1
|
Zhu W, Wang Y, Guan Y, Lu Y, Li Y, Sun L, Wang Y. Rapamycin can alleviate the submandibular gland pathology of Sjögren's syndrome by limiting the activation of cGAS-STING signaling pathway. Inflammopharmacology 2024; 32:1113-1131. [PMID: 38114798 DOI: 10.1007/s10787-023-01393-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Sjögren's Syndrome (SS) is also known as autoimmune exocrine gland disease. Previous studies have confirmed that adaptive immunity plays an important role in the development of this disease. But less is known about the role of the innate immune system. METHODS To identify the core pathways, and local infiltrated immune cells in the local immune microenvironment of SS. We verified the activation of these core genes and core signaling pathways in SS model mice by in vivo experiment and transcriptome sequencing. RESULTS Finally, we identified 6 core genes EPSTI1, IFI44L, MX1, CXCL10, IFIT3, and IFI44. All the 6 genes had good diagnostic value. Based on multi-omics sequencing results and experimental studies, we found that cGAS-STING signaling pathway is most relevant to the pathogenesis of SS. By in vivo experiments, we verified that autophagy is the key brake to limit the activation of cGAS-STING signaling pathway. CONCLUSIONS Maladaptive activation of autophagy and cGAS-STING signaling pathway are central contributors to the SG pathogenesis of pSS patient. Regulating autophagy by rapamycin may be a possible treatment for Sjögren's syndrome in the future.
Collapse
Affiliation(s)
- Wen Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China
| | - Yabei Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China
| | - Yin Guan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China
| | - Yun Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China
| | - Yehui Li
- Gansu Provincial Hospital of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Lixia Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China.
| | - Yue Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China.
| |
Collapse
|
2
|
Bei YR, Zhang SC, Song Y, Tang ML, Zhang KL, Jiang M, He RC, Wu SG, Liu XH, Wu LM, Dai XY, Hu YW. EPSTI1 promotes monocyte adhesion to endothelial cells in vitro via upregulating VCAM-1 and ICAM-1 expression. Acta Pharmacol Sin 2023; 44:71-80. [PMID: 35778487 DOI: 10.1038/s41401-022-00923-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/21/2022] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of arterial wall, and circulating monocyte adhesion to endothelial cells is a crucial step in the pathogenesis of atherosclerosis. Epithelial-stromal interaction 1 (EPSTI1) is a novel gene, which is dramatically induced by epithelial-stromal interaction in human breast cancer. EPSTI1 expression is not only restricted to the breast but also in other normal tissues. In this study we investigated the role of EPSTI1 in monocyte-endothelial cell adhesion and its expression pattern in atherosclerotic plaques. We showed that EPSTI1 was dramatically upregulated in human and mouse atherosclerotic plaques when compared with normal arteries. In addition, the expression of EPSTI1 in endothelial cells of human and mouse atherosclerotic plaques is significantly higher than that of the normal arteries. Furthermore, we demonstrated that EPSTI1 promoted human monocytic THP-1 cell adhesion to human umbilical vein endothelial cells (HUVECs) via upregulating VCAM-1 and ICAM-1 expression in HUVECs. Treatment with LPS (100, 500, 1000 ng/mL) induced EPSTI1 expression in HUVECs at both mRNA and protein levels in a dose- and time-dependent manner. Knockdown of EPSTI1 significantly inhibited LPS-induced monocyte-endothelial cell adhesion via downregulation of VCAM-1 and ICAM-1. Moreover, we revealed that LPS induced EPSTI1 expression through p65 nuclear translocation. Thus, we conclude that EPSTI1 promotes THP-1 cell adhesion to endothelial cells by upregulating VCAM-1 and ICAM-1 expression, implying its potential role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Yan-Rou Bei
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shun-Chi Zhang
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Yu Song
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Mao-Lin Tang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Ke-Lan Zhang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Min Jiang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Run-Chao He
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Shao-Guo Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Xue-Hui Liu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Li-Mei Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Xiao-Yan Dai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China.
| |
Collapse
|
3
|
Systematic Analysis of Molecular Subtypes Based on the Expression Profile of Immune-Related Genes in Pancreatic Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3124122. [PMID: 36567857 PMCID: PMC9780013 DOI: 10.1155/2022/3124122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Immunotherapy has a good therapeutic effect and provides a new approach for cancer treatment. However, only limited studies have focused on the use of molecular typing to construct an immune characteristic index for gene expression in pancreatic adenocarcinoma (PAAD) and to assess the effectiveness of immunotherapy in patients with PAAD. Clinical follow-up data and gene expression profile of PAAD patients were retrieved from The Cancer Genome Atlas (TCGA) database. Based on 184 immune features, molecular subtypes of pancreatic cancer were found by the "ConsensusClusterPlus" package, and the association between clinical features and immune cell subtype distribution was analysed. In addition, the relationship between the proportion of immune subtypes and the expression of immune checkpoints was analysed. The CIBERSORT algorithm was introduced to evaluate the immune scores of different molecular subtypes. We used the tumor immune dysfunction and exclusion (TIDE) algorithm to assess the potential clinical effect of immunotherapy interventions on single-molecule subtypes. In addition, the oxidative stress index was constructed by linear discriminant analysis DNA (LDA), and weighted correlation network analysis was performed to identify the core module of the index and its characteristic genes. Expression of hub genes was verified by immunohistochemical analysis in an independent PAAD cohort. Pancreatic cancer is divided into three molecular subtypes (IS1, IS2, and IS3), with significant differences in prognosis between multiple cohorts. Expression of immune checkpoint-associated genes was significantly reduced in IS3 and higher in IS1 and IS2, suggesting that the three subgroups have different responsiveness to immunotherapy interventions. The results of the CIBERSORT analysis showed that IS1 exhibited the highest levels of immune infiltration, whereas the results of the TIDE analysis showed that the T-cell dysfunction score of IS1 was higher than that of IS2 and IS3. Furthermore, IS3 was found to be more sensitive to 5-FU and to have a higher immune signature index than IS1 and IS2. Based on WGCNA analysis, 10 potential gene markers were identified, and their expression at the protein level was verified by immunohistochemical analysis. Specific molecular expression patterns in pancreatic cancer can predict the efficacy of immunotherapy and influence the prognosis of patients.
