1
|
Li Y, Hu K, Li Y, Lu C, Guo Y, Wang W. The rodent models of arteriovenous fistula. Front Cardiovasc Med 2024; 11:1293568. [PMID: 38304139 PMCID: PMC10830807 DOI: 10.3389/fcvm.2024.1293568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Arteriovenous fistulas (AVFs) have long been used as dialysis access in patients with end-stage renal disease; however, their maturation and long-term patency still fall short of clinical needs. Rodent models are irreplaceable to facilitate the study of mechanisms and provide reliable insights into clinical problems. The ideal rodent AVF model recapitulates the major features and pathology of human disease as closely as possible, and pre-induction of the uremic milieu is an important addition to AVF failure studies. Herein, we review different surgical methods used so far to create AVF in rodents, including surgical suturing, needle puncture, and the cuff technique. We also summarize commonly used evaluations after AVF placement. The aim was to provide recent advances and ideas for better selection and induction of rodent AVF models. At the same time, further improvements in the models and a deeper understanding of AVF failure mechanisms are expected.
Collapse
Affiliation(s)
- Yuxuan Li
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Hu
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Li
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjun Lu
- Department of General Vascular Surgery, Wuhan No.1 Hospital & Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Yi Guo
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weici Wang
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Chang CJ, Lai YJ, Tung YC, Wu LS, Hsu LA, Tseng CN, Chang GJ, Yang KC, Yeh YH. Osteopontin mediation of disturbed flow-induced endothelial mesenchymal transition through CD44 is a novel mechanism of neointimal hyperplasia in arteriovenous fistulae for hemodialysis access. Kidney Int 2023; 103:702-718. [PMID: 36646166 DOI: 10.1016/j.kint.2022.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/19/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
In dysfunctional arteriovenous fistulae (AVF) for hemodialysis access, neointimal hyperplasia (NH) is prone to occur in the region exposed to disturbed flow. We hypothesized that disturbed flow contributes to NH in AVF by inducing endothelial mesenchymal transition (EndMT) through activation of the osteopontin/CD44 axis. In rats with aortocaval fistula, a rodent model of AVF, we demonstrated development of EndMT and expression of osteopontin and CD44 specifically in the vicinity of the arteriovenous junction using immunostaining. Duplex scan confirmed this region was exposed to a disturbed flow. A mixed ultrastructural phenotype of endothelium and smooth muscle cells was found in luminal endothelial cells of the arteriovenous junction by electron microscopy ascertaining the presence of EndMT. Endothelial lineage tracing using Cdh5-Cre/ERT2;ROSA26-tdTomato transgenic mice showed that EndMT was involved in NH of AVF since the early stage and that the endothelial-derived cells contributed to 24% of neointimal cells. In human umbilical vein endothelial cells (HUVECs) in culture, osteopontin treatment induced EndMT, which was suppressed by CD44 knockdown. Exposure to low oscillatory wall shear stress using a parallel-plate system induced EndMT in HUVECs, also suppressed by osteopontin or CD44 knockdown. In AVF of CD44 knockout mice, EndMT was mitigated and NH decreased by 35% compared to that in wild-type mice. In dysfunctional AVF of patients with uremia, expressions of osteopontin, CD44, and mesenchymal markers in endothelial cells overlying the neointima was also found by immunostaining. Thus, the osteopontin/CD44 axis regulates disturbed flow-induced EndMT, plays an important role in neointimal hyperplasia of AVF, and may act as a potential therapeutic target to prevent AVF dysfunction.
Collapse
Affiliation(s)
- Chi-Jen Chang
- Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ying-Ju Lai
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chang Tung
- Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Lung-Sheng Wu
- Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Lung-An Hsu
- Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chi-Nan Tseng
- Division of Cardiac Surgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Hu K, Guo Y, Li Y, Lu C, Cai C, Zhou S, Ke Z, Li Y, Wang W. Oxidative stress: An essential factor in the process of arteriovenous fistula failure. Front Cardiovasc Med 2022; 9:984472. [PMID: 36035909 PMCID: PMC9403606 DOI: 10.3389/fcvm.2022.984472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
For more than half a century, arteriovenous fistula (AVFs) has been recognized as a lifeline for patients requiring hemodialysis (HD). With its higher long-term patency rate and lower probability of complications, AVF is strongly recommended by guidelines in different areas as the first choice for vascular access for HD patients, and its proportion of application is gradually increasing. Despite technological improvements and advances in the standards of postoperative care, many deficiencies are still encountered in the use of AVF related to its high incidence of failure due to unsuccessful maturation to adequately support HD and the development of neointimal hyperplasia (NIH), which narrows the AVF lumen. AVF failure is linked to the activation and migration of vascular cells and the remodeling of the extracellular matrix, where complex interactions between cytokines, adhesion molecules, and inflammatory mediators lead to poor adaptive remodeling. Oxidative stress also plays a vital role in AVF failure, and a growing amount of data suggest a link between AVF failure and oxidative stress. In this review, we summarize the present understanding of the pathophysiology of AVF failure. Furthermore, we focus on the relation between oxidative stress and AVF dysfunction. Finally, we discuss potential therapies for addressing AVF failure based on targeting oxidative stress.
Collapse
Affiliation(s)
- Ke Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Guo
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjun Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunchang Zhou
- Center of Experimental Animals, Huazhong University of Science and Technology, Wuhan, China
| | - Zunxiang Ke
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yiqing Li,
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Weici Wang,
| |
Collapse
|
4
|
Feng S, Peden EK, Guo Q, Lee TH, Li Q, Yuan Y, Chen C, Huang F, Cheng J. Downregulation of the endothelial histone demethylase JMJD3 is associated with neointimal hyperplasia of arteriovenous fistulas in kidney failure. J Biol Chem 2022; 298:101816. [PMID: 35278430 PMCID: PMC9052161 DOI: 10.1016/j.jbc.2022.101816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Jumonji domain-containing protein-3 (JMJD3), a histone H3 lysine 27 (H3K27) demethylase, promotes endothelial regeneration, but its function in neointimal hyperplasia (NIH) of arteriovenous fistulas (AVFs) has not been explored. In this study, we examined the contribution of endothelial JMJD3 to NIH of AVFs and the mechanisms underlying JMJD3 expression during kidney failure. We found that endothelial JMJD3 expression was negatively associated with NIH of AVFs in patients with kidney failure. JMJD3 expression in endothelial cells (ECs) was also downregulated in the vasculature of chronic kidney disease (CKD) mice. In addition, specific knockout of endothelial JMJD3 delayed EC regeneration, enhanced endothelial mesenchymal transition, impaired endothelial barrier function as determined by increased Evans blue staining and inflammatory cell infiltration, and accelerated neointima formation in AVFs created by venous end to arterial side anastomosis in CKD mice. Mechanistically, JMJD3 expression was downregulated via binding of transforming growth factor beta 1-mediated Hes family transcription factor Hes1 to its gene promoter. Knockdown of JMJD3 enhanced H3K27 methylation, thereby inhibiting transcriptional activity at promoters of EC markers and reducing migration and proliferation of ECs. Furthermore, knockdown of endothelial JMJD3 decreased endothelial nitric oxide synthase expression and nitric oxide production, leading to the proliferation of vascular smooth muscle cells. In conclusion, we demonstrate that decreased expression of endothelial JMJD3 impairs EC regeneration and function and accelerates neointima formation in AVFs. We propose increasing the expression of endothelial JMJD3 could represent a new strategy for preventing endothelial dysfunction, attenuating NIH, and improving AVF patency in patients with kidney disease.
Collapse
Affiliation(s)
- Shaozhen Feng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China; Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Eric K Peden
- Department of Vascular Surgery, DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, USA
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Tae Hoon Lee
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Qingtian Li
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Yuhui Yuan
- Department of Surgery, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Changyi Chen
- Department of Surgery, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Fengzhang Huang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
5
|
In Vivo Evaluation of Mechanically Processed Stromal Vascular Fraction in a Chamber Vascularized by an Arteriovenous Shunt. Pharmaceutics 2022; 14:pharmaceutics14020417. [PMID: 35214149 PMCID: PMC8880586 DOI: 10.3390/pharmaceutics14020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanically processed stromal vascular fraction (mSVF) is a promising source for regenerative purposes. To study the in vivo fate of the mSVF, we herein used a vascularized tissue engineering chamber that insulates the target mSVF from the surrounding environment. In contrast to previous models, we propose an arteriovenous (AV) shunt between saphenous vessels in rats without a venous graft. Mechanical SVF was processed from the fat pads of male Sprague Dawley rats, mixed with a fibrin hydrogel and implanted into an inguinal tissue engineering chamber. An arteriovenous shunt was established between saphenous artery and vein. On the contralateral side, an mSVF-fibrin hydrogel mix without vascular axis served as a non-vascularized control. After two and six weeks, rats were sacrificed for further analysis. Mechanical SVF showed significant numbers of mesenchymal stromal cells. Vascularized mSVF explants gained weight over time. Perilipin and CD31 expression were significantly higher in the mSVF explants after six weeks while no difference in DAPI positive cells, collagen deposition and FABP4 expression was observed. Morphologically, no differentiated adipocytes but a dense cell-rich tissue with perilipin-positive cells was found after six weeks. The phosphorylation of ERK1/2 was significantly enhanced after six weeks while Akt activation remained unaltered. Finally, mSVF explants stably expressed and released VEGF, bFGF and TGFb. Vascularized mSVF is able to proliferate and express adipocyte-specific markers. The AV shunt model is a valuable refinement of currently existing AV loop models in the rat which contributes to the fundamental 3R principles of animal research.
Collapse
|
6
|
Huang X, Guan J, Sheng Z, Wang M, Xu T, Guo G, Wan P, Tian B, Zhou J, Huang A, Hao J, Yao L. Effect of local anti-vascular endothelial growth factor therapy to prevent the formation of stenosis in outflow vein in arteriovenous fistula. J Transl Int Med 2021; 9:307-317. [PMID: 35136729 PMCID: PMC8802407 DOI: 10.2478/jtim-2021-0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Vascular stenosis and angiogenesis are the major causes of short expectancy of arteriovenous fistula (AVF). Increased expression of vascular endothelial growth factor-A (VEGF-A) has been suggested to play an important role in the pathophysiologic process. Anti-VEGF has been proved to be effective on anti-angiogenesis and applied in clinical practice, but its effect on anti-stenosis remains to be verified before it could be applied to prevent stenosis of AVF. This study was aimed to evaluate the effect of local anti-VEGF therapy to prevent the formation of stenosis in the outflow vein in AVF and its mechanism. METHODS Bioinformatics of VEGF-A and its downstream-regulated molecules from the STRING PPI database were analyzed in this study. The biopsy samples from outflow veins of AVF in patients and C57BL/6 mouse models were analyzed to examine the mechanisms of pathologic vascular stenosis associated with VEGF pathways and their potential therapeutic targets. RESULTS We found that the reduction of VEGF-A could downregulate downstream molecules and subsequently reduce the intimal hyperplasia and abnormal vascular remodeling by analyzing the STRING PPI database. Venous wall thickening, intimal neointima formation, and apoptosis of vascular endothelial cells in the proliferative outflow vein of the AVF were significantly more obvious, and upregulation of expression of VEGF was observed in dysfunctional AVF in patients. In mouse models, the expression of VEGF, Ephrin receptor B4 (EphB4), matrix metalloproteinase (MMP)2, MMP9, tissue inhibitor of metalloproteinase (TIMP)1, TIMP2, and caspase 3 in the control-shRNA surgical group was significantly higher than in the sham group (P < 0.05), and all of these indicators were significantly lower in lentiviral transfection group and Avastin group than in control-shRNA surgical group (P < 0.05) on the 14th day after AVF operation. CONCLUSION VEGF expression is significantly increased in vascular endothelial cells in stenosed or occluded outflow veins of dysfunctional AVF. Local injection of Avastin into the adventitia of the proximal outflow vein in autologous AVF procedure has an excellent potential to prevent the subsequent local stenosis of the proximal outflow vein.
