1
|
Netti V, Cocca MA, Cutrera N, Molina Ponce T, Ford P, Di Giusto G, Capurro C. Osteopontin Regulates AQP4 Expression by TRPV4 Activation in Müller Cells: Implications for Retinal Homeostasis. Mol Neurobiol 2024:10.1007/s12035-024-04595-6. [PMID: 39485629 DOI: 10.1007/s12035-024-04595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
During the intense neuronal activity in the retina, Müller cells are exposed to a hypotonic environment and activate a regulatory volume decrease (RVD) response, which depends on Aquaporin-4 (AQP4) and the calcium channel Transient Receptor Potential Vanilloid 4 (TRPV4). It was reported that Osteopontin (OPN), a cytokine and component of the extracellular matrix (ECM), may modulate the RVD of Müller cells. In other cell types, OPN participates in cell survival and migration, which Müller cells undergo to maintain retinal homeostasis. Therefore, the aim of this work was to study the putative crosstalk of OPN with AQP4 and/or TRPV4 in the main functions of Müller cells: RVD, morphology maintenance and migration. We used a human Müller cell line (MIO-M1) exposed to OPN and evaluated cell volume and osmotic permeability (Pf) during an osmotic swelling, AQP4 expression, cell morphology and migration. We observed that OPN induced a reduced Pf and RVD by downregulating AQP4 expression, which was prevented by TRPV4 inhibition. OPN also induced significant changes in cell morphology with an increased number of cytoplasmic projections. Finally, OPN reduced the migration of Müller cells, being this effect dependent on TRPV4. We propose that OPN affects water permeability and cell volume regulation of Müller cells by activating TRPV4 to reduce AQP4 expression. This represents a novel mechanism of regulation of water permeability by the ECM in Müller cells. Additionally, OPN-induced changes in morphology and migration of Müller cells may have an impact on retinal physiology.
Collapse
Affiliation(s)
- Vanina Netti
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Azul Cocca
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Nicolás Cutrera
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Tomás Molina Ponce
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Ford
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gisela Di Giusto
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudia Capurro
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
2
|
Riew TR, Hwang JW, Jin X, Kim HL, Jung SJ, Lee MY. Astrocytes are involved in the formation of corpora amylacea-like structures from neuronal debris in the CA1 region of the rat hippocampus after ischemia. Front Cell Neurosci 2023; 17:1308247. [PMID: 38188667 PMCID: PMC10766773 DOI: 10.3389/fncel.2023.1308247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, we demonstrated that the corpora amylacea (CA), a glycoprotein-rich aggregate frequently found in aged brains, accumulates in the ischemic hippocampus and that osteopontin (OPN) mediates the entire process of CA formation. Therefore, this study aimed to elucidate the mechanisms by which astrocytes and microglia participate in CA formation during the late phase (4-12 weeks) of brain ischemia. Based on various morphological analyses, including immunohistochemistry, in situ hybridization, immunoelectron microscopy, and correlative light and electron microscopy, we propose that astrocytes are the primary cells responsible for CA formation after ischemia. During the subacute phase after ischemia, astrocytes, rather than microglia, express Opn messenger ribonucleic acid and OPN protein, a surrogate marker and key component of CA. Furthermore, the specific localization of OPN in the Golgi complex suggests that it is synthesized and secreted by astrocytes. Astrocytes were in close proximity to type I OPN deposits, which accumulated in the mitochondria of degenerating neurons before fully forming the CA (type III OPN deposits). Throughout CA formation, astrocytes remained closely attached to OPN deposits, with their processes exhibiting well-developed gap junctions. Astrocytic cytoplasmic protein S100β, a calcium-binding protein, was detected within the fully formed CA. Additionally, ultrastructural analysis revealed direct contact between astroglial fibrils and the forming facets of the CA. Overall, we demonstrated that astrocytes play a central role in mediating CA formation from the initial stages of OPN deposit accumulation to the evolution of fully formed CA following transient ischemia in the hippocampus.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sharon Jiyoon Jung
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Maheshwari U, Mateos JM, Weber‐Stadlbauer U, Ni R, Tamatey V, Sridhar S, Restrepo A, de Jong PA, Huang S, Schaffenrath J, Stifter SA, Szeri F, Greter M, Koek HL, Keller A. Inorganic phosphate exporter heterozygosity in mice leads to brain vascular calcification, microangiopathy, and microgliosis. Brain Pathol 2023; 33:e13189. [PMID: 37505935 PMCID: PMC10580014 DOI: 10.1111/bpa.13189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - José M. Mateos
- Center for Microscopy and Image analysisUniversity of ZurichZurichSwitzerland
| | - Ulrike Weber‐Stadlbauer
- Institute of Veterinary Pharmacology and ToxicologyUniversity of Zurich‐Vetsuisse, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ruiqing Ni
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Virgil Tamatey