Collapse
|
4
|
Pituitary-Gland-Based Genes Participates in Intrauterine Growth Restriction in Piglets. Genes (Basel) 2022; 13:genes13112141. [DOI: 10.3390/genes13112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a major problem associated with piglet growth performance. The incidence of IUGR is widespread in Rongchang pigs. The pituitary gland is important for regulating growth and metabolism, and research has identified genes associated with growth and development. The pituitary gland of newborn piglets with normal birth weight (NBW group, n = 3) and (IUGR group, n = 3) was collected for transcriptome analysis. A total of 323 differentially expression genes (DEGs) were identified (|log2(fold-change)| > 1 and q value < 0.05), of which 223 were upregulated and 100 were downregulated. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the DEGs were mainly related to the extracellular matrix, regulation of the multicellular organismal process, tissue development and angiogenesis, which participate in the growth and immune response in IUGR piglets. Moreover, 7 DEGs including IGF2, THBS1, ITGA1, ITGA8, EPSTI1, FOSB, and UCP2 were associated with growth and immune response. Furthermore, based on the interaction network analysis of the DEGs, two genes, IGF2 and THBS1, participated in cell proliferation, embryonic development and angiogenesis. IGF2 and THBS1 were also the main genes participating in the IUGR. This study identified the core genes involved in IUGR in piglets and provided a reference for exploring the effect of the pituitary gland on piglet growth.
Collapse
|
5
|
Li Z, Mei Z, Ding S, Chen L, Li H, Feng K, Huang T, Cai YD. Identifying Methylation Signatures and Rules for COVID-19 With Machine Learning Methods. Front Mol Biosci 2022; 9:908080. [PMID: 35620480 PMCID: PMC9127386 DOI: 10.3389/fmolb.2022.908080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
The occurrence of coronavirus disease 2019 (COVID-19) has become a serious challenge to global public health. Definitive and effective treatments for COVID-19 are still lacking, and targeted antiviral drugs are not available. In addition, viruses can regulate host innate immunity and antiviral processes through the epigenome to promote viral self-replication and disease progression. In this study, we first analyzed the methylation dataset of COVID-19 using the Monte Carlo feature selection method to obtain a feature list. This feature list was subjected to the incremental feature selection method combined with a decision tree algorithm to extract key biomarkers, build effective classification models and classification rules that can remarkably distinguish patients with or without COVID-19. EPSTI1, NACAP1, SHROOM3, C19ORF35, and MX1 as the essential features play important roles in the infection and immune response to novel coronavirus. The six significant rules extracted from the optimal classifier quantitatively explained the expression pattern of COVID-19. Therefore, these findings validated that our method can distinguish COVID-19 at the methylation level and provide guidance for the diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Zi Mei
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shijian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
6
|
Abstract
Microenvironment of cancer stem cells (CSCs) consists of a variety of cells and inter-cellular matrix and communications of the components. The microenvironment of CSCs maintains the stemness feature of the CSCs. Several cell types which communicate each other via signaling molecules surrounding CSCs are main factors of the CSC microenvironment. A key question is "What kind of information the cells exchange in the CSC microenvironment?" to reveal the microenvironment and CSC features. Components and molecular markers of CSC microenvironment, signaling cross-talks in CSC microenvironment, and targeting CSC microenvironment are focused in this review.
Collapse
|
7
|
Hsieh YY, Tung SY, Pan HY, Chang TS, Wei KL, Chen WM, Deng YF, Lu CK, Lai YH, Wu CS, Li C. Fusobacterium nucleatum colonization is associated with decreased survival of helicobacter pylori-positive gastric cancer patients. World J Gastroenterol 2021; 27:7311-7323. [PMID: 34876791 PMCID: PMC8611209 DOI: 10.3748/wjg.v27.i42.7311] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND An increased amount of Fusobacterium nucleatum (F. nucleatum) is frequently detected in the gastric cancer-associated microbiota of the Taiwanese population. F. nucleatum is known to exert cytotoxic effects and play a role in the progression of colorectal cancer, though the impact of F. nucleatum colonization on gastric cancer cells and patient prognosis has not yet been examined.
AIM To identify F. nucleatum-dependent molecular pathways in gastric cancer cells and to determine the impact of F. nucleatum on survival in gastric cancer.
METHODS Coculture of F. nucleatum with a gastric cancer cell line was performed, and changes in gene expression were investigated. Genes with significant changes in expression were identified by RNA sequencing. Pathway analysis was carried out to determine deregulated cellular functions. A cohort of gastric cancer patients undergoing gastrectomy was recruited, and nested polymerase chain reaction was performed to detect the presence of F. nucleatum in resected cancer tissues. Statistical analysis was performed to determine whether F. nucleatum colonization affects patient survival.
RESULTS RNA sequencing and subsequent pathway analysis revealed a drastic interferon response induced by a high colonization load. This response peaked within 24 h and subsided after 72 h of incubation. In contrast, deregulation of actin and its regulators was observed during prolonged incubation under a low colonization load, likely altering the mobility of gastric cancer cells. According to the clinical specimen analysis, approximately one-third of the gastric cancer patients were positive for F. nucleatum, and statistical analysis indicated that the risk for colonization increases in late-stage cancer patients. Survival analysis demonstrated that F. nucleatum colonization was associated with poorer outcomes among patients also positive for Helicobacter pylori (H. pylori).
CONCLUSION F. nucleatum colonization leads to deregulation of actin dynamics and likely changes cancer cell mobility. Cohort analysis demonstrated that F. nucleatum colonization leads to poorer prognosis in H. pylori-positive patients with late-stage gastric cancer. Hence, combined colonization of F. nucleatum and H. pylori is a predictive biomarker for poorer survival in late-stage gastric cancer patients treated with gastrectomy.