Collapse
Affiliation(s)
- Xin Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Jibin Guan
- College of Pharmacy, University of Minnesota, Minneapolis55455, MN, USA
| | - Zitong Sheng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Menghua Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Pengzhi Wan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Binyao Tian
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Junlei Zhou
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Junfeng Hao
- Department of Nephrology, Jinqiu Hospital Liaoning Province, Shenyang110016, Liaoning Province, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| |
Collapse
|
7
|
Kim K, Anderson EM, Martin AJ, Hu Q, Cort TA, Harland KC, O'Malley KA, Lu G, Berceli SA, Ryan TE, Scali ST. Development of a murine iliac arteriovenous fistula model for examination of hemodialysis access-related limb pathophysiology. JVS Vasc Sci 2021; 2:247-259. [PMID: 34816137 PMCID: PMC8591416 DOI: 10.1016/j.jvssci.2021.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Hemodialysis access-related hand dysfunction is a common clinical feature of patients with chronic kidney disease (CKD) after arteriovenous fistula (AVF) placement. The heterogeneity in symptoms and the lack of a predictive association with changes in hemodynamic alterations precipitated by the AVF suggest that other factors are involved in the mechanisms responsible for causing hand and limb dysfunction postoperatively. To the best of our knowledge, no suitable animal models have provided a platform for performing preclinical experiments designed to elucidate the biologic drivers of access-related hand dysfunction. Therefore, our objective was to develop a novel murine AVF model that could be used to study dialysis access-related limb dysfunction. METHODS Male 8-week-old C57BL/6J mice (n = 15/group) were exposed to either an adenine-supplemented diet to induce CKD or casein-based chow (control). Four weeks after the diet intervention, the mice were randomly assigned to receive an iliac AVF (n = 10/group) or sham surgery (n = 5/group) on the left hindlimb. The mice were sacrificed 2 weeks after surgery, and AVF specimens and hindlimb skeletal muscles were collected for further analysis. RESULTS Before AVF or sham surgery, the glomerular filtration rates were significantly reduced and the blood urea nitrogen levels were significantly elevated in the CKD groups compared with the controls (P < .05). AVF surgery was associated with an ∼80% patency rate among the survivors (four control and three CKD mice died postoperatively). Patency was verified by changes in hemodynamics using Doppler ultrasound imaging and altered histologic morphology. Compared with sham surgery, AVF surgery reduced ipsilateral hindlimb perfusion to the tibialis anterior muscle (20%-40%) and paw (40%-50%), which remained stable until euthanasia. Analysis of gastrocnemius muscle mitochondrial respiratory function uncovered a significant decrease (40%-50%) in mitochondrial function in the AVF mice. No changes were found in the muscle mass, myofiber cross-sectional area, or centrally nucleated fiber proportion in the extensor digitorum longus and soleus muscles between the sham and AVF mice. CONCLUSIONS The results from the present study have demonstrated that iliac AVF formation is a practical animal model that facilitates examination of hemodialysis access-related limb dysfunction. AVF surgery produced the expected hemodynamic changes, and evaluation of the limb muscle revealed a substantial mitochondrial impairment that was present without changes in muscle size.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Fla
| | - Erik M. Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Fla
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, Fla
| | - Andrew J. Martin
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Fla
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, Fla
| | - Qiongyao Hu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Fla
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, Fla
| | - Tomas A. Cort
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Fla
| | - Kenneth C. Harland
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Fla
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, Fla
| | - Kerri A. O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Fla
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, Fla
| | - Guanyi Lu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Fla
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Fla
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, Fla
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Fla
- Center for Exercise Science, University of Florida, Gainesville, Fla
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Fla
- Malcolm Randall Veteran Affairs Medical Center, Gainesville, Fla
| |
Collapse
|
8
|
Shih YC, Chen PY, Ko TM, Huang PH, Ma H, Tarng DC. MMP-9 Deletion Attenuates Arteriovenous Fistula Neointima through Reduced Perioperative Vascular Inflammation. Int J Mol Sci 2021; 22:ijms22115448. [PMID: 34064140 PMCID: PMC8196691 DOI: 10.3390/ijms22115448] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/05/2023] Open
Abstract
Matrix metalloproteinase 9 (MMP-9) expression is upregulated in vascular inflammation and participates in vascular remodeling, including aneurysm dilatation and arterial neointima development. Neointima at the arteriovenous (AV) fistula anastomosis site primarily causes AV fistula stenosis and failure; however, the effects of MMP-9 on perioperative AV fistula remodeling remain unknown. Therefore, we created AV fistulas (end-to-side anastomosis) in wild-type (WT) and MMP-9 knockout mice with chronic kidney disease to further clarify this. Neointima progressively developed in the AV fistula venous segment of WT mice during the four-week postoperative course, and MMP-9 knockout increased the lumen area and attenuated neointima size by reducing smooth muscle cell and collagen components. Early perioperative AV fistula mRNA sequencing data revealed that inflammation-related gene sets were negatively enriched in AV fistula of MMP-9 knockout mice compared to that in WT mice. qPCR results also showed that inflammatory genes, including tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), were downregulated. In addition, Western blot results showed that MMP-9 knockout reduced CD44 and RAC-alpha serine/threonine-protein kinase (Akt) and extracellular signal-regulated kinases (ERK) phosphorylation. In vitro, MMP-9 addition enhanced IL-6 and MCP-1 expression in vascular smooth muscle cells, as well as cell migration, which was reversed by an MMP-9 inhibitor. In conclusion, MMP-9 knockout attenuated AV fistula stenosis by reducing perioperative vascular inflammation.
Collapse
Affiliation(s)
- Yu-Chung Shih
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-C.S.); (H.M.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei 11221, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Yuan Chen
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; (P.-Y.C.); (T.-M.K.)
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Tai-Ming Ko
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; (P.-Y.C.); (T.-M.K.)
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Center of Intelligent Drug System and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei 11221, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-C.S.); (H.M.)
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Surgery, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Der-Cherng Tarng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei 11221, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Physiology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Bai H, Wei S, Xie B, Wang Z, Li M, Qiao Z, Sun P, Wang W. Endothelial nitric oxide synthase (eNOS) mediates neointimal thickness in arteriovenous fistulae with different anastomotic angles in rats. J Vasc Access 2021; 23:403-411. [PMID: 33619996 DOI: 10.1177/1129729821996537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND It is known that the anastomotic angle can influence neointimal hyperplasia and patency in arteriovenous fistulae (AVF). Endothelial nitric oxide synthase (eNOS) is released from the vascular endothelium and can inhibit neointimal hyperplasia. Therefore, here, we aimed to test the hypothesis that the manipulation of eNOS expression could influence neointimal thickness in a rat AVF model with different anastomosis angles. METHODS Rat carotid artery (inflow, CA) and jugular vein (outflow, JV) AVF were created with acute, blunt, or end-to-end (ETE) anastomosis angles. Aspirin was used to increase eNOS expression in the acute angle group, while N(G)-nitro-L-arginine methyl ester (L-name) was used to decrease eNOS expression in the obtuse angle group. The rats were sacrificed on day 21, and tissues were harvested and analyzed histologically and with immunostaining. RESULTS A larger anastomosis diameter (p < 0.016) and smaller neointimal area (p < 0.01) were observed in the obtuse and end-to-end (ETE) groups compared to in the acute group. In the acute angle group, there were more proliferating cell nuclear antigen (PCNA) and α-actin dual-positive cells (p < 0.0001) and fewer phospho (p)-eNOS-positive endothelial cells (p < 0.0001) in the neointima than in the obtuse and ETE angle groups. On treating the acute angle and blunt angle groups with aspirin and L-name, respectively, no significant differences in the neointima/lumen rate were observed (p = 0.6526) between the groups; however, there were fewer von Willebrand factor (vWF) and p-eNOS dual-positive cells in the obtuse angle group treated with L-name (p = 0.0045). CONCLUSIONS We demonstrated that eNOS plays an important role in neointimal hyperplasia in AVF with different anastomosis angles; further, eNOS could potentially be used as a therapeutic target in patients with AVF in the future.
Collapse
Affiliation(s)
- Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiwei Wang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingxing Li
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhentao Qiao
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Wang
- Department of Physiology, Medical school of Zhengzhou University, Zhengzhou, Henan, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan, China
| |
Collapse
|
10
|
Experimental murine arteriovenous fistula model to study restenosis after transluminal angioplasty. Lab Anim (NY) 2020; 49:320-334. [PMID: 33082594 DOI: 10.1038/s41684-020-00659-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022]
Abstract
Percutaneous transluminal angioplasty (PTA) is a very common interventional treatment for treating stenosis in arteriovenous fistula (AVF) used for hemodialysis vascular access. Restenosis occurs after PTA, resulting in vascular lumen loss and a decrease in blood flow. Experimental animal models have been developed to study the pathogenesis of stenosis, but there is no restenosis model after PTA of stenotic AVF in mice. Here, we describe the creation of a murine model of restenosis after angioplasty of a stenosis in an AVF. The murine restenosis model has several advantages, including the rapid development of restenotic lesions in the vessel after angioplasty and the potential to evaluate endovascular and perivascular therapeutics for treating restenosis. The protocol includes a detailed description of the partial nephrectomy procedure to induce chronic kidney disease, the AVF procedure for development of de novo stenosis and the angioplasty treatment associated with progression of restenosis. We monitored the angioplasty-treated vessel for vascular patency and hemodynamic changes for a period of 28 d using ultrasound. Vessels were collected at different time points and processed for histological analysis and immunostaining. This angioplasty model, which can be performed with basic microvascular surgery skills, could be used to identify potential endovascular and perivascular therapies to reduce restenosis after angioplasty procedures.