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
- Doctoral School of BiologyELTE Eotvos Lorand UniversityBudapestHungary
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Alejandro Restrepo
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Pim A. de Jong
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sheng‐Fu Huang
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | | | - Flora Szeri
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
| | - Melanie Greter
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Huiberdina L. Koek
- Department of Geriatric MedicineUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
4
|
Zhang H, Lu Y, Kramer PR, Benson MD, Cheng YSL, Qin C. Intracranial calcification in Fam20c-deficient mice recapitulates human Raine syndrome. Neurosci Lett 2023; 802:137176. [PMID: 36914045 DOI: 10.1016/j.neulet.2023.137176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
FAM20C (family with sequence similarity 20-member C) is a protein kinase that phosphorylates secretory proteins, including the proteins that are essential to the formation and mineralization of calcified tissues. FAM20C loss-of-function mutations cause Raine syndrome in humans, characterized by generalized osteosclerosis, distinctive craniofacial dysmorphism, along with extensive intracranial calcification. Our previous studies revealed that inactivation of Fam20c in mice led to hypophosphatemic rickets. In this study, we examined the expression of Fam20c in the mouse brain and investigated brain calcification in Fam20c-deficient mice. Reverse transcription polymerase chain reaction (RT-PCR), Western-blotting and in situ hybridization analyses demonstrated the broad expression of Fam20c in the mouse brain tissue. X-ray and histological analyses showed that the global deletion of Fam20c (mediated by Sox2-cre) resulted in brain calcification in mice after postnatal 3 months and that the calcifications were bilaterally distributed within the brain. There was mild perifocal microgliosis as well as astrogliosis around calcospherites. The calcifications were first observed in the thalamus, and later in the forebrain and hindbrain. Furthermore, brain-specific deletion (mediated by Nestin-cre) of Fam20c in mice also led to cerebral calcification at an older age (postnatal 6 months), but no obvious skeletal or dental defects. Our results suggest that the local loss of FAM20C function in the brain may directly account for intracranial calcification. We propose that FAM20C plays an essential role in maintaining normal brain homeostasis and preventing ectopic brain calcification.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA.
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - M Douglas Benson
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Yi-Shing L Cheng
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
5
|
West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia shield the murine brain from damage mediated by the cytokines IL-6 and IFN-α. Front Immunol 2022; 13:1036799. [PMID: 36389783 PMCID: PMC9650248 DOI: 10.3389/fimmu.2022.1036799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 12/10/2023] Open
Abstract
Sustained production of elevated levels of the cytokines interleukin (IL)-6 or interferon (IFN)-α in the central nervous system (CNS) is detrimental and directly contributes to the pathogenesis of neurological diseases such as neuromyelitis optica spectrum disorders or cerebral interferonopathies, respectively. Using transgenic mice with CNS-targeted production of IL-6 (GFAP-IL6) or IFN-α (GFAP-IFN), we have recently demonstrated that microglia are prominent target and effector cells and mount stimulus-specific responses to these cytokines. In order to further clarify the phenotype and function of these cells, we treated GFAP-IL6 and GFAP-IFN mice with the CSF1R inhibitor PLX5622 to deplete microglia. We examined their ability to recover from acute microglia depletion, as well as the impact of chronic microglia depletion on the progression of disease. Following acute depletion in the brains of GFAP-IL6 mice, microglia repopulation was enhanced, while in GFAP-IFN mice, microglia did not repopulate the brain. Furthermore, chronic CSF1R inhibition was detrimental to the brain of GFAP-IL6 and GFAP-IFN mice and gave rise to severe CNS calcification which strongly correlated with the absence of microglia. In addition, PLX5622-treated GFAP-IFN mice had markedly reduced survival. Our findings provide evidence for novel microglia functions to protect against IFN-α-mediated neurotoxicity and neuronal dysregulation, as well as restrain calcification as a result of both IL-6- and IFN-α-induced neuroinflammation. Taken together, we demonstrate that CSF1R inhibition may be an undesirable target for therapeutic treatment of neuroinflammatory diseases that are driven by elevated IL-6 and IFN-α production.
Collapse
Affiliation(s)
| | | | | | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Osteopontin mediates the formation of corpora amylacea-like structures from degenerating neurons in the CA1 region of the rat hippocampus after ischemia. Cell Tissue Res 2022; 389:443-463. [PMID: 35688947 DOI: 10.1007/s00441-022-03645-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
We previously demonstrated that osteopontin (OPN) is closely associated with calcium precipitation in response