAR1) increases cytosolic Ca2+ concentration in RBMVEC via Ca2+ release from endoplasmic reticulum through inositol 1,4,5-trisphosphate receptors and Ca2+ influx from extracellular space. Thrombin increases nitric oxide production; the effect is abolished by inhibition of the nitric oxide synthase or by antagonism of PAR1 receptors. In addition, thrombin increases mitochondrial and cytosolic reactive oxygen species production via PAR1-dependent mechanisms. Immunocytochemistry studies indicate that thrombin increases F-actin stress fibers, and disrupts the tight junctions. Thrombin increased the RBMVEC permeability assessed by a fluorescent flux assay. Taken together, our results indicate multiple mechanisms by which thrombin modulates the function of RBMVEC and may contribute to the blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Megan M Shipsky
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States
| | - Guang Yan
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States.
| |
Collapse
|
42
|
Machado-Pereira M, Santos T, Bernardino L, Ferreira R. Vascular inter-regulation of inflammation: molecular and cellular targets for CNS therapy. J Neurochem 2016; 140:692-702. [PMID: 27925201 DOI: 10.1111/jnc.13914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
Abstract
Angiogenesis and inflammation are clearly interconnected and interdependent processes that are dysregulated in a series of systemic and brain pathologies. Herein, key aspects regarding endothelial cell function and tissue remodelling that are particularly affected or aggravated by inflammation are presented. Most importantly, the cellular and molecular mechanisms involved in the vascular regulation of the inflammatory processes occurring in several brain disorders and how they impact on disease/injury progression are detailed, highlighting potential targets for therapy. Finally, nanomedicine-based approaches designed to overcome limitations pertaining to low systemic bioavailability, light, pH and temperature sensitivity and/or rapid degradation of these targets, and to optimize their mode of action are discussed. Ultimately, we expect this review to provide new insight and to suggest novel approaches for the treatment of blood-brain barrier dysfunction per se or as a means to treat the injured or diseased central nervous system.
Collapse
Affiliation(s)
- Marta Machado-Pereira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, Covilhã, Portugal
| | - Tiago Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, Covilhã, Portugal
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, Covilhã, Portugal
| | - Raquel Ferreira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, Covilhã, Portugal
| |
Collapse
|
43
|
Smoliński Ł, Członkowska A. Cerebral vasomotor reactivity in neurodegenerative diseases. Neurol Neurochir Pol 2016; 50:455-462. [PMID: 27553189 DOI: 10.1016/j.pjnns.2016.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
Abstract
Small-caliber cerebral vessels change their diameters in response to alterations of key metabolite concentrations such as carbon dioxide or oxygen. This phenomenon, termed the cerebral vasomotor reactivity (CVMR), is the basis for blood flow regulation in the brain in accordance with its metabolic status. Typically, CVMR is determined as the amount of change in cerebral blood flow in response to a vasodilating stimulus, which can be measured by various neuroimaging methods or by transcranial Doppler. It has been shown that CVMR is impaired in cerebrovascular diseases, but there is also evidence of a similar dysfunction in neurodegenerative disorders. Here, we review studies that have investigated CVMR in the common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis. Moreover, we discuss potential neurodegenerative mechanisms responsible for the impairment of CVMR.
Collapse
Affiliation(s)
- Łukasz Smoliński
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Clinical and Experimental Pharmacology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
44
|
Derkus B, Arslan YE, Emregul KC, Emregul E. Enhancement of aptamer immobilization using egg shell-derived nano-sized spherical hydroxyapatite for thrombin detection in neuroclinic. Talanta 2016; 158:100-109. [PMID: 27343583 DOI: 10.1016/j.talanta.2016.05.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/10/2016] [Accepted: 05/14/2016] [Indexed: 01/01/2023]
Abstract
In the present study, we describe the sonochemical isolation of nano-sized spherical hydroxyapatite (nHA) from egg shell and application towards thrombin aptasensing. In addition to the sonochemical method, two conventional methods present in literature were carried out to perform a comparative study. Various analysis methods including Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy-Dispersive Analysis of X-Rays (EDAX), and Thermal Gravimetric Analysis (TGA) have been applied for the characterization of nHA and its nanocomposite with marine-derived collagen isolated from Rhizostoma pulmo jellyfish. TEM micrographs revealed the sonochemically synthesized nHA nanoparticles to have a unique porous spherical shape with a diameter of approximately 60-80nm when compared to hydroxyapatite nanoparticles synthesized using the other two methods which had a typical needle shaped morphology. EDAX, XRD and FTIR results demonstrated that the obtained patterns belonged to hydroxyapatite. Electrochemical impedance spectroscopy (EIS) is the main analyzing technique of the developed thrombin aptasensor. The proposed aptasensor has a detection limit of 0.25nM thrombin. For clinical application of the developed aptasensor, thrombin levels in blood and cerebrospinal fluid (CSF) samples obtained from patients with Multiple Sclerosis, Myastenia Gravis, Epilepsy, Parkinson, polyneuropathy and healthy donors were analyzed using both the aptasensor and commercial ELISA kit. The results showed that the proposed system is a promising candidate for clinical analysis of thrombin.