Collapse
Affiliation(s)
- Yung-Yu Hsieh
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shui-Yi Tung
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hung-Yu Pan
- Department of Applied Mathematics, National Chiayi University, Chiayi 60035, Taiwan
| | - Te-Sheng Chang
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kuo-Liang Wei
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wei-Ming Chen
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Fang Deng
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
| | - Chung-Kuang Lu
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
| | - Yu-Hsuan Lai
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
| | - Cheng-Shyong Wu
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chin Li
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62130, Taiwan
| |
Collapse
|
8
|
Fan M, Arai M, Tawada A, Chiba T, Fukushima R, Uzawa K, Shiiba M, Kato N, Tanzawa H, Takiguchi Y. Contrasting functions of the epithelial‑stromal interaction 1 gene, in human oral and lung squamous cell cancers. Oncol Rep 2021; 47:5. [PMID: 34738627 PMCID: PMC8600417 DOI: 10.3892/or.2021.8216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The epithelial‑stromal interaction 1 gene (EPSTI1) is known to play multiple roles in the malignant progression of breast cancer and also in some aspects of the immune responses to the tumor. However, the relevance of the gene in the onset/progression of oral squamous cell carcinoma (OSCC) and lung squamous cell carcinoma (LSCC) is not yet known. The present study was aimed at revealing the roles of EPSTI1 in conferring malignant characteristics to OSCC and LSCC, and the underlying mechanisms. Quantitative real‑time polymerase chain reaction (PCR) and western blot analyses demonstrated significant upregulation of EPSTI1 in all four OSCC cell lines (HSC2, HSC3, HSC3‑M3 and HSC4), and significant downregulation of EPST11 in all three LSCC cell lines (LK‑2, EBC‑1 and H226) used in the present study, as compared to the expression levels in the corresponding control cell lines. Both knockdown of EPST11 in OSCC and overexpression of the gene in LSCC suppressed cell proliferation, and induced cell‑cycle arrest in the G1 phase, with upregulation of p21 and downregulation of CDK2 and cyclin D1. Furthermore, these alterations of EPST11 gene expression in the OSCC and LSCC cell lines suppressed the cell migration ability and reversed the EMT phenotype of the tumor cells. Collectively, while EPSTI1 appears to have oncogenic roles in OSCC, it appears to exert tumor‑suppressive roles in LSCC. PCR array analyses revealed some genes whose expression levels were altered along with the modified EPSTI1 expression in both the OSCC and LSCC cell lines. These findings suggest that EPSTI1 may be a therapeutic target for both OSCC and LSCC.
Collapse
Affiliation(s)
- Mengmeng Fan
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba 260‑8670, Japan
| | - Makoto Arai
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba 260‑8670, Japan
| | - Akinobu Tawada
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba 260‑8670, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260‑8670, Japan
| | - Reo Fukushima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260‑8670, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260‑8670, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba 260‑8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260‑8670, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260‑8670, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba 260‑8670, Japan
| |
Collapse
|
9
|
Gao X, Liu Y, Zou S, Liu P, Zhao J, Yang C, Liang M, Yang J. Genome-wide screening of SARS-CoV-2 infection-related genes based on the blood leukocytes sequencing data set of patients with COVID-19. J Med Virol 2021; 93:5544-5554. [PMID: 34009691 PMCID: PMC8242610 DOI: 10.1002/jmv.27093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 05/15/2021] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID‐19) is a global epidemic disease caused by a novel virus, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), causing serious adverse effects on human health. In this study, we obtained a blood leukocytes sequencing data set of COVID‐19 patients from the GEO database and obtained differentially expressed genes (DEGs). We further analyzed these DEGs by protein–protein interaction analysis and Gene Ontology enrichment analysis and identified the DEGs closely related to SARS‐CoV‐2 infection. Then, we constructed a six‐gene model (comprising IFIT3, OASL, USP18, XAF1, IFI27, and EPSTI1) by logistic regression analysis and calculated the area under the ROC curve (AUC) for the diagnosis of COVID‐19. The AUC values of the training group, testing group, and entire group were 0.930, 0.914, and 0.921, respectively. The six genes were highly expressed in patients with COVID‐19 and positively correlated with the expression of SARS‐CoV‐2 invasion‐related genes (ACE2, TMPRSS2, CTSB, and CTSL). The risk score calculated by this model was also positively correlated with the expression of TMPRSS2, CTSB, and CTSL, indicating that the six genes were closely related to SARS‐CoV‐2 infection. In conclusion, we comprehensively analyzed the functions of DEGs in the blood leukocytes of patients with COVID‐19 and constructed a six‐gene model that may contribute to the development of new diagnostic and therapeutic ideas for COVID‐19. Moreover, these six genes may be therapeutic targets for COVID‐19. COVID‐19 is a global epidemic and poses a serious risk to human health. The differentially expressed genes related to SARS‐CoV‐2 infection in leukocytes of patients with COVD‐19 were screened. A 6‐gene model for COVID‐19 diagnosis and treatment was constructed by logistic regression analysis. The role and mechanism of these six genes (IFIT3, OASL, USP18, XAF1, IFI27, and EPSTI1) in COVID‐19 were preliminarily analyzed.
Collapse
Affiliation(s)
- Xin Gao
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Yuan Liu
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Shaohui Zou
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Pengqin Liu
- Department of Nuclear Medicine, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Department of Nuclear Medicine, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Jing Zhao
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Changshun Yang
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Mingxing Liang
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| | - Jinlian Yang
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China.,Clinical Laboratory, The Fourth Affiliated Hospital of Jishou University, Huaihua, Hunan, China
| |
Collapse
|
10
|
Rao C, Frodyma DE, Southekal S, Svoboda RA, Black AR, Guda C, Mizutani T, Clevers H, Johnson KR, Fisher KW, Lewis RE. KSR1- and ERK-dependent translational regulation of the epithelial-to-mesenchymal transition. eLife 2021; 10:e66608. [PMID: 33970103 PMCID: PMC8195604 DOI: 10.7554/elife.66608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/09/2021] [Indexed: 01/06/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is considered a transcriptional process that induces a switch in cells from a polarized state to a migratory phenotype. Here, we show that KSR1 and ERK promote EMT-like phenotype through the preferential translation of Epithelial-Stromal Interaction 1 (EPSTI1), which is required to induce the switch from E- to N-cadherin and coordinate migratory and invasive behavior. EPSTI1 is overexpressed in human colorectal cancer (CRC) cells. Disruption of KSR1 or EPSTI1 significantly impairs cell migration and invasion in vitro, and reverses EMT-like phenotype, in part, by decreasing the expression of N-cadherin and the transcriptional repressors of E-cadherin expression, ZEB1 and Slug. In CRC cells lacking KSR1, ectopic EPSTI1 expression restored the E- to N-cadherin switch, migration, invasion, and anchorage-independent growth. KSR1-dependent induction of EMT-like phenotype via selective translation of mRNAs reveals its underappreciated role in remodeling the translational landscape of CRC cells to promote their migratory and invasive behavior.