Collapse
|
11
|
Yang HH, Xu YX, Chen JY, Harn HJ, Chiou TW. N-Butylidenephthalide Inhibits the Phenotypic Switch of VSMCs through Activation of AMPK and Prevents Stenosis in an Arteriovenous Fistula Rat Model. Int J Mol Sci 2020; 21:ijms21197403. [PMID: 33036484 PMCID: PMC7582375 DOI: 10.3390/ijms21197403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
The phenotypic switch of vascular smooth muscle cells (VSMCs) plays a pivotal role in the development of vascular disorders, such as atherosclerosis, stenosis and restenosis, after vascular intervention. In our previous study, n-butylidenephthalide (BP) was reported to have anti-proliferating and apoptotic effects on VSMCs. The purpose of the current study is to further investigate its role in platelet-derived growth factor (PDGF)-induced VSMC phenotypic modulation in an arteriovenous fistula model. In vitro, we observed that BP inhibited the PDGF-induced cytoskeleton reorganization of the VSMCs. The enhanced expression of vimentin and collagen, as well as the migration ability induced by PDGF, were also inhibited by BP. By cell cycle analysis, we found that BP inhibited the PDGF-induced VSMCs proliferation and arrested the VSMCs in the G0/G1 phase. In an arteriovenous fistula rat model, the formation of stenosis, which was coupled with a thrombus, and the expression of vimentin and collagen in VSMCs, were also inhibited by administration of BP, indicating that BP inhibited the PDGF-induced phenotypic switch and the migration of VSMCs. Besides, the inhibitory effects of BP on the phenotypic switch were found to accompany the activated 5’ AMP-activated protein kinase (AMPK) as well as the inhibited phosphorylation of mTOR. Knockdown of AMPK by gene silencing conflicted the effects of BP and further exacerbated the PDGF-induced VSMCs phenotypic switch, confirming the modulating effect that BP exerted on the VSMCs by this pathway. These findings suggest that BP may contribute to the vasculoprotective potential in vasculature.
Collapse
Affiliation(s)
- Hsin-Han Yang
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan; (H.-H.Y.); (Y.-X.X.); (J.-Y.C.)
| | - Yue-Xuan Xu
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan; (H.-H.Y.); (Y.-X.X.); (J.-Y.C.)
| | - Jie-Yi Chen
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan; (H.-H.Y.); (Y.-X.X.); (J.-Y.C.)
| | - Horng-Jyh Harn
- Bioinnovation Center, Tzu Chi Foundation, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien 974, Taiwan
- Department of Pathology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien 970, Taiwan
- Correspondence: (H.-J.H.); (T.-W.C.)
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan; (H.-H.Y.); (Y.-X.X.); (J.-Y.C.)
- Correspondence: (H.-J.H.); (T.-W.C.)
| |
Collapse
|
12
|
Kudze T, Ono S, Fereydooni A, Gonzalez L, Isaji T, Hu H, Yatsula B, Taniguchi R, Koizumi J, Nishibe T, Dardik A. Altered hemodynamics during arteriovenous fistula remodeling leads to reduced fistula patency in female mice. JVS Vasc Sci 2020; 1:42-56. [PMID: 32754721 PMCID: PMC7402599 DOI: 10.1016/j.jvssci.2020.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective The arteriovenous fistula (AVF) is the preferred method of dialysis access because of its proven superior long-term outcomes. However, women have lower rates of AVF patency and utilization than men. We used a novel mouse AVF model that recapitulates human AVF maturation to determine whether there are differences in AVF patency in female and male mice. Methods Aortocaval fistulas were created in female and male C57BL/6 mice (9-10 weeks). At days 0, 3, 7, and 21, infrarenal inferior vena cava (IVC) and aortic diameters and flow velocity were monitored by Doppler ultrasound and used to calculate the vessel diameter, blood flow, and shear stress. AVF were harvested, and expression of proteins was examined by proteomic analysis and immunofluorescence and of messenger RNA by quantitative polymerase chain reaction analysis. Results At baseline, female mice weighed less and had lower IVC velocity and smaller magnitudes of shear stress, but there was no significant difference in IVC diameter and thickness. After AVF creation, both female and male mice had similar IVC dilation and thickening with no significant differences in IVC wall thickness at day 21. However, female mice had diminished AVF patency by day 42 (25.7% vs 64.3%; P = .039). During fistula remodeling, female mice had lower IVC mean velocity and shear stress magnitude and increased spectral broadening (days 0-21). Messenger RNA and protein expression of Krüppel-like factor 2, endothelial nitric oxide synthase, and vascular cell adhesion molecule 1 was similar at baseline in female and male mice but increased in the AVF only in male mice but not in female mice (day 21). Proteomic analysis of female and male mice detected 56 proteins expressed at significantly higher levels in the IVC of female mice and 67 proteins expressed at significantly higher levels in the IVC of male mice (day 7); function-specific analysis showed that the IVC of male mice overexpressed proteins that belong to pathways implicated in the regulation of vascular function, thrombosis, response to flow, and vascular remodeling. Conclusions AVF in female mice have diminished patency, preceded by lower velocity, reduced magnitudes of shear stress, and less laminar flow during remodeling. There is also sex-specific differential expression of proteins involved in thrombosis, response to laminar flow, inflammation, and proliferation. These findings suggest that hemodynamic changes during fistula maturation may play an important role underlying the diminished rates of AVF utilization in women. Women have lower rates of arteriovenous fistula (AVF) utilization than men. Using a mouse AVF model that recapitulates human AVF maturation, we show that female mice have similar AVF remodeling but diminished patency. AVF remodeling in female mice is associated with reduced shear stress and laminar flow; lack of increased transcription and translation of several anti-inflammatory, antiproliferative, and laminar flow response proteins (endothelial nitric oxide synthase, Krüppel-like factor 2, and vascular cell adhesion molecule 1); and different patterns of expression of pathways that regulate thrombosis and venous remodeling. Identifying downstream targets involved in these mechanisms may improve AVF outcomes in female patients.
Collapse
Affiliation(s)
- Tambudzai Kudze
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Shun Ono
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara
| | - Arash Fereydooni
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Toshihiko Isaji
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Haidi Hu
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Ryosuke Taniguchi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Jun Koizumi
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara
| | - Toshiya Nishibe
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven.,Division of Vascular and Endovascular Surgery, Department of Surgery, Yale School of Medicine, New Haven.,Department of Surgery, VA Connecticut Healthcare Systems, West Haven
| |
Collapse
|
13
|
Sadaghianloo N, Contenti J, Dardik A, Mazure NM. Role of Hypoxia and Metabolism in the Development of Neointimal Hyperplasia in Arteriovenous Fistulas. Int J Mol Sci 2019; 20:ijms20215387. [PMID: 31671790 PMCID: PMC6862436 DOI: 10.3390/ijms20215387] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
For patients with end-stage renal disease requiring hemodialysis, their vascular access is both their lifeline and their Achilles heel. Despite being recommended as primary vascular access, the arteriovenous fistula (AVF) shows sub-optimal results, with about 50% of patients needing a revision during the year following creation. After the AVF is created, the venous wall must adapt to new environment. While hemodynamic changes are responsible for the adaptation of the extracellular matrix and activation of the endothelium, surgical dissection and mobilization of the vein disrupt the vasa vasorum, causing wall ischemia and oxidative stress. As a consequence, migration and proliferation of vascular cells participate in venous wall thickening by a mechanism of neointimal hyperplasia (NH). When aggressive, NH causes stenosis and AVF dysfunction. In this review we show how hypoxia, metabolism, and flow parameters are intricate mechanisms responsible for the development of NH and stenosis during AVF maturation.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Julie Contenti
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Emergency Medicine, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Alan Dardik
- Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA.
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA.
| | - Nathalie M Mazure
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| |
Collapse
|
14
|
Ghanem S, Somogyi V, Tanczos B, Szabo B, Deak A, Nemeth N. Modulation of micro-rheological and hematological parameters in the presence of artificial carotid-jugular fistula in rats. Clin Hemorheol Microcirc 2019; 71:325-335. [PMID: 29914014 DOI: 10.3233/ch-180411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Arteriovenous fistula (AVF) may affect erythrocytes through many pathways (e.g., mechanical, inflammatory). However, these effects haven't been elucidated completely yet. OBJECTIVE To follow-up the hemorheological and the hematological changes in the presence of artificial carotid-jugular fistula in rats. METHODS Female Wistar rats were subjected to sham-operated group (SG, n = 6) and to fistula group (FG, n = 10). Under general anesthesia, the right carotid artery and jugular vein were isolated via a neck incision, and in the FG carotid-jugular fistula was performed by microsurgical techniques. Hematological variables, red blood cell (RBC) deformability and membrane (mechanical) stability parameters were determined before operation and on the 1st and 6th postoperative weeks. Density separated samples ('young' and 'old' RBCs) were also tested. RESULTS In FG group hematocrit, RBC and platelet counts increased gradually to reach highly significant level of increment on the 6th postoperative week. RBC deformability significantly was impaired. The membrane stability test showed lower deformability values after applying mechanical shearing. No significant differences were observed between density separated RBC subpopulations. CONCLUSIONS The presence of arteriovenous fistula may lead to an increment of RBC mass and impairment of RBC deformability. These changes could be one of the pathways through which the fistula influences the microcirculation.
Collapse
Affiliation(s)
- Souleiman Ghanem
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktoria Somogyi
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Tanczos
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
Satish M, Gunasekar P, Agrawal DK. Pro-inflammatory and pro-resolving mechanisms in the immunopathology of arteriovenous fistula maturation. Expert Rev Cardiovasc Ther 2019; 17:369-376. [PMID: 31056981 DOI: 10.1080/14779072.2019.1612745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: With high rates of arteriovenous fistula (AVF) failure, there is a continued need to predict other factors and mechanisms associated with maturation deficits. Given the central association of inflammation with AVF failure, with neointimal hyperplasia (NIH) as one such mechanism, inflammation must be considered in two endogenous ways, either pro-inflammatory or pro-resolving, resulting in inward or outward vascular remodeling. Areas covered: This review summarizes and critically evaluates the preclinical and interventional data underlying AVF failure in attempts to elucidate the necessary balance between inflammation and its resolution. Expert opinion: Understanding the pro-inflammatory and pro-resolving mechanisms underlying inward and outward vascular remodeling and NIH prevention with AVF maturation is a necessary effort to develop key diagnostic and therapeutic interventions towards the ongoing issue of long-term AVF patency. The ability for clinical application has progressed but is limited to the identification of key targets and pathways with little understanding of how they are related synergistically or antagonistically. Likewise, the balance between acute inflammation and pro-resolution requires pertinent temporal considerations necessary for timely therapeutic application and predictive measurement.