Collapse
Affiliation(s)
- Burak Derkus
- Bioelectrochemistry Lab, Department of Chemistry, Ankara University, Tandogan, Ankara 06100, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Kaan C Emregul
- Bioelectrochemistry Lab, Department of Chemistry, Ankara University, Tandogan, Ankara 06100, Turkey
| | - Emel Emregul
- Bioelectrochemistry Lab, Department of Chemistry, Ankara University, Tandogan, Ankara 06100, Turkey.
| |
Collapse
|
45
|
Bushi D, Gera O, Kostenich G, Shavit-Stein E, Weiss R, Chapman J, Tanne D. A novel histochemical method for the visualization of thrombin activity in the nervous system. Neuroscience 2016; 320:93-104. [PMID: 26851772 DOI: 10.1016/j.neuroscience.2016.01.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/23/2023]
Abstract
Although thrombin has an important role in both central and peripheral nerve diseases, characterization of the anatomical distribution of its proteolytic activity has been limited by available methods. This study presents the development, challenges, validation and implementation of a novel histochemical method for visualization of thrombin activity in the nervous system. The method is based on the cleavage of the substrate, Boc-Asp(OBzl)-Pro-Arg-4MβNA by thrombin to liberate free 4-methoxy-2-naphthylamine (4MβNA). In the presence of 5-nitrosalicylaldehyde, free 4MβNA is captured, yielding an insoluble yellow fluorescent precipitate which marks the site of thrombin activity. The sensitivity of the method was determined in vitro using known concentrations of thrombin while the specificity was verified using a highly specific thrombin inhibitor. Using this method we determined the spatial distribution of thrombin activity in mouse brain following transient middle cerebral artery occlusion (tMCAo) and in mouse sciatic nerve following crush injury. Fluorescence microscopy revealed well-defined thrombin activity localized to the right ischemic hemisphere in cortical areas and in the striatum compared to negligible thrombin activity contralaterally. The histochemical localization of thrombin activity following tMCAo was in good correlation with the infarct areas per triphenyltetrazolium chloride staining and to thrombin activity measured biochemically in tissue punches (85 ± 35 and 20 ± 3 mU/ml, in the cortical and striatum areas respectively, compared to 7 ± 2 and 13 ± 2 mU/ml, in the corresponding contralateral areas; mean ± SEM; p<0.05). In addition, 24 h following crush injury, focal areas of highly elevated thrombin activity were detected in teased sciatic fibers. This observation was supported by the biochemical assay and western blot technique. The histochemical method developed in this study can serve as an important tool for studying the role of thrombin in physiological and pathological conditions.
Collapse
Affiliation(s)
- D Bushi
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - O Gera
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - G Kostenich
- Advanced Technology Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - E Shavit-Stein
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - R Weiss
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - J Chapman
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - D Tanne
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
46
|
Van Nostrand WE. The influence of the amyloid ß-protein and its precursor in modulating cerebral hemostasis. Biochim Biophys Acta Mol Basis Dis 2015; 1862:1018-26. [PMID: 26519139 DOI: 10.1016/j.bbadis.2015.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
Ischemic and hemorrhagic strokes are a significant cause of brain injury leading to vascular cognitive impairment and dementia (VCID). These deleterious events largely result from disruption of cerebral hemostasis, a well-controlled and delicate balance between thrombotic and fibrinolytic pathways in cerebral blood vessels and surrounding brain tissue. Ischemia and hemorrhage are both commonly associated with cerebrovascular deposition of amyloid ß-protein (Aß). In this regard, Aß directly and indirectly modulates cerebral thrombosis and fibrinolysis. Further, major isoforms of the Aß precursor protein (AßPP) function as a potent inhibitor of pro-thrombotic proteinases. The purpose of this review article is to summarize recent research on how cerebral vascular Aß and AßPP influence cerebral hemostasis. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- William E Van Nostrand
- Department of Neurosurgery, HSC-T12/086, Stony Brook University, Stony Brook, NY 11794-8122, USA; Department of Medicine, HSC-T12/086, Stony Brook University, Stony Brook, NY 11794-8122, USA.