Collapse
Affiliation(s)
- Chaitra Rao
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Danielle E Frodyma
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical CenterOmahaUnited States
| | - Robert A Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical CenterOmahaUnited States
| | - Adrian R Black
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical CenterOmahaUnited States
| | - Tomohiro Mizutani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtUtrechtNetherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtUtrechtNetherlands
| | - Keith R Johnson
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
- Department of Oral Biology, University of Nebraska Medical CenterOmahaUnited States
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical CenterOmahaUnited States
| | - Robert E Lewis
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
11
|
Brechbuhl HM, Vinod-Paul K, Gillen AE, Kopin EG, Gibney K, Elias AD, Hayashi M, Sartorius CA, Kabos P. Analysis of circulating breast cancer cell heterogeneity and interactions with peripheral blood mononuclear cells. Mol Carcinog 2020; 59:1129-1139. [PMID: 32822091 DOI: 10.1002/mc.23242] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023]
Abstract
For solid tumors, extravasation of cancer cells and their survival in circulation represents a critical stage of the metastatic process that lacks complete understanding. Gaining insight into interactions between circulating tumor cells (CTCs) and other peripheral blood mononuclear cells (PBMCs) may provide valuable prognostic information. The purpose of this study was to use single-cell RNA-sequencing (scRNA-seq) of liquid biopsies from breast cancer patients to begin defining intravascular interactions. We captured CTCs from the peripheral blood of breast cancer patients using size-exclusion membranes followed by scRNA-seq of enriched CTCs and carry-over PBMCs. Transcriptome analysis identified two populations of CTCs: one enriched for transcripts indicative of estrogen responsiveness and increased proliferation and another enriched for transcripts characteristic of reduced proliferation and epithelial-mesenchymal transition (EMT). We applied interactome and pathway analysis to determine interactions between CTCs and other captured cells. Our analysis predicted for enhanced immune evasion in the CTC population with EMT characteristics. In addition, PD-1/PD-L1 pathway activation and T cell exhaustion were predicted in T cells isolated from breast cancer patients compared with normal T cells. We conclude that scRNA-seq of breast cancer CTCs generally stratifies them into two types based on their proliferative and epithelial state and differential potential to interact with PBMCs. Better understanding of CTC subtypes and their intravascular interactions may help design treatments directed against CTCs with high metastatic and immune-evasive competence.
Collapse
Affiliation(s)
- Heather M Brechbuhl
- Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, Colorado
| | - Kiran Vinod-Paul
- Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, Colorado
| | - Austin E Gillen
- Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado
| | - Etana G Kopin
- Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, Colorado
| | - Kari Gibney
- Department of Medicine, Cancer Center, University of Colorado, Aurora, Colorado
| | - Anthony D Elias
- Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, Colorado
| | | | | | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado, Aurora, Colorado
| |
Collapse
|
12
|
Das Mahapatra K, Pasquali L, Søndergaard JN, Lapins J, Nemeth IB, Baltás E, Kemény L, Homey B, Moldovan LI, Kjems J, Kutter C, Sonkoly E, Kristensen LS, Pivarcsi A. A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Sci Rep 2020; 10:3637. [PMID: 32108138 PMCID: PMC7046790 DOI: 10.1038/s41598-020-59660-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous Squamous Cell Carcinoma (cSCC) is the most common and fastest-increasing cancer with metastatic potential. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are novel regulators of gene expression. To identify mRNAs, lncRNAs and circRNAs, which can be involved in cSCC, RNA-seq was performed on nine cSCCs and seven healthy skin samples. Representative transcripts were validated by NanoString nCounter assays using an extended cohort, which also included samples from pre-cancerous skin lesions (actinic keratosis). 5,352 protein-coding genes, 908 lncRNAs and 55 circular RNAs were identified to be differentially expressed in cSCC. Targets of 519 transcription factors were enriched among differentially expressed genes, 105 of which displayed altered level in cSCCs, including fundamental regulators of skin development (MYC, RELA, ETS1, TP63). Pathways related to cell cycle, apoptosis, inflammation and epidermal differentiation were enriched. In addition to known oncogenic lncRNAs (PVT1, LUCAT1, CASC9), a set of skin-specific lncRNAs were were identified to be dysregulated. A global downregulation of circRNAs was observed in cSCC, and novel skin-enriched circRNAs, circ_IFFO2 and circ_POF1B, were identified and validated. In conclusion, a reference set of coding and non-coding transcripts were identified in cSCC, which may become potential therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Kunal Das Mahapatra
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lorenzo Pasquali
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Nørskov Søndergaard
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Science for Life Laboratory, SE-171 77, Stockholm, Sweden
| | - Jan Lapins
- Unit of Dermatology, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - István Balazs Nemeth
- Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Eszter Baltás
- Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Liviu-Ionut Moldovan
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Science for Life Laboratory, SE-171 77, Stockholm, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Dermatology, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Lasse Sommer Kristensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden. .,Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
13
|
A Transcriptomic Insight into the Impact of Colon Cancer Cells on Mast Cells. Int J Mol Sci 2019; 20:ijms20071689. [PMID: 30987352 PMCID: PMC6480031 DOI: 10.3390/ijms20071689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are one of the first immune cells recruited to a tumor. It is well recognized that MCs accumulate in colon cancer lesion and their density is associated with the clinical outcomes. However, the molecular mechanism of how colon cancer cells may modify MC function is still unclear. In this study, primary human MCs were generated from CD34+ progenitor cells and a 3D coculture model was developed to study the interplay between colon cancer cells and MCs. By comparing the transcriptomic profile of colon cancer-cocultured MCs versus control MCs, we identified a number of deregulated genes, such as MMP-2, VEGF-A, PDGF-A, COX2, NOTCH1 and ISG15, which contribute to the enrichment of cancer-related pathways. Intriguingly, pre-stimulation with a TLR2 agonist prior to colon cancer coculture induced upregulation of multiple interferon-inducible genes as well as MHC molecules in MCs. Our study provides an alternative approach to study the influence of colon cancer on MCs. The transcriptome signature of colon cancer-cocultured MCs may potentially reflect the mechanism of how colon cancer cells educate MCs to become pro-tumorigenic in the initial phase and how a subsequent inflammatory signal—e.g., TLR2 ligands—may modify their responses in the cancer milieu.
Collapse
|
14
|
Chen E, Yang F, He H, Li Q, Zhang W, Xing J, Zhu Z, Jiang J, Wang H, Zhao X, Liu R, Lei L, Dong J, Pei Y, Yang Y, Pan J, Zhang P, Liu S, Du L, Zeng Y, Yang J. Alteration of tumor suppressor BMP5 in sporadic colorectal cancer: a genomic and transcriptomic profiling based study. Mol Cancer 2018; 17:176. [PMID: 30572883 PMCID: PMC6302470 DOI: 10.1186/s12943-018-0925-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Background Although the genetic spectrum of human colorectal cancer (CRC) is mainly characterized by APC, KRAS and TP53 mutations, driver genes in tumor initiation have not been conclusively demonstrated. In this study, we aimed to identify novel markers for CRC. Methods We performed exome analysis of sporadic colorectal cancer (sCRC) coding regions to screen loss of function (LoF) mutation genes, and carried out systems-level approaches to confirm top rank gene in this study. Results We identified loss of BMP5 is an early event in CRC. Deep sequencing identified BMP5 was mutated in 7.7% (8/104) of sCRC samples, with 37.5% truncating mutation frequency. Notably, BMP5 negative expression and its prognostic value is uniquely significant in sCRC but not in other tumor types. Furthermore, BMP5 expression was positively correlated with E-cadherin in CRC patients and its dysregulation play a vital role in epithelial-mesenchymal transition (EMT), thus triggering tumor initiation and development. RNA sequencing identified, independent of BMP/Smads pathway, BMP5 signaled though Jak-Stat pathways to inhibit the activation of oncogene EPSTI1. Conclusions Our result support a novel concept that the importance of BMP5 in sCRC. The tumor suppressor role of BMP5 highlights its crucial role in CRC initiation and development. Electronic supplementary material The online version of this article (10.1186/s12943-018-0925-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Fangfang Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Hongjuan He
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Qiqi Li
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Wei Zhang
- Department of Pathology, The Helmholtz Sino-German Laboratory for Cancer Research, Tangdu Hospital, the Fourth Military Medical University, Xian, 710038, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xian, China
| | - Ziqing Zhu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Jingjing Jiang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Hua Wang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Xiaojuan Zhao
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Ruitao Liu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Lei Lei
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Jing Dong
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Yuchen Pei
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 100 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai, 201210, China
| | - Ying Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Junqiang Pan
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Pan Zhang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Shuzhen Liu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Le Du
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Yuan Zeng
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Jin Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China.
| |
Collapse
|
15
|
Kim YH, Lee JR, Hahn MJ. Regulation of inflammatory gene expression in macrophages by epithelial-stromal interaction 1 (Epsti1). Biochem Biophys Res Commun 2018; 496:778-783. [DOI: 10.1016/j.bbrc.2017.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 01/01/2023]
|
16
|
|
17
|
Tan YY, Xu XY, Wang JF, Zhang CW, Zhang SC. MiR-654-5p attenuates breast cancer progression by targeting EPSTI1. Am J Cancer Res 2016; 6:522-532. [PMID: 27186421 PMCID: PMC4859678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023] Open
Abstract
MicroRNAs (miRNAs) dysregulation is a common event in a variety of human diseases including breast cancer. However, clinical relevance and biological role of miR-654-5p in the progression of breast cancer remain greatly elusive. Herein, the expression levels of miR-654-5p were aberrantly downregulated in human breast cancer specimens and four breast cancer cell lines. Low expression of miR-654-5p was strongly associated with advanced TNM stage and lymph node metastasis as well as a poor survival. Functional analysis showed that miR-654-5p overexpression inhibited cell growth and invasion, and induced cell apoptosis in two aggressive breast cancer cells. Further studies demonstrated that Epithelial stromal interaction 1 (EPSTI1) was a direct target gene of miR-654-5p and showed an inverse correlation with miR-654-5p expression. Forced expression of EPSTI1 could abrogate the inhibitory effect of miR-654-5p on the growth and invasion of breast cancer cells as well as apoptosis-induced ability. In conclusion, the present study highlights that miR-654-5p acts as a tumor suppressor in breast cancer through directly targeting EPSTI1, and their functional regulation may open a novel avenue with regard to the therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yu-Yan Tan
- Department of General Surgery, The First College of Clinical Medical Science, China Three Gorges UniversityYichang 443003, Hubei, China
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast UniversityNanjing 210009, Jiangsu, China
| | - Xiao-Yun Xu
- Department of Intensive Care Unit, The First College of Clinical Medical Science, China Three Gorges UniversityYichang 443003, Hubei, China
| | - Jin-Feng Wang
- Department of General Surgery, The First College of Clinical Medical Science, China Three Gorges UniversityYichang 443003, Hubei, China
| | - Cheng-Wu Zhang
- Department of General Surgery, The First College of Clinical Medical Science, China Three Gorges UniversityYichang 443003, Hubei, China
| | - Sheng-Chu Zhang
- Department of General Surgery, The First College of Clinical Medical Science, China Three Gorges UniversityYichang 443003, Hubei, China
| |
Collapse
|
18
|
Singh S, Zheng Y, Jagadeeswaran G, Ebron JS, Sikand K, Gupta S, Sunker R, Shukla GC. Deep sequencing of small RNA libraries from human prostate epithelial and stromal cells reveal distinct pattern of microRNAs primarily predicted to target growth factors. Cancer Lett 2015; 371:262-73. [PMID: 26655274 DOI: 10.1016/j.canlet.2015.10.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 01/14/2023]
Abstract
Complex epithelial and stromal cell interactions are required during the development and progression of prostate cancer. Regulatory small non-coding microRNAs (miRNAs) participate in the spatiotemporal regulation of messenger RNA (mRNA) and regulation of translation affecting a large number of genes involved in prostate carcinogenesis. In this study, through deep-sequencing of size fractionated small RNA libraries we profiled the miRNAs of prostate epithelial (PrEC) and stromal (PrSC) cells. Over 50 million reads were obtained for PrEC in which 860,468 were unique sequences. Similarly, nearly 76 million reads for PrSC were obtained in which over 1 million were unique reads. Expression of many miRNAs of broadly conserved and poorly conserved miRNA families were identified. Sixteen highly expressed miRNAs with significant change in expression in PrSC than PrEC were further analyzed in silico. ConsensusPathDB showed the target genes of these miRNAs were significantly involved in adherence junction, cell adhesion, EGRF, TGF-β and androgen signaling. Let-7 family of tumor-suppressor miRNAs expression was highly pervasive in both, PrEC and PrSC cells. In addition, we have also identified several miRNAs that are unique to PrEC or PrSC cells and their predicted putative targets are a group of transcription factors. This study provides perspective on the miRNA expression in PrEC and PrSC, and reveals a global trend in miRNA interactome. We conclude that the most abundant miRNAs are potential regulators of development and differentiation of the prostate gland by targeting a set of growth factors. Additionally, high level expression of the most members of let-7 family miRNAs suggests their role in the fine tuning of the growth and proliferation of prostate epithelial and stromal cells.
Collapse
Affiliation(s)
- Savita Singh
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA; Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jey Sabith Ebron
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA; Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Kavleen Sikand
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University South Campus, Sector-25, Chandigarh, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Ramanjulu Sunker
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Girish C Shukla
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA; Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA.
| |
Collapse
|
19
|
Elsheimer-Matulova M, Varmuzova K, Kyrova K, Havlickova H, Sisak F, Rahman M, Rychlik I. phoP, SPI1, SPI2 and aroA mutants of Salmonella Enteritidis induce a different immune response in chickens. Vet Res 2015; 46:96. [PMID: 26380970 PMCID: PMC4574724 DOI: 10.1186/s13567-015-0224-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/20/2015] [Indexed: 01/07/2023] Open
Abstract
Poultry is the most frequent reservoir of non-typhoid Salmonella enterica for humans. Understanding the interactions between chickens and S. enterica is therefore important for vaccine design and subsequent decrease in the incidence of human salmonellosis. In this study we therefore characterized the interactions between chickens and phoP, aroA, SPI1 and SPI2 mutants of S. Enteritidis. First we tested the response of HD11 chicken macrophage-like cell line to S. Enteritidis infection monitoring the transcription of 36 genes related to immune response. All the mutants and the wild type strain induced inflammatory signaling in the HD11 cell line though the response to SPI1 mutant infection was different from the rest of the mutants. When newly hatched chickens were inoculated, the phoP as well as the SPI1 mutant did not induce an expression of any of the tested genes in the cecum. Despite this, such chickens were protected against challenge with wild-type S. Enteritidis. On the other hand, inoculation of chickens with the aroA or SPI2 mutant induced expression of 27 and 18 genes, respectively, including genes encoding immunoglobulins. Challenge of chickens inoculated with these two mutants resulted in repeated induction of 11 and 13 tested genes, respectively, including the genes encoding immunoglobulins. In conclusion, SPI1 and phoP mutants induced protective immunity without inducing an inflammatory response and antibody production. Inoculation of chickens with the SPI2 and aroA mutants also led to protective immunity but was associated with inflammation and antibody production. The differences in interaction between the mutants and chicken host can be used for a more detailed understanding of the chicken immune system.
Collapse
Affiliation(s)
| | - Karolina Varmuzova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Kamila Kyrova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Hana Havlickova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Frantisek Sisak
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Masudur Rahman
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| |
Collapse
|
20
|
Meng X, Yang D, Yu R, Zhu H. EPSTI1 Is Involved in IL-28A-Mediated Inhibition of HCV Infection. Mediators Inflamm 2015; 2015:716315. [PMID: 26146465 PMCID: PMC4469844 DOI: 10.1155/2015/716315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/17/2015] [Indexed: 12/12/2022] Open
Abstract
It has been reported that IFN-λs inhibit HCV replication in vitro. But the mechanisms of how IL-28A conducts antiviral activity and the functions of IL-28A-induced ISGs (IFN-stimulated genes) are not fully understood. In this study, we found that IL-28A has the antiviral effect on HCV life cycle including viral replication, assembly, and release. IL-28A and IFN-α synergistically inhibit virus replication. EPSTI1 (epithelial-stromal interaction 1), one of IL-28A-induced ISGs, plays a vital role in IL-28A-mediated antiviral activity. Furthermore, forced expression of EPSTI1 effectively inhibits HCV replication in the absence of interferon treatment, and knockdown of EPSTI1 contributes to viral enhancement. EPSTI1 can activate PKR promoter and induce several PKR-dependent genes, including IFN-β, IFIT1, OAS1, and RNase L, which is responsible for EPSTI1-mediated antiviral activity.
Collapse
Affiliation(s)
- Xianghe Meng
- Department of Molecular Medicine of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Darong Yang
- Department of Molecular Medicine of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Rong Yu
- Department of Molecular Medicine of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Haizhen Zhu
- Department of Molecular Medicine of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Research Center of Cancer Prevention & Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha 410013, China
| |
Collapse
|
21
|
Capdevila-Busquets E, Badiola N, Arroyo R, Alcalde V, Soler-López M, Aloy P. Breast cancer genes PSMC3IP and EPSTI1 play a role in apoptosis regulation. PLoS One 2015; 10:e0115352. [PMID: 25590583 PMCID: PMC4295872 DOI: 10.1371/journal.pone.0115352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/22/2014] [Indexed: 11/19/2022] Open
Abstract
A key element to delineate the biology of individual tumors is the regulation of apoptosis. In this work, we functionally characterize two breast cancer associated genes, the proteasome 26S subunit ATPase 3 interacting protein (PSMC3IP) and the epithelial-stromal interaction 1 (EPSTI1), to explore their potential apoptotic role in breast cancer. We first explore the existence of direct physical interactions with annotated BC-apoptotic genes. Based on the generated interaction network, we examine several apoptotic markers to determine the effect of PSMC3IP and EPSTI1 gene expression modulation in two different human breast cancer cell lines to suggest potential molecular mechanisms to unveil their role in the disease. Our results show that PSMC3IP and EPSTI1 are able to modulate the extrinsic apoptotic pathway in estrogen receptor positive and triple negative breast cancer cell lines, highlighting them as potential therapeutic targets.
Collapse
Affiliation(s)
- Eva Capdevila-Busquets
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Nahuai Badiola
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Rodrigo Arroyo
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Víctor Alcalde
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Montserrat Soler-López
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
22
|
Balk-Møller E, Kim J, Hopkinson B, Timmermans-Wielenga V, Petersen OW, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1198-208. [PMID: 24655379 DOI: 10.1016/j.ajpath.2013.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/19/2022]
Abstract
Elucidating the phenotypic evolution of breast cancer through distinct subtypes relies heavily on defining a lineage blueprint of the normal human breast. Here, we show that in normal breast, within the luminal epithelial lineage, a subset of cells characterized by strong staining for endocrine receptors are also characterized by expression of the surface marker CEACAM6. Topographically, this pattern of staining predominates in terminal ductal lobular units, rather than in interlobular ducts. In culture, CEACAM6-expressing cells remain essentially postmitotic under conditions in which the other cells of luminal epithelial lineage are highly proliferative. We examined the pattern of expression among three major breast cancer subtypes: luminal, HER2-enriched, and basal-like. In 104 biopsies, the luminal and HER2-enriched subtypes showed a high proportion of CEACAM6(+) tumors (78% and 83%, respectively); the basal-like subtype showed a low proportion (28%). Further accentuation of this pattern was observed in 13 established breast cancer cell lines. When differentiation was induced by all-trans retinoic acid, CEACAM6 expression strongly correlated with luminal-like differentiation. Furthermore, CEACAM6(+) cancer cells were less proliferative than CEACAM6(-) cells in tumorsphere assays and were less tumorigenic in nude mice. Based on these observations, we propose that luminal and HER2-enriched breast cancers are more closely related than previously thought and may share a common cell of origin.
Collapse
Affiliation(s)
- Emilie Balk-Møller
- Department of Cellular and Molecular Medicine, the Panum Institute, the Center for Biological Disease Analysis, and the Danish Stem Cell Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, the Panum Institute, the Center for Biological Disease Analysis, and the Danish Stem Cell Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Branden Hopkinson
- Department of Cellular and Molecular Medicine, the Panum Institute, the Center for Biological Disease Analysis, and the Danish Stem Cell Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ole W Petersen
- Department of Cellular and Molecular Medicine, the Panum Institute, the Center for Biological Disease Analysis, and the Danish Stem Cell Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, the Panum Institute, the Center for Biological Disease Analysis, and the Danish Stem Cell Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
|
24
|
Li T, Lu H, Shen C, Lahiri SK, Wason MS, Mukherjee D, Yu L, Zhao J. Identification of epithelial stromal interaction 1 as a novel effector downstream of Krüppel-like factor 8 in breast cancer invasion and metastasis. Oncogene 2013; 33:4746-55. [PMID: 24096480 PMCID: PMC3979502 DOI: 10.1038/onc.2013.415] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/08/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022]
Abstract
Krüppel-like factor 8 (KLF8) is a transcriptional factor critical for metastatic progression of breast cancer. Epithelial stromal interaction 1 (EPSTI1), a recently identified stromal fibroblast-induced gene in non-invasive breast cancer cells is highly overexpressed in invasive breast carcinomas. The function and regulation of EPSTI1, however, remain largely unknown. In this paper, we report a novel KLF8 to EPSTI1 signaling pathway in breast cancer. Using various expression analyses, we revealed a high co-overexpression of KLF8 and EPSTI1 in invasive human breast cancer cells and patient tumors. Ectopic overexpression of KLF8 in the non-invasive, MCF-10A cells induced the EPSTI1 expression, whereas KLF8 knockdown from the invasive, MDA-MB-231 cells decreased the EPSTI1 expression. Promoter activation and binding analyses indicated that KLF8 promoted the EPSTI1 expression by directly acting on the EPSTI1 gene promoter. EPSTI1 knockdown dramatically reduced the KLF8-promoted MCF-10A cell invasion and ectopic expression of EPSTI1 in the non-invasive, MCF-7 cells is sufficient to induce the cell invasion. Experiments using nude mice demonstrated that the ectopic EPSTI1 granted the MCF-7 cells capability of both invasive growth in the breasts and metastasis to the lungs. Using co-immunoprecipitation coupled with mass spectrometry, we discovered that EPSTI1 interacts with the valosin containing protein (VCP), resulting in the degradation of IκBα and subsequent activation of NF-κB in the nucleus. These findings suggest a novel KLF8 to EPSTI1 to VCP to NF-κB signaling mechanism potentially critical for breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- T Li
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - H Lu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - C Shen
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - S K Lahiri
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - M S Wason
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - D Mukherjee
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - L Yu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - J Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
25
|
Keita M, Wang ZQ, Pelletier JF, Bachvarova M, Plante M, Gregoire J, Renaud MC, Mes-Masson AM, Paquet ÉR, Bachvarov D. Global methylation profiling in serous ovarian cancer is indicative for distinct aberrant DNA methylation signatures associated with tumor aggressiveness and disease progression. Gynecol Oncol 2012; 128:356-63. [PMID: 23219462 DOI: 10.1016/j.ygyno.2012.11.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To characterize at high resolution the DNA methylation changes which occur in the genome of serous epithelial ovarian cancer (EOC) in association with tumor aggressiveness. METHODS Methylated DNA immunoprecipitation in combination with CpG island-tiling arrays was used to compare the methylation profiles of five borderline, five grade 1/stage III/IV, five grade 3/stage I and five grade 3/stage III/IV serous EOC tumors, to those of five normal human ovarian tissue samples. RESULTS We found widespread DNA hypermethylation that occurs even in low-malignant potential (borderline) tumors and which predominantly includes key developmental/homeobox genes. Contrary to DNA hypermethylation, significant DNA hypomethylation was observed only in grade 3 serous EOC tumors. The latter observation was further confirmed when comparing the DNA methylation profiles of primary cell cultures derived from matched tumor samples obtained prior to, and following chemotherapy treatment from two serous EOC patients with advanced disease. To our knowledge this is the first report that has shown the presence of massive DNA hypomethylation in advanced serous EOC, associated with tumor malignancy and disease progression. CONCLUSIONS Our data raise the concern that demethylating drugs that are currently being used in advanced EOC disease (representing the majority of serous EOC cases) might have adverse effects due to activation of oncogenes and prometastatic genes. Understanding the relative roles of hypomethylation and hypermethylation in cancer could have clear implications on the therapeutic use of agents targeting the DNA methylation machinery.
Collapse
Affiliation(s)
- Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Moal V, Textoris J, Ben Amara A, Mehraj V, Berland Y, Colson P, Mege JL. Chronic hepatitis E virus infection is specifically associated with an interferon-related transcriptional program. J Infect Dis 2012; 207:125-32. [PMID: 23072754 DOI: 10.1093/infdis/jis632] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a new causative agent of chronic hepatitis in solid organ transplant recipients. Clinical studies suggest that the occurrence and persistence of chronic HEV infection are related to the immunological status of patients. METHODS We used whole-genome microarray and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to compare the transcriptional profiles of whole blood from 8 kidney transplant recipients with chronic HEV infection and 8 matched kidney transplant recipients without HEV infection. RESULTS We found that 30 genes in HEV-infected patients were upregulated, compared with those in control patients, as determined by microarray analysis. In contrast, no genes were downregulated. The 30 upregulated genes included 25 interferon-stimulated genes. Increased expression of the genes that encode IFIT1, IFI44L, RSAD2, EPSTI1, and ISG15 was confirmed by qRT-PCR. Interestingly, the expression levels of these genes were associated with the persistence of HEV infection. CONCLUSIONS Increased expression of interferon-stimulated genes may favor the persistence of an HEV infection. Whether the expression of interferon-stimulated genes is a marker of ongoing viremia or independent prognostic marker of HEV clearance needs further investigations. CLINICAL TRIALS REGISTRATION NCT01090232.
Collapse
Affiliation(s)
- Valérie Moal
- Centre de Néphrologie et Transplantation Rénale, Fédération de Bactériologie-Virologie-Hygiène, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Patterson AL, Squires EL, Hansen TR, Bouma GJ, Bruemmer JE. Gene profiling of inflammatory genes in day 18 endometria from pregnant and non-pregnant mares. Mol Reprod Dev 2012; 79:777-84. [DOI: 10.1002/mrd.22112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/05/2012] [Indexed: 11/05/2022]
|
28
|
Fujino N, Ota C, Takahashi T, Suzuki T, Suzuki S, Yamada M, Nagatomi R, Kondo T, Yamaya M, Kubo H. Gene expression profiles of alveolar type II cells of chronic obstructive pulmonary disease: a case-control study. BMJ Open 2012; 2:bmjopen-2012-001553. [PMID: 23117565 PMCID: PMC3532994 DOI: 10.1136/bmjopen-2012-001553] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES The aim of this study was to identify the gene expression pattern specific in alveolar epithelial type II cells (ATII cells) isolated from patients with chronic obstructive pulmonary disease (COPD). DESIGN Case control. SETTING Two hospitals in Japan. PARTICIPANTS Three patients without COPD and three patients with COPD in microarray analyses. Five smokers without COPD and nine smokers with COPD in the following analyses. PRIMARY AND SECONDARY OUTCOME MEASURED: Primary outcome included identification of differentially expressed genes and activated or inhibited pathways in ATII cells of the patients with COPD, compared to those of the patients without COPD, using Affymetrix gene expression arrays. Secondary outcome included validation of the results of microarray analyses by quantitative reverse transcription-PCR. RESULTS We isolated ATII cells from COPD and non-COPD lungs using fluorescence-activated cell sorting. We performed Affymetrix gene expression arrays on both types of ATII cells. Gene set enrichment analyses revealed that two major gene sets were enriched in ATII cells from COPD lungs: interferon-responsive gene sets and gene sets associated with cell cycle progression. Gene ontology term enrichment analyses indicated that among the interferon-stimulated genes, ATII cells in COPD expressed genes such as PSMB8, PSMB9, TAP1 and TAP2 associated with the antigen processing and presentation pathway. We validated the results of the microarray analyses using quantitative reverse transcriptase-PCR. In addition, FACS analysis indicated that the percentage of ATII cells to CD45-negative lung cells isolated from COPD lungs were significantly increased more than that from non-COPD lungs. CONCLUSIONS Our study demonstrated that interferon-stimulated genes involved in the antigen processing and presentation pathway and genes involved in cell cycle progression were enriched in ATII cells of the patients with COPD. These pathways might alter phenotypes of ATII cells in COPD lungs.
Collapse
Affiliation(s)
- Naoya Fujino
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chiharu Ota
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Takahashi
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaya Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Satoshi Suzuki
- Department of Thoracic Surgery, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Japan
| | - Mitsuhiro Yamada
- Department of Infection Control and Laboratory Diagnostics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryouichi Nagatomi
- Department of Biomedical Engineering, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Takashi Kondo
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kubo
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
29
|
Bebek G, Orloff M, Eng C. Microenvironmental genomic alterations reveal signaling networks for head and neck squamous cell carcinoma. J Clin Bioinforma 2011; 1:21. [PMID: 21884569 PMCID: PMC3170587 DOI: 10.1186/2043-9113-1-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 08/02/2011] [Indexed: 01/04/2023] Open
Abstract
Background Advanced stage head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer with low survival rates. Loss-of-heterozygosity/allelic imbalance (LOH/AI) analysis has been widely used to identify genomic alterations in solid tumors and the tumor microenvironment (stroma). We hypothesize that these identified alterations can point to signaling networks functioning in HNSCC epithelial-tumor and surrounding stroma (tumor microenvironment). Results Under the assumption that genes in proximity to identified LOH/AI regions are correlated with the tumorigenic phenotype, we mined publicly available biological information to identify pathway segments (signaling proteins connected to each other in a network) and identify the role of tumor microenvironment in HNSCC. Across both neoplastic epithelial cells and the surrounding stromal cells, genetic alterations in HNSCC were successfully identified, and 75 markers were observed to have significantly different LOH/AI frequencies in these compartments (p < 0.026). We applied a network identification approach to the genes in proximity to these 75 markers in cancer epithelium and stroma in order to identify biological networks that can describe functional associations amongst these marker-associated genes. Conclusions We verified the involvement of T-cell receptor signaling pathways in HNSCC as well as associated oncogenes such as LCK and PLCB1, and tumor suppressors such as STAT5A, PTPN6, PARK2. We identified expression levels of genes within significant LOH/AI regions specific to stroma networks that correlate with better outcome in radiation therapy. By integrating various levels of high-throughput data, we were able to precisely focus on specific proteins and genes that are germane to HNSCC.
Collapse
Affiliation(s)
- Gurkan Bebek
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Mailstop NE-50 Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
30
|
Stingl J, Smalley MJ, Glukhova MA, Bentires-Alj M. Methods in Mammary Gland Development and Cancer: the second ENDBC meeting--intravital imaging, genomics, modeling and metastasis. Breast Cancer Res 2010; 12:311. [PMID: 20860854 PMCID: PMC3096950 DOI: 10.1186/bcr2630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The second meeting of the European Network for Breast Development and Cancer (ENBDC) on 'Methods in Mammary Gland Development and Cancer' was held in April 2010 in Weggis, Switzerland. The focus was on genomics and bioinformatics, extracellular matrix and stroma-epithelial cell interactions, intravital imaging, the search for metastasis founder cells and mouse models of breast cancer.
Collapse
Affiliation(s)
- John Stingl
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, UK
| | | | | | | |
Collapse
|
31
|
Tran-Thanh D, Done SJ. The role of stromal factors in breast tumorigenicity. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1072-4. [PMID: 20093480 DOI: 10.2353/ajpath.2010.091128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Danh Tran-Thanh
- Department of Pathology, University Health Network, University of Toronto, 200 Elizabeth Street, 11E444, Toronto, ON, M5G 2C4, Canada.
| | | |
Collapse
|