Collapse
Affiliation(s)
- Mohan Satish
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| | - Palanikumar Gunasekar
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| | - Devendra K Agrawal
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| |
Collapse
|
16
|
Pike D, Shiu YT, Cho YF, Le H, Somarathna M, Isayeva T, Guo L, Symons JD, Kevil CG, Totenhagen J, Lee T. The effect of endothelial nitric oxide synthase on the hemodynamics and wall mechanics in murine arteriovenous fistulas. Sci Rep 2019; 9:4299. [PMID: 30862797 PMCID: PMC6414641 DOI: 10.1038/s41598-019-40683-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/19/2019] [Indexed: 11/12/2022] Open
Abstract
Creation of a hemodialysis arteriovenous fistula (AVF) causes aberrant vascular mechanics at and near the AVF anastomosis. When inadequately regulated, these aberrant mechanical factors may impede AVF lumen expansion to cause AVF maturation failure, a significant clinical problem with no effective treatments. The endothelial nitric oxide synthase (NOS3) system is crucial for vascular health and function, but its effect on AVF maturation has not been fully characterized. We hypothesize that NOS3 promotes AVF maturation by regulating local vascular mechanics following AVF creation. Here we report the first MRI-based fluid-structure interaction (FSI) study in a murine AVF model using three mouse strains: NOS3 overexpression (NOS3 OE) and knockout (NOS3-/-) on C57BL/6 background, with C57BL/6 as the wild-type control (NOS3+/+). When compared to NOS3+/+ and NOS3-/-, AVFs in the OE mice had larger lumen area. AVFs in the OE mice also had smoother blood flow streamlines, as well as lower blood shear stress at the wall, blood vorticity, inner wall circumferential stretch, and radial wall thinning at the anastomosis. Our results demonstrate that overexpression of NOS3 resulted in distinct hemodynamic and wall mechanical profiles associated with favorable AVF remodeling. Enhancing NOS3 expression may be a potential therapeutic approach for promoting AVF maturation.
Collapse
Affiliation(s)
- Daniel Pike
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Yun-Fang Cho
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ha Le
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Maheshika Somarathna
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tatyana Isayeva
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lingling Guo
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J David Symons
- Department of Nutrition and Integrative Physiology and Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah, Salt Lake City, UT, USA
| | - Christopher G Kevil
- Departments of Pathology, Molecular and Cellular Physiology, and Cellular Biology and Anatomy, LSU Health Shreveport, Shreveport, LA, USA
| | - John Totenhagen
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timmy Lee
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
17
|
Ghanem S, Tanczos B, Deak A, Bidiga L, Nemeth N. Carotid-Jugular Fistula Model to Study Systemic Effects and Fistula-Related Microcirculatory Changes. J Vasc Res 2018; 55:268-277. [PMID: 30199878 DOI: 10.1159/000491930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/28/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Arteriovenous fistulae impair the distal circulation, but their effects at the microcirculatory level are not well understood. This study presents the carotid-jugular fistula (CJF) as a model to evaluate fistula-related microcirculatory and systemic changes. MATERIALS AND METHODS Female Wistar rats were anesthetized and divided into a fistula group (FG, n = 10) and a sham group (SG, n = 6). End-to-end anastomosis was performed between the right carotid artery and the jugular vein in the FG. The hemodynamic status was followed for 6 weeks. On the sixth postoperative week, liver and kidney microcirculation was measured using laser Doppler; then microcirculatory changes were assessed after occlusion of the carotid artery. At the end of the experiment, histological samples were taken and the weights of the organs were measured. RESULTS The heart rate and systolic blood pressure decreased significantly due to the CJF. Laser Doppler showed a reduction in liver blood flow units (BFU) in the FG in comparison with the SG (p = 0.01), and they increased (p < 0.01) after occlusion of the fistula. Kidney BFU showed slight changes only. The comparative morphological study revealed significant increases in heart weight (p < 0.001) and left ventricular hypertrophy (p = 0.008) in the FG. CONCLUSION Beside hemodynamic and morphologic changes, a CJF causes a deterioration in the microcirculation of the liver rather than of the kidney, but occlusion of the CJF immediately reverses these changes.
Collapse
Affiliation(s)
- Souleiman Ghanem
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Tanczos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Bidiga
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen,
| |
Collapse
|
18
|
Near-Infrared Fluorescence Imaging of Matrix Metalloproteinase 2 Activity as a Biomarker of Vascular Remodeling in Hemodialysis Access. J Vasc Interv Radiol 2018; 29:1268-1275.e1. [PMID: 30061060 DOI: 10.1016/j.jvir.2018.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/19/2018] [Accepted: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To establish the capability of near-infrared fluorescence (NIRF) imaging for the detection of matrix metalloproteinase 2 (MMP-2) activity as a biomarker of vascular remodeling (VR) in arteriovenous fistulae (AVFs) in vivo. MATERIALS AND METHODS AVFs were created in the right groins of Wistar rats (n = 10), and sham procedures were performed in the contralateral groins. Fistulography via a left common carotid artery approach confirmed stenosis (> 50%) in a subset of animals (n = 5) 4 weeks after AVF creation. After administration of MMP-2-activated NIRF probe, near-infrared imaging was performed in vivo and ex vivo of both the AVF and the sham-treated vessels to measure radiant efficiency of MMP-2-activated NIRF signal over background. Histologic analyses of AVF and sham-treated vessels were performed to measure VR defined as inward growth of the vessel caused by intimal thickening. RESULTS AVFs demonstrated a significantly higher percentage increase in radiant efficiency over background compared with sham vessels (45.5 ± 56% vs 16.1 ± 17.8%; P = .008). VR in AVFs was associated with increased thickness of neointima staining positively for MMP-2 (161.8 ± 45.5 μm vs 73.2 ± 36.7 μm; P = .01). A significant correlation was observed between MMP-2 activity as measured by relative increase in radiant efficiency for AVFs and thickness of neointima staining positively for MMP-2 (P = .039). CONCLUSIONS NIRF imaging can detect increased MMP activity in remodeled AVFs compared with contralateral sham vessels. MMP-2-activated NIRF signal correlates with the severity of intimal thickening. These findings suggest NIRF imaging of MMP-2 may be used as a biomarker of the vascular remodeling underlying stenosis.
Collapse
|
19
|
Nath KA, O'Brien DR, Croatt AJ, Grande JP, Ackerman AW, Nath MC, Yamada S, Terzic A, Tchkonia T, Kirkland JL, Katusic ZS. The murine dialysis fistula model exhibits a senescence phenotype: pathobiological mechanisms and therapeutic potential. Am J Physiol Renal Physiol 2018; 315:F1493-F1499. [PMID: 30019935 DOI: 10.1152/ajprenal.00308.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is no therapy that promotes maturation and functionality of a dialysis arteriovenous fistula (AVF). The search for such therapies largely relies on evaluation of vascular responses and putative therapies in experimental AVFs. We studied an AVF in mice with chronic kidney disease (CKD). We demonstrate numerous stressors in the vein of the AVF-CKD group, including pathological shear, mitogenic, inflammatory, and hypoxia-reoxygenation stress. Because stress promotes premature senescence, we examined whether senescence is induced in the vein of the AVF-CKD model. We demonstrate a senescence phenotype in the AVF-CKD model, as indicated by increased expression of p16Ink4a, p21Cip1, and p53 and expected changes for certain senescence-associated microRNAs. RNA-sequencing analysis demonstrated differential expression of ~10,000 genes, including upregulation of proinflammatory and proliferative genes, in the vein of the AVF-CKD group. The vein in the AVF-CKD group exhibited telomere erosion and increased senescence-associated β-galactosidase activity and staining. Senescence was induced in the artery of the AVF-CKD group and in the vein of the AVF without CKD. Finally, given the rapidly rising clinical interest in senolytics, we provide proof of concept of senolytics as a therapeutic approach by demonstrating that senolytics decrease p16Ink4a expression in the AVF-CKD model. This study introduces a novel concept underlying the basis for maturational and functional failure in human dialysis AVFs and identifies a new target for senolytic therapy.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, Minnesota
| | - Daniel R O'Brien
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic , Rochester, Minnesota
| | - Anthony J Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, Minnesota
| | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, Minnesota
| | - Allan W Ackerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, Minnesota
| | - Meryl C Nath
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, Minnesota
| | - Satsuki Yamada
- Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota.,Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota.,Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
Lučev J, Breznik S, Dinevski D, Ekart R, Rupreht M. Endovascular Treatment of Haemodialysis Arteriovenous Fistula with Drug-Coated Balloon Angioplasty: A Single-Centre Study. Cardiovasc Intervent Radiol 2018; 41:882-889. [DOI: 10.1007/s00270-018-1942-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/18/2018] [Indexed: 11/25/2022]
|
21
|
|
22
|
Chien CT, Fan SC, Lin SC, Kuo CC, Yang CH, Yu TY, Lee SP, Cheng DY, Li PC. Glucagon-like peptide-1 receptor agonist activation ameliorates venous thrombosis-induced arteriovenous fistula failure in chronic kidneyd isease. Thromb Haemost 2017; 112:1051-64. [DOI: 10.1160/th14-03-0258] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/08/2014] [Indexed: 12/18/2022]
Abstract
SummaryHigh shear stress that develops in the arteriovenous fistula of chronic kidney diseases (CKD) may increase H2O2 and thromboxane A2 (TXA2) release, thereby exacerbating endothelial dysfunction, thrombosis, and neointimal hyperplasia. We investigated whether glucagon-like peptide-1 receptor agonist/exendin-4, a potentially cardiovascular protective agent, could improve TXA2-induced arteriovenous fistula injury in CKD. TXA2 administration to H2O2-exposed human umbilical vein endothelial cells increased apoptosis, senescence, and detachment; these phenotypes were associated with the downregulation of phosphorylated endothelial nitric oxide synthase/heme oxygenase-1 (eNOS/HO-1) signalling. Exendin-4 reduced H2O2/TXA2-induced endothelial injury via inhibition of apoptosis-related mechanisms and restoration of phosphorylated eNOS/HO-1 signalling. Male Wistar rats subjected to right common carotid artery-external jugular vein anastomosis were treated with exendin-4 via cervical implant osmotic pumps for 16–42 days. High shear stress induced by the arteriovenous fistula significantly increased venous haemodynamics, blood and tissue H2O2 and TXB2 levels, macrophage/monocyte infiltration, fibrosis, proliferation, and adhesion molecule-1 expression. Apoptosis was also increased due to NADPH oxidase gp91 activation and mitochondrial Bax translocation in the proximal end of the jugular vein of CKD rats. Exendin-4-treatment of rats with CKD led to the restoration of normal endothelial morphology and correction of arteriovenous fistula function. Exendin-4 treatment or thromboxane synthase gene deletion in CKD mice markedly reduced ADP-stimulated platelet adhesion to venous endothelium, and prevented venous occlusion in FeCl3-injured vessels by upregulation of HO-1. Together, these data reveal that the use of glucagon-like peptide-1 receptor agonists is an effective strategy for treatment of CKD-induced arteriovenous fistula failure.
Collapse
|
23
|
Deficiency of TLR4 homologue RP105 aggravates outward remodeling in a murine model of arteriovenous fistula failure. Sci Rep 2017; 7:10269. [PMID: 28860634 PMCID: PMC5578984 DOI: 10.1038/s41598-017-10108-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Arteriovenous access dysfunction is a major cause of morbidity for hemodialysis patients. The pathophysiology of arteriovenous fistula (AVF) maturation failure is associated with inflammation, impaired outward remodeling (OR) and intimal hyperplasia. RP105 is a critical physiologic regulator of TLR4 signaling in numerous cell types. In the present study, we investigated the impact of RP105 on AVF maturation, and defined cell-specific effects of RP105 on macrophages and vascular smooth muscle cells (VSMCs). Overall, RP105−/− mice displayed a 26% decrease in venous OR. The inflammatory response in RP105−/− mice was characterized by accumulation of anti-inflammatory macrophages, a 76% decrease in pro- inflammatory macrophages, a 70% reduction in T-cells and a 50% decrease in MMP-activity. In vitro, anti-inflammatory macrophages from RP105−/− mice displayed increased IL10 production, while MCP1 and IL6 levels secreted by pro-inflammatory macrophages were elevated. VSMC content in RP105−/− AVFs was markedly decreased. In vitro, RP105−/− venous VSMCs proliferation was 50% lower, whereas arterial VSMCs displayed a 50% decrease in migration, relative to WT. In conclusion, the impaired venous OR in RP105−/− mice could result from of a shift in both macrophages and VSMCs towards a regenerative phenotype, identifying a novel relationship between inflammation and VSMC function in AVF maturation.
Collapse
|
24
|
Sadaghianloo N, Yamamoto K, Bai H, Tsuneki M, Protack CD, Hall MR, Declemy S, Hassen-Khodja R, Madri J, Dardik A. Increased Oxidative Stress and Hypoxia Inducible Factor-1 Expression during Arteriovenous Fistula Maturation. Ann Vasc Surg 2017; 41:225-234. [PMID: 28163173 PMCID: PMC5411319 DOI: 10.1016/j.avsg.2016.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The poor clinical results that are frequently reported for arteriovenous fistulae (AVF) for hemodialysis are typically due to failure of AVF maturation. We hypothesized that early AVF maturation is associated with generation of reactive oxygen species and activation of the hypoxia-inducible factor-1 (HIF-1) pathway, potentially promoting neointimal hyperplasia. We tested this hypothesis using a previously reported mouse AVF model that recapitulates human AVF maturation. METHODS Aortocaval fistulae were created in C57Bl/6 mice and compared with sham-operated mice. AVFs or inferior vena cavas were analyzed using a microarray, Amplex Red for extracellular H2O2, quantitative polymerase chain reaction, immunohistochemistry, and immunoblotting for HIF-1α and immunofluorescence for NOX-2, nitrotyrosine, heme oxygenase-1 (HO-1), and vascular endothelial growth factor (VEGF)-A. RESULTS Oxidative stress was higher in AVF than that in control veins, with more H2O2 (P = 0.007) and enhanced nitrotyrosine immunostaining (P = 0.005). Immunohistochemistry and immunoblot showed increased HIF-1α immunoreactivity in the AVF endothelium; HIF-1 targets NOX-2, HO-1 and VEGF-A were overexpressed in the AVF (P < 0.01). AVF expressed increased numbers of HIF-1α (P < 0.0001) and HO-1 (P < 0.0001) messenger RNA transcripts. CONCLUSIONS Oxidative stress increases in mouse AVF during early maturation, with increased expression of HIF-1α and its target genes NOX-2, HO-1, and VEGF-A. These results suggest that clinical strategies to improve AVF maturation could target the HIF-1 pathway.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France.
| | - Kota Yamamoto
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT; Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hualong Bai
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Masayuki Tsuneki
- National Cancer Center Research Institute, Tokyo, Japan; Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Clinton D Protack
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT
| | - Michael R Hall
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT
| | - Serge Declemy
- Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France
| | - Réda Hassen-Khodja
- Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France
| | - Joseph Madri
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT; Veterans Affairs Connecticut Healthcare Systems, West Haven, CT
| |
Collapse
|
25
|
Hu H, Patel S, Hanisch JJ, Santana JM, Hashimoto T, Bai H, Kudze T, Foster TR, Guo J, Yatsula B, Tsui J, Dardik A. Future research directions to improve fistula maturation and reduce access failure. Semin Vasc Surg 2016; 29:153-171. [PMID: 28779782 DOI: 10.1053/j.semvascsurg.2016.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the increasing prevalence of end-stage renal disease, there is a growing need for hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis, but maturation and failure continue to present significant barriers to successful fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes in the setting of uremia, systemic inflammation, oxidative stress, and pre-existent vascular pathology. AVF can fail due to both failure to mature adequately to support hemodialysis and development of neointimal hyperplasia that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to neointimal hyperplasia involves vascular cell activation and migration and extracellular matrix remodeling with complex interactions of growth factors, adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive remodeling. Different strategies have been proposed to prevent and treat AVF failure based on current understanding of the modes and pathology of access failure; these approaches range from appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent or treat AVF failure require a multidisciplinary approach involving nephrologists, vascular surgeons, and interventional radiologists, careful patient selection, and the use of tailored systemic or localized interventions to improve patient-specific outcomes. This review provides contemporary information on the underlying mechanisms of AVF maturation and failure and discusses the broad spectrum of options that can be tailored for specific therapy.
Collapse
Affiliation(s)
- Haidi Hu
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Sandeep Patel
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; Royal Free Hospital, University College London, London, UK
| | - Jesse J Hanisch
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Jeans M Santana
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Takuya Hashimoto
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Hualong Bai
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Tambudzai Kudze
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Trenton R Foster
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Jianming Guo
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Bogdan Yatsula
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Janice Tsui
- Royal Free Hospital, University College London, London, UK
| | - Alan Dardik
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; VA Connecticut Healthcare System, West Haven, CT.
| |
Collapse
|
26
|
Lee T, Misra S. New Insights into Dialysis Vascular Access: Molecular Targets in Arteriovenous Fistula and Arteriovenous Graft Failure and Their Potential to Improve Vascular Access Outcomes. Clin J Am Soc Nephrol 2016; 11:1504-1512. [PMID: 27401527 PMCID: PMC4974876 DOI: 10.2215/cjn.02030216] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular access dysfunction remains a major cause of morbidity and mortality in hemodialysis patients. At present there are few effective therapies for this clinical problem. The poor understanding of the pathobiology that leads to arteriovenous fistula (AVF) and graft (AVG) dysfunction remains a critical barrier to development of novel and effective therapies. However, in recent years we have made substantial progress in our understanding of the mechanisms of vascular access dysfunction. This article presents recent advances and new insights into the pathobiology of AVF and AVG dysfunction and highlights potential therapeutic targets to improve vascular access outcomes.
Collapse
Affiliation(s)
- Timmy Lee
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
- Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
27
|
Nath KA, Katusic ZS. Predicting the Functionality and Form of a Dialysis Fistula. J Am Soc Nephrol 2016; 27:3508-3510. [PMID: 27493254 DOI: 10.1681/asn.2016050569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension and Departments of .,Medicine
| | - Zvonimir S Katusic
- Anesthesiology, and.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
28
|
An update of the effect of far infrared therapy on arteriovenous access in end-stage renal disease patients. J Vasc Access 2016; 17:293-8. [PMID: 27312759 DOI: 10.5301/jva.5000561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 11/20/2022] Open
Abstract
The life qualities of end-stage renal disease (ESRD) patients rely largely on adequate dialysis, and a well-functioning vascular access is indispensable for high quality hemodialysis. Despite the advancement of surgical skills and the optimal maintenance of arteriovenous fistula (AVF), malfunction of AVF is still frequently encountered and has great impact on the life of ESRD patients. Several medical, mechanical and genetic prognostic factors are documented to affect the patency of AVF and arteriovenous graft (AVG). Heme oxygenase-1 (HO-1) is one of the genetic factors reported to play a role in cardiovascular disease and the patency of vascular access. Far infrared (FIR), a novel therapeutic modality, can not only conduct heat energy to AVF but also stimulate the non-thermal reactions mediated by HO-1. The use of FIR therapy significantly enhances the primary patency rate and maturation of AVF with fewer unfavorable adverse effects, and also achieves higher post-angioplasty patency rate for AVG. The only limitation in proving the effectiveness of FIR therapy in enhancing patency of AVF is that all the studies were conducted in Chinese people in Taiwan and thus, there is a lack of evidence and experience in people of other ethnicities.
Collapse
|
29
|
Kang L, Grande JP, Hillestad ML, Croatt AJ, Barry MA, Katusic ZS, Nath KA. A new model of an arteriovenous fistula in chronic kidney disease in the mouse: beneficial effects of upregulated heme oxygenase-1. Am J Physiol Renal Physiol 2015; 310:F466-76. [PMID: 26672617 DOI: 10.1152/ajprenal.00288.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022] Open
Abstract
The arteriovenous fistula (AVF) is the preferred hemodialysis vascular access, but it is complicated by high failure rates and attendant morbidity. This study provides the first description of a murine AVF model that recapitulates two salient features of hemodialysis AVFs, namely, anastomosis of end-vein to side-artery to create the AVF and the presence of chronic kidney disease (CKD). CKD reduced AVF blood flow, observed as early as 3 days after AVF creation, and increased neointimal hyperplasia, venous wall thickness, thrombus formation, and vasculopathic gene expression in the AVF. These adverse effects of CKD could not be ascribed to preexisting alterations in blood pressure or vascular reactivity in this CKD model. In addition to vasculopathic genes, CKD induced potentially vasoprotective genes in the AVF such as heme oxygenase-1 (HO-1) and HO-2. To determine whether prior HO-1 upregulation may protect in this model, we upregulated HO-1 by adeno-associated viral gene delivery, achieving marked venous induction of the HO-1 protein and HO activity. Such HO-1 upregulation improved AVF blood flow and decreased venous wall thickness in the AVF. Finally, we demonstrate that the administration of carbon monoxide, a product of HO, acutely increased AVF blood flow. This study thus demonstrates: 1) the feasibility of a clinically relevant murine AVF model created in the presence of CKD and involving an end-vein to side-artery anastomosis; 2) the exacerbatory effect of CKD on clinically relevant features of this model; and 3) the beneficial effects in this model conferred by HO-1 upregulation by adeno-associated viral gene delivery.
Collapse
Affiliation(s)
- Lu Kang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Michael A Barry
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota; and
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota;
| |
Collapse
|
30
|
Lee KH, Tsai WJ, Chen YW, Yang WC, Lee CY, Ou SM, Chen YT, Chien CC, Lee PC, Chung MY, Lin CC. Genotype polymorphisms of genes regulating nitric oxide synthesis determine long-term arteriovenous fistula patency in male hemodialysis patients. Ren Fail 2015; 38:228-37. [PMID: 26643995 DOI: 10.3109/0886022x.2015.1120096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Nitric oxide (NO) is a pivotal vasoactive substance modulating arteriovenous fistula (AVF) patency for hemodialysis (HD). Since genetic background could be the predicting factor of AVF malfunction, we aimed to investigate whether the NO-related genotype polymorphisms determine AVF survival rates. METHODS This is a retrospective, observational, multi-center study involving eight HD units in Taiwan, enrolled 580 patients initiating maintenance HD via AVFs. Genotype polymorphisms of NO-biosynthesis regulating enzymes (DDAH-1, DDAH-2, eNOS and PRMT1) were compared between HD patients with (n = 161) and without (n = 419) history of AVF malfunction. Subgroup analyses by gender were performed to evaluate the genetic effect in difference sexes. RESULTS In overall population, statistically significant associations were not found between AVF malfunction and the genetic polymorphisms. In the male subgroup (n = 313), a single nucleotide polymorphism (SNP) of PRMT1, rs10415880 (IVS9-193 A/G), showed a significant association with AVF malfunction. Male patients with AA/AG genotype had inferior AVF outcomes compared to GG genotype, regarding primary patency (70.6% vs. 40.9%, p = 0.001), assisted primary patency (81.0% vs. 58.4%, p < 0.001) and secondary patency (83.7% vs. 63.3%, p < 0.001) at a 5-year observation period. From multivariate Cox regression model, the AA/AG genotypes of PRMT1 were an independent risk factor for AVF malfunction in men (HR: 4.539, 95% CI 2.015-10.223; p < 0.001). However, such associations were not found in women. CONCLUSIONS rs10415880, the SNP of PRMT1 could be a novel genetic marker associated with AVF malfunction risk in male HD patients. Those with AA and AG genotypes of rs10415880 may predict a poorer long-term patency of AVF.
Collapse
Affiliation(s)
- Kuo-Hua Lee
- a School of Medicine, National Yang-Ming University , Taipei , Taiwan ;,b Department of Medicine , Taipei Veterans General Hospital , Taipei , Taiwan ;,c Division of Nephrology , Taipei Veterans General Hospital , Taipei , Taiwan
| | - Wen-Jung Tsai
- d Institute of Genome Sciences, National Yang-Ming University , Taipei , Taiwan ;,e Department of Medical Research , Taipei Veterans General Hospital , Taipei , Taiwan
| | - Yu-Wei Chen
- a School of Medicine, National Yang-Ming University , Taipei , Taiwan ;,b Department of Medicine , Taipei Veterans General Hospital , Taipei , Taiwan ;,c Division of Nephrology , Taipei Veterans General Hospital , Taipei , Taiwan
| | - Wu-Chang Yang
- a School of Medicine, National Yang-Ming University , Taipei , Taiwan ;,b Department of Medicine , Taipei Veterans General Hospital , Taipei , Taiwan ;,c Division of Nephrology , Taipei Veterans General Hospital , Taipei , Taiwan
| | - Chiu-Yang Lee
- a School of Medicine, National Yang-Ming University , Taipei , Taiwan ;,f Division of Cardiovascular Surgery, Department of Surgery , Taipei Veterans General Hospital , Taipei , Taiwan
| | - Shuo-Ming Ou
- a School of Medicine, National Yang-Ming University , Taipei , Taiwan ;,b Department of Medicine , Taipei Veterans General Hospital , Taipei , Taiwan ;,c Division of Nephrology , Taipei Veterans General Hospital , Taipei , Taiwan
| | - Yung-Tai Chen
- a School of Medicine, National Yang-Ming University , Taipei , Taiwan ;,g Division of Nephrology, Department of Medicine , Taipei City Hospital-Heping Branch , Taipei , Taiwan
| | - Chih-Chiang Chien
- h Department of Nephrology , Chi-Mei Medical Center , Tainan , Taiwan ;,i Department of Medical Research , Chi-Mei Medical Center , Tainan , Taiwan ;,j Department of Food Nutrition , Chung Hwa University of Medical Technology , Tainan , Taiwan
| | - Pui-Ching Lee
- b Department of Medicine , Taipei Veterans General Hospital , Taipei , Taiwan
| | - Ming-Yi Chung
- d Institute of Genome Sciences, National Yang-Ming University , Taipei , Taiwan ;,e Department of Medical Research , Taipei Veterans General Hospital , Taipei , Taiwan
| | - Chih-Ching Lin
- a School of Medicine, National Yang-Ming University , Taipei , Taiwan ;,b Department of Medicine , Taipei Veterans General Hospital , Taipei , Taiwan ;,c Division of Nephrology , Taipei Veterans General Hospital , Taipei , Taiwan
| |
Collapse
|
31
|
Lee T, Haq NU. New Developments in Our Understanding of Neointimal Hyperplasia. Adv Chronic Kidney Dis 2015; 22:431-7. [PMID: 26524947 DOI: 10.1053/j.ackd.2015.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/26/2015] [Indexed: 12/20/2022]
Abstract
The vascular access remains the lifeline for the hemodialysis patient. The most common etiology of vascular access dysfunction is venous stenosis at the vein-artery anastomosis in arteriovenous fistula and at the vein-graft anastomosis in arteriovenous grafts (AVG). This stenotic lesion is typically characterized on histology as aggressive venous neointimal hyperplasia in both arteriovenous fistula and AVG. In recent years, we have advanced our knowledge and understanding of neointimal hyperplasia in vascular access and begun testing several novel therapies. This article will (1) review recent developments in our understanding of the pathophysiology of neointimal hyperplasia development in AVG and fistula failure, (2) discuss atypical factors leading to neointimal hyperplasia development, (3) highlight key novel therapies that have been evaluated in clinical trials, and (4) discuss future opportunities and challenges to improve our understanding of vascular access dysfunction and translate this knowledge into novel and innovative therapies.
Collapse
|
32
|
Aitken E, Jackson A, Kong C, Coats P, Kingsmore D. Renal function, uraemia and early arteriovenous fistula failure. BMC Nephrol 2014; 15:179. [PMID: 25403339 PMCID: PMC4239391 DOI: 10.1186/1471-2369-15-179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/28/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Guidance varies regarding the optimal timing of arteriovenous fistula (AVF) creation. The aim of this study was to evaluate the association between uraemia, haemodialysis and early AVF failure. METHODS Immunoblotting and cell proliferation assays were performed on vascular smooth muscle cells (VSM) cells isolated from long saphenous vein samples to evaluate the cells' ability to proliferate when stimulated with uraemic (post-dialysis) and hyperuraemic (pre-dialysis) serum. Clinical data was collected prospectively for 569 consecutive radiocephalic (RCF) and brachiocephalic (BCF) fistulae. The primary outcome was AVF failure at 6 weeks. Dialysis status (haemodialysis (HD); pre-dialysis (Pre-D)), eGFR and serum urea were evaluated to determine if they affected early AVF failure. RESULTS Human VSM cells demonstrated increased capacity to proliferate when stimulated with hyperuraemic serum. There was no significant difference in early failure rate of either RCF or BCF depending on dialysis status (pre-D RCF 31.4% (n=188); pre-D BCF 22.4% (n=165); HD RCF 29.3% (n=99); HD BCF 25.9% (n=116); p=0.34). There was no difference in mean eGFR between those patients with early AVF failure and those without (11.2+/-0.2 ml/min/1.73 m2 vs. 11.6+/-0.4 ml/min/1.73 m2; p=0.47). Uraemia was associated with early AVF failure (serum urea: 35.0+/-0.7 mg/dl vs. 26.6+/-0.3 mg/dl (p<0.001)). CONCLUSIONS We present the first in vivo evidence of an association between adverse early AVF outcomes and uraemia. This is supported mechanistically by in vitro work demonstrating a pro-mitogenic effect of hyperuraemic serum. We hypothesise that uraemia-driven upregulation of VSM cell proliferation at the site of surgical insult in contributes to higher early AVF failure rates.
Collapse
Affiliation(s)
- Emma Aitken
- />Department of Renal Surgery, Western Infirmary, Dumbarton Road, G11 6NY Glasgow, UK
| | - Andrew Jackson
- />Department of Renal Surgery, Western Infirmary, Dumbarton Road, G11 6NY Glasgow, UK
- />Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Chia Kong
- />University of Glasgow Medical School, Glasgow University, Glasgow, UK
| | - Paul Coats
- />Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - David Kingsmore
- />Department of Renal Surgery, Western Infirmary, Dumbarton Road, G11 6NY Glasgow, UK
| |
Collapse
|
33
|
Abstract
Despite extensive efforts, most approaches to reduce arteriovenous (AV) access-related complications did not results in substantial improvement of AV access patency thus far. Part of this disappointing progress relates to incomplete understanding of the underlying pathophysiology of hemodialysis access failure. In order to unravel the pathophysiology of hemodialysis access failure, animal models that closely mimic human pathology are of utmost importance. Indeed, it is impossible to study the extremely complex response of the AV access at a molecular and cellular level in great detail in dialysis patients. Over the past decades, numerous animal models have been developed in an attempt to unravel the vascular pathology of AV access failure and to design new therapeutic strategies aimed to improve durability of these vascular conduits. While large animals such as pigs are suitable for intervention studies, murine models have the greatest potential to gain more insight in the molecular mechanisms underlying AV access failure due to the availability of transgenic mice. In the present review, we describe several existing models of AV access failure and discuss the advantages and limitations of these models.
Collapse
|
34
|
Lu DY, Chen EY, Wong DJ, Yamamoto K, Protack CD, Williams WT, Assi R, Hall MR, Sadaghianloo N, Dardik A. Vein graft adaptation and fistula maturation in the arterial environment. J Surg Res 2014; 188:162-73. [PMID: 24582063 DOI: 10.1016/j.jss.2014.01.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/25/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022]
Abstract
Veins are exposed to the arterial environment during two common surgical procedures, creation of vein grafts and arteriovenous fistulae (AVF). In both cases, veins adapt to the arterial environment that is characterized by different hemodynamic conditions and increased oxygen tension compared with the venous environment. Successful venous adaptation to the arterial environment is critical for long-term success of the vein graft or AVF and, in both cases, is generally characterized by venous dilation and wall thickening. However, AVF are exposed to a high flow, high shear stress, low-pressure arterial environment and adapt mainly via outward dilation with less intimal thickening. Vein grafts are exposed to a moderate flow, moderate shear stress, high-pressure arterial environment and adapt mainly via increased wall thickening with less outward dilation. We review the data that describe these differences, as well as the underlying molecular mechanisms that mediate these processes. Despite extensive research, there are few differences in the molecular pathways that regulate cell proliferation and migration or matrix synthesis, secretion, or degradation currently identified between vein graft adaptation and AVF maturation that account for the different types of venous adaptation to arterial environments.
Collapse
Affiliation(s)
- Daniel Y Lu
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Y Chen
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel J Wong
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Kota Yamamoto
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut
| | - Clinton D Protack
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Willis T Williams
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Roland Assi
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Michael R Hall
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Nirvana Sadaghianloo
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; Department of Vascular Surgery, University Hospital of Nice, Nice, France
| | - Alan Dardik
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut.
| |
Collapse
|
35
|
Terry CM, Dember LM. Novel therapies for hemodialysis vascular access dysfunction: myth or reality? Clin J Am Soc Nephrol 2013; 8:2202-12. [PMID: 24235283 DOI: 10.2215/cjn.07360713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hemodialysis vascular access dysfunction is a major source of morbidity for patients with ESRD. Development of effective approaches to prevent and treat vascular access failure requires an understanding of the underlying mechanisms, suitable models for preclinical testing, systems for targeted delivery of interventions to maximize efficacy and minimize toxicity, and rigorous clinical trials that use appropriate outcome measures. This article reviews the substantial progress and ongoing challenges in developing novel treatments for arteriovenous vascular access failure and focuses on localized rather than systemic interventions.
Collapse
Affiliation(s)
- Christi M Terry
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, †Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
36
|
Yamamoto K, Protack CD, Tsuneki M, Hall MR, Wong DJ, Lu DY, Assi R, Williams WT, Sadaghianloo N, Bai H, Miyata T, Madri JA, Dardik A. The mouse aortocaval fistula recapitulates human arteriovenous fistula maturation. Am J Physiol Heart Circ Physiol 2013; 305:H1718-25. [PMID: 24097429 DOI: 10.1152/ajpheart.00590.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several models of arteriovenous fistula (AVF) have excellent patency and help in understanding the mechanisms of venous adaptation to the arterial environment. However, these models fail to exhibit either maturation failure or fail to develop stenoses, both of which are critical modes of AVF failure in human patients. We used high-resolution Doppler ultrasound to serially follow mice with AVFs created by direct 25-gauge needle puncture. By day 21, 75% of AVFs dilate, thicken, and increase flow, i.e., mature, and 25% fail due to immediate thrombosis or maturation failure. Mature AVF thicken due to increased amounts of smooth muscle cells. By day 42, 67% of mature AVFs remain patent, but 33% of AVFs fail due to perianastomotic thickening. These results show that the mouse aortocaval model has an easily detectable maturation phase in the first 21 days followed by a potential failure phase in the subsequent 21 days. This model is the first animal model of AVF to show a course that recapitulates aspects of human AVF maturation.
Collapse
Affiliation(s)
- Kota Yamamoto
- Veterans Affairs Connecticut Healthcare Systems, West Haven, Connecticut
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee T. Novel paradigms for dialysis vascular access: downstream vascular biology--is there a final common pathway? Clin J Am Soc Nephrol 2013; 8:2194-201. [PMID: 23990166 DOI: 10.2215/cjn.03490413] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vascular access dysfunction is a major cause of morbidity and mortality in hemodialysis patients. The most common cause of vascular access dysfunction is venous stenosis from neointimal hyperplasia within the perianastomotic region of an arteriovenous fistula and at the graft-vein anastomosis of an arteriovenous graft. There have been few, if any, effective treatments for vascular access dysfunction because of the limited understanding of the pathophysiology of venous neointimal hyperplasia formation. This review will (1) describe the histopathologic features of hemodialysis access stenosis; (2) discuss novel concepts in the pathogenesis of neointimal hyperplasia development, focusing on downstream vascular biology; (3) highlight future novel therapies for treating downstream biology; and (4) discuss future research areas to improve our understanding of downstream biology and neointimal hyperplasia development.
Collapse
Affiliation(s)
- Timmy Lee
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Cincinnati, Cincinatti, Ohio;, †Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio;, ‡Dialysis Vascular Access Research Group, Cincinnati, Ohio, §Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
38
|
Dember LM, Imrey PB, Beck GJ, Cheung AK, Himmelfarb J, Huber TS, Kusek JW, Roy-Chaudhury P, Vazquez MA, Alpers CE, Robbin ML, Vita JA, Greene T, Gassman JJ, Feldman HI. Objectives and design of the hemodialysis fistula maturation study. Am J Kidney Dis 2013; 63:104-12. [PMID: 23992885 DOI: 10.1053/j.ajkd.2013.06.024] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/28/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND A large proportion of newly created arteriovenous fistulas cannot be used for dialysis because they fail to mature adequately to support the hemodialysis blood circuit. The Hemodialysis Fistula Maturation (HFM) Study was designed to elucidate clinical and biological factors associated with fistula maturation outcomes. STUDY DESIGN Multicenter prospective cohort study. SETTING & PARTICIPANTS Approximately 600 patients undergoing creation of a new hemodialysis fistula will be enrolled at 7 centers in the United States and followed up for as long as 4 years. PREDICTORS Clinical, anatomical, biological, and process-of-care attributes identified pre-, intra-, or postoperatively. OUTCOMES The primary outcome is unassisted clinical maturation, defined as successful use of the fistula for dialysis for 4 weeks without maturation-enhancing procedures. Secondary outcomes include assisted clinical maturation, ultrasound-based anatomical maturation, fistula procedures, fistula abandonment, and central venous catheter use. MEASUREMENTS Preoperative ultrasound arterial and venous mapping, flow-mediated and nitroglycerin-mediated brachial artery dilation, arterial pulse wave velocity, and venous distensibility; intraoperative vein tissue collection for histopathologic and molecular analyses; postoperative ultrasounds at 1 day, 2 weeks, 6 weeks, and prior to fistula intervention and initial cannulation. RESULTS Assuming complete data, no covariate adjustment, and unassisted clinical maturation of 50%, there will be 80% power to detect ORs of 1.83 and 1.61 for dichotomous predictor variables with exposure prevalences of 20% and 50%, respectively. LIMITATIONS Exclusion of 2-stage transposition fistulas limits generalizability. The requirement for study visits may result in a cohort that is healthier than the overall population of patients undergoing fistula creation. CONCLUSIONS The HFM Study will be of sufficient size and scope to: (1) evaluate a broad range of mechanistic hypotheses, (2) identify clinical practices associated with maturation outcomes, (3) assess the predictive utility of early indicators of fistula outcome, and (4) establish targets for novel therapeutic interventions to improve fistula maturation.
Collapse
Affiliation(s)
- Laura M Dember
- Renal, Electrolyte and Hypertension Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
| | - Peter B Imrey
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Gerald J Beck
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Alfred K Cheung
- Nephrology and Hypertension Division, University of Utah School of Medicine, Salt Lake City, UT
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, WA
| | - Thomas S Huber
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL
| | - John W Kusek
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Prabir Roy-Chaudhury
- Division of Nephrology and Hypertension, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Miguel A Vazquez
- Division of Nephrology, University of Texas Southwestern, Dallas, TX
| | | | - Michelle L Robbin
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Joseph A Vita
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Tom Greene
- Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT
| | - Jennifer J Gassman
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Harold I Feldman
- Renal, Electrolyte and Hypertension Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | |
Collapse
|
39
|
Yamamoto K, Li X, Shu C, Miyata T, Dardik A. Technical aspects of the mouse aortocaval fistula. J Vis Exp 2013:e50449. [PMID: 23892387 DOI: 10.3791/50449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Technical aspects of creating an arteriovenous fistula in the mouse are discussed. Under general anesthesia, an abdominal incision is made, and the aorta and inferior vena cava (IVC) are exposed. The proximal infrarenal aorta and the distal aorta are dissected for clamp placement and needle puncture, respectively. Special attention is paid to avoid dissection between the aorta and the IVC. After clamping the aorta, a 25 G needle is used to puncture both walls of the aorta into the IVC. The surrounding connective tissue is used for hemostatic compression. Successful creation of the AVF will show pulsatile arterial blood flow in the IVC. Further confirmation of successful AVF can be achieved by post-operative Doppler ultrasound.
Collapse
Affiliation(s)
- Kota Yamamoto
- Department of Surgery and the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, USA
| | | | | | | | | |
Collapse
|
40
|
Kang L, Grande JP, Farrugia G, Croatt AJ, Katusic ZS, Nath KA. Functioning of an arteriovenous fistula requires heme oxygenase-2. Am J Physiol Renal Physiol 2013; 305:F545-52. [PMID: 23678042 DOI: 10.1152/ajprenal.00234.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heme oxygenase-2 (HO-2), the constitutive isoform of the heme-degrading enzyme heme oxygenase, may serve as an anti-inflammatory vasorelaxant, in part, by generating carbon monoxide. Arteriovenous fistulas (AVFs) are employed as hemodialysis vascular accesses because they provide an accessible, high-blood-flow vascular segment. We examined the role of vascular expression of HO-2 in AVF function. An AVF was created in mice by anastomosing the carotid artery to the jugular vein. HO-2 expression was detected by immunohistochemistry in the intact carotid artery, mainly in endothelial cells and smooth muscle cells; expression of HO-2 protein and mRNA was modestly increased in the artery of the AVF. Creating an AVF in HO-2(-/-) mice compared with an AVF in HO-2(+/+) mice led to markedly reduced AVF blood flow and increased numbers of nonfunctioning AVFs. The impairment of AVF function in the setting of HO-2 deficiency could not be ascribed to either preexisting intrinsic abnormalities in endothelium-dependent and endothelium-independent relaxation of the carotid artery in HO-2-deficient mice or to impaired vasorelaxant responses in the intact carotid artery in vivo. HO-1 mRNA was comparably induced in the AVF in HO-2(+/+) and HO-2(-/-) mice, whereas the AVF in HO-2(-/-) mice compared with that in HO-2(+/+) mice exhibited exaggerated induction of matrix metalloproteinase (MMP)-9 but similar induction of MMP-2. HO-2 deficiency also led to lower AVF blood flow when AVFs were created in uremia, the latter induced by subtotal nephrectomy. We conclude that HO-2 critically contributes to the adequacy of AVF blood flow and function.
Collapse
Affiliation(s)
- Lu Kang
- Mayo Clinic, Guggenheim 542, 200 First St. SW, Rochester, MN 55905.
| | | | | | | | | | | |
Collapse
|
41
|
Nath KA, Grande JP, Farrugia G, Croatt AJ, Belcher JD, Hebbel RP, Vercellotti GM, Katusic ZS. Age sensitizes the kidney to heme protein-induced acute kidney injury. Am J Physiol Renal Physiol 2013; 304:F317-25. [PMID: 23195679 PMCID: PMC3566520 DOI: 10.1152/ajprenal.00606.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/26/2012] [Indexed: 02/06/2023] Open
Abstract
Age increases the risk for ischemic acute kidney injury (AKI). We questioned whether a similar age-dependent injury occurs following exposure to hemoglobin, a known nephrotoxin. Old mice (~16 mo old), but not young mice (~6 mo old), when administered hemoglobin, exhibited marked elevation in blood urea nitrogen (BUN) and serum creatinine, and acute tubular necrosis with prominent tubular cast formation. The aged kidney exhibited induction of heme oxygenase-1 (HO-1) and other genes/proteins that may protect against heme-mediated renal injury, including ferritin, ferroportin, haptoglobin, and hemopexin. Old mice did not evince induction of HO-2 mRNA by hemoglobin, whereas a modest induction of HO-2 mRNA was observed in young mice. To determine the functional significance of HO-2 in heme protein-induced AKI, we administered hemoglobin to relatively young HO-2(+/+) and HO-2(-/-) mice: HO-2(-/-) mice, compared with HO-2(+/+) mice, exhibited greater renal dysfunction and histologic injury when administered hemoglobin. In addition to failing to elicit a protective system such as HO-2 in response to hemoglobin, old mice exhibited an exaggerated maladaptive response typified by markedly greater induction of the nephrotoxic cytokine IL-6 (130-fold increase vs. 10-fold increase in mRNA in young mice). We conclude that aged mice, unlike relatively younger mice, are exquisitely sensitive to the nephrotoxicity of hemoglobin, an effect attended by a failure to induce HO-2 mRNA and a fulminant upregulation of IL-6. Age thus markedly augments the sensitivity of the kidney to heme proteins, and HO-2 confers resistance to such insults.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Guggenheim 542, 200 First St., SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsapenko MV, d'Uscio LV, Grande JP, Croatt AJ, Hernandez MC, Ackerman AW, Katusic ZS, Nath KA. Increased production of superoxide anion contributes to dysfunction of the arteriovenous fistula. Am J Physiol Renal Physiol 2012; 303:F1601-7. [PMID: 22993073 PMCID: PMC3532470 DOI: 10.1152/ajprenal.00449.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022] Open
Abstract
Vascular access dysfunction causes morbidity in hemodialysis patients. This study examined the generation and pathobiological significance of superoxide anion in a rat femoral arteriovenous fistula (AVF). One week after AVF creation, there was increased production of superoxide anion accompanied by decreased total superoxide dismutase (SOD) and Cu/Zn SOD activities and induction of the redox-sensitive gene heme oxygenase-1. Immunohistochemical studies of nitrotyrosine formation demonstrated that peroxynitrite, a product of superoxide anion and nitric oxide, was present in increased amounts in endothelial and smooth muscle cells in the AVF. Because uncoupled NOS isoforms generate superoxide anion, and NOS coupling requires tetrahydrobiopterin (BH(4)) as a cofactor, we assessed NOS uncoupling by determining the ratio of BH(4) to dihydrobiopterin (BH(2)); the BH(4)-to-BH(2) ratio was markedly attenuated in the AVF. Because Src is a vasculopathic signaling species upstream and downstream of superoxide anion, such expression was evaluated; expression of Src and phosphorylated Src was both markedly increased in the AVF. Expression of NADPH oxidase (NOX) 1, NOX2, NOX4, cyclooxygenase (COX) 1, COX2, p47(phox), and p67(phox) was all unchanged, as assessed by Western analyses, thereby suggesting that these proteins may not be involved in increased production of superoxide anion. Finally, administration of tempol, a superoxide anion scavenger, decreased neointima formation in the juxta-anastomotic venous segment and improved AVF blood flow. We conclude that the AVF exhibits increased superoxide anion generation that may reflect the combined effects of decreased scavenging by SOD and increased generation by uncoupled NOS, and that enhanced superoxide anion production promotes juxta-anastomotic stenosis and impairs AVF function.
Collapse
|
43
|
Zarjou A, Agarwal A. Superoxide in AVF dysfunction: a new target for intervention. Am J Physiol Renal Physiol 2012; 303:F1599-600. [PMID: 23034943 DOI: 10.1152/ajprenal.00549.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Manning E, Skartsis N, Orta AM, Velazquez OC, Liu ZJ, Asif A, Salman LH, Vazquez-Padron RI. A new arteriovenous fistula model to study the development of neointimal hyperplasia. J Vasc Res 2012; 49:123-31. [PMID: 22249138 DOI: 10.1159/000332327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022] Open
Abstract
This study describes an alternative arteriovenous fistula (AVF) model in the rat in which the animals develop significant neointimal hyperplasia (NIH) not only at the distal anastomotic site, but also throughout the fistula body. This aortocaval fistula was established by anastomosing the distal end of the renal vein to the abdominal aorta after unilateral nephrectomy. The increased hemodynamic stress resulting from exposing the renal vein to the arterial circulation induced venous NIH as early as 7 days after surgery. This experimental AVF was characterized by the early lack of endothelium, the accumulation of proliferating vascular smooth muscle cells and the neovascularization of the fistula adventitia. In summary, we have described an informative animal model to study the pathobiology of NIH in native AVF.
Collapse
Affiliation(s)
- Eddie Manning
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla. 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kang L, Yamada S, Hernandez MC, Croatt AJ, Grande JP, Juncos JP, Vercellotti GM, Hebbel RP, Katusic ZS, Terzic A, Nath KA. Regional and systemic hemodynamic responses following the creation of a murine arteriovenous fistula. Am J Physiol Renal Physiol 2011; 301:F845-51. [PMID: 21697243 DOI: 10.1152/ajprenal.00311.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The study of hemodynamic alterations following the creation of an arteriovenous fistula (AVF) is relevant to vascular adaptive responses and hemodialysis access dysfunction. This study examined such alterations in a murine AVF created by anastomosing the carotid artery to the jugular vein. AVF blood flow was markedly increased due to reduced AVF vascular resistance. Despite such markedly increased basal blood flow, AVF blood flow further increased in response to acetylcholine. This AVF model exhibited increased cardiac output and decreased systemic vascular resistance; the kidney, in contrast, exhibited decreased blood flow and increased vascular resistance. Augmentation in AVF blood flow was attended by increased arterial heme oxygenase-1 (HO-1) mRNA and protein expression, the latter localized to smooth muscle cells of the AVF artery; AVF blood flow was substantially reduced in HO-1(-/-) mice compared with HO-1(+/+) mice. Finally, in a murine model of a representative disease known to exhibit impaired hemodynamic responses (sickle cell disease), the creation of an AVF was attended by decreased AVF flow and impaired AVF function. We conclude that this AVF model exhibits markedly increased AVF blood flow, a vasodilatory reserve capacity, increased cardiac output, decreased renal blood flow, and a dependency on intact hemodynamic responses, in general, and HO-1 expression, in particular, in achieving and maintaining AVF blood flow. We suggest that these findings support the utility of this model in investigating the basis for and the consequences of hemodynamic stress, including shear stress, and the pathobiology of hemodialysis AVF dysfunction.
Collapse
Affiliation(s)
- Lu Kang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Langer S, Kokozidou M, Heiss C, Kranz J, Kessler T, Paulus N, Krüger T, Jacobs MJ, Lente C, Koeppel TA. Chronic kidney disease aggravates arteriovenous fistula damage in rats. Kidney Int 2010; 78:1312-21. [DOI: 10.1038/ki.2010.353] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Juncos JP, Grande JP, Kang L, Ackerman AW, Croatt AJ, Katusic ZS, Nath KA. MCP-1 contributes to arteriovenous fistula failure. J Am Soc Nephrol 2010; 22:43-8. [PMID: 21115617 DOI: 10.1681/asn.2010040373] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular access dysfunction compromises the care of patients on chronic hemodialysis. Elucidating the mechanisms of such dysfunction and devising strategies that may interrupt neointimal hyperplasia and relevant pathogenetic pathways are essential. Here, we show that, in the venous segment of a murine model of an arteriovenous fistula, monocyte chemoattractant protein-1 (MCP-1) mRNA and protein increase, accompanied by increased activity of the transcription factors NF-κB and AP-1. Genetic deficiency of MCP-1 proved markedly protective in this murine model, reflected by increased fistula patency 6 weeks after its formation, decreased venous wall thickness, and increased luminal area. An early effect of MCP-1 deficiency was the attenuation of the marked induction of CCL5 (RANTES) that occurred in this model, a chemokine recently recognized as a critical participant in vascular injury. Finally, in a rat model of an arteriovenous fistula, we localized expression of MCP-1 to the endothelium, proliferating smooth muscle cells and infiltrating leukocytes. In summary, marked upregulation of MCP-1 occurs in the venous segment of an arteriovenous fistula in rodents, and this vasculopathic chemokine contributes to failure of the fistula.
Collapse
Affiliation(s)
- Julio P Juncos
- Mayo Clinic, Guggenheim 542, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Cardiovascular remodeling during arteriovenous fistula maturation in a rodent uremia model. J Vasc Access 2010; 12:215-23. [PMID: 21104672 DOI: 10.5301/jva.2010.6066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2010] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate cardiovascular remodeling after arteriovenous fistula (AVF) surgery and to characterize the effect of chronic kidney disease (CKD) in a rodent femoral AVF model. METHODS Sixteen rats (8 healthy; 8 CKD) underwent femoral AVF surgery; 4 animals served as controls. AVF and cardiac morphology as well as function were assessed during the fistula maturation process (until day 84 after surgery) using magnetic resonance imaging and histopathological analyses. RESULTS Histopathological analysis revealed that a glomerular and interstitial nephropathy caused CKD. In healthy and CKD animals, AVF surgery resulted in progressive downstream vein dilation and a subsequent cardiac adaptation. This vein dilation during maturation was less in CKD rats during the early postoperative course (day 21: p=0.0475) and similar thereafter until day 84. The dilation was accompanied by an aggravation of neointimal hyperplasia (NIH) and calcification in AVFs of CKD rats. The chronic volume overload resulted in both groups in a significantly increased end-diastolic volume (healthy rats: p=0.0087; CKD rats: p=0.0333). Simultaneously, cardiac output increased 195% in healthy and 244% in uremic rats, which was caused by both a significantly increased stroke volume and heart rate. The left ventricular mass rose in AVF animals and was increased at the end of the study period, indicating a distinct cardiac hypertrophy. CONCLUSION Our rat model showed typical cardiovascular features of the AVF maturation process, which strongly resemble clinical findings in patients. Uremia caused inferior dilation in the early phase after surgery and an exacerbation of NIH. This model should help to identify the cellular and molecular mechanisms that contribute to AVF failure.
Collapse
|
49
|
Nath KA, Grande JP, Kang L, Juncos JP, Ackerman AW, Croatt AJ, Katusic ZS. ß-Catenin is markedly induced in a murine model of an arteriovenous fistula: the effect of metalloproteinase inhibition. Am J Physiol Renal Physiol 2010; 299:F1270-7. [PMID: 20881035 DOI: 10.1152/ajprenal.00488.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neointimal hyperplasia contributes to failure of hemodialysis arteriovenous fistulas (AVFs). Increased expression of matrix metalloproteinase (MMP)-9 occurs in AVFs, and MMP-9 is implicated in neointimal hyperplasia and vascular injury. Recent studies demonstrate that MMP-9, by degrading N-cadherin, leads to increased expression of β-catenin and β-catenin-dependent proliferation of smooth muscle cells. The present study examined this pathway in the venous limb of a murine AVF model. Western analyses demonstrate that, in this model, there is diminished expression of N-cadherin accompanied by increased expression of β-catenin, c-Myc, and proliferating cell nuclear antigen (PCNA). By immunohistochemistry, β-catenin and c-Myc localized to proliferating smooth muscle cells in the venous limb of the AVF. Increased expression of β-catenin was accompanied by augmented expression of phosphorylated (p)-glycogen synthase kinase (GSK)-3β, GSK-3β, and integrin-linked kinase. The administration of doxycycline suppressed MMP-9 expression but did not reduce venous histological injury in the AVF, or increase AVF patency assessed 6 wk after its creation. Doxycycline did not influence expression of β-catenin, c-Myc, GSK-3β, or integrin-linked kinase. Thus, in this vascular injury model, the upregulation of β-catenin cannot be readily attributed to MMP-9 upregulation; increased β-catenin expression may reflect either the upregulation of p-GSK-3β, GSK-3β, or integrin-linked kinase. This study provides the first exploration of β-catenin in an AVF, demonstrating substantial upregulation of this mitogenic signaling molecule and uncovering possible mechanisms that may account for such upregulation.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Department of Physiology and Biomedical Engineering, Mayo Clinic, Guggenheim 542, 200 First St., SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|