| |
Collapse
|
47
|
|
48
|
Keaney J, Campbell M. The dynamic blood-brain barrier. FEBS J 2015; 282:4067-79. [DOI: 10.1111/febs.13412] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/20/2015] [Accepted: 08/12/2015] [Indexed: 01/19/2023]
Affiliation(s)
- James Keaney
- Smurfit Institute of Genetics; Trinity College Dublin; Ireland
| | | |
Collapse
|
49
|
Winkler EA, Sagare AP, Zlokovic BV. The pericyte: a forgotten cell type with important implications for Alzheimer's disease? Brain Pathol 2015; 24:371-86. [PMID: 24946075 DOI: 10.1111/bpa.12152] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/13/2022] Open
Abstract
Pericytes are cells in the blood-brain barrier (BBB) that degenerate in Alzheimer's disease (AD), a neurodegenerative disorder characterized by early neurovascular dysfunction, elevation of amyloid β-peptide (Aβ), tau pathology and neuronal loss, leading to progressive cognitive decline and dementia. Pericytes are uniquely positioned within the neurovascular unit between endothelial cells of brain capillaries, astrocytes and neurons. Recent studies have shown that pericytes regulate key neurovascular functions including BBB formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow, and clearance of toxic cellular by-products necessary for normal functioning of the central nervous system (CNS). Here, we review the concept of the neurovascular unit and neurovascular functions of CNS pericytes. Next, we discuss vascular contributions to AD and review new roles of pericytes in the pathogenesis of AD such as vascular-mediated Aβ-independent neurodegeneration, regulation of Aβ clearance and contributions to tau pathology, neuronal loss and cognitive decline. We conclude that future studies should focus on molecular mechanisms and pathways underlying aberrant signal transduction between pericytes and its neighboring cells within the neurovascular unit, that is, endothelial cells, astrocytes and neurons, which could represent potential therapeutic targets to control pericyte degeneration in AD and the resulting secondary vascular and neuronal degeneration.
Collapse
Affiliation(s)
- Ethan A Winkler
- Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, CA; Department of Neurosurgery, University of California San Francisco, San Francisco, CA
| | | | | |
Collapse
|
50
|
Janota C, Lemere CA, Brito MA. Dissecting the Contribution of Vascular Alterations and Aging to Alzheimer's Disease. Mol Neurobiol 2015; 53:3793-3811. [PMID: 26143259 DOI: 10.1007/s12035-015-9319-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 06/24/2015] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that afflicts as many as 45 % of individuals who survive past the age of 85. AD has been associated with neurovascular dysfunction and brain accumulation of amyloid-β peptide, as well as tau phosphorylation and neurodegeneration, but the pathogenesis of the disease is still somewhat unclear. According to the amyloid cascade hypothesis of AD, accumulation of amyloid-β peptide (Aβ) aggregates initiates a sequence of events leading to neuronal injury and loss, and dementia. Alternatively, the vascular hypothesis of AD incorporates the vascular contribution to the disease, stating that a primary insult to brain microcirculation (e.g., stroke) not only contributes to amyloidopathy but initiates a non-amyloidogenic pathway of vascular-mediated neuronal dysfunction and injury, which involves blood-brain barrier compromise, with increased permeability of blood vessels, leakage of blood-borne components into the brain, and, consequently, neurotoxicity. Vascular dysfunction also includes a diminished brain capillary flow, causing multiple focal ischemic or hypoxic microinjuries, diminished amyloid-β clearance, and formation of neurotoxic oligomers, which lead to neuronal dysfunction. Here we present and discuss relevant findings on the contribution of vascular alterations during aging to AD, with the hope that a better understanding of the players in the "orchestra" of neurodegeneration will be useful in developing therapies to modulate the "symphony".
Collapse
Affiliation(s)
- Cátia Janota
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur (NRB 636F), Boston, MA, 02115, USA
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal. .,Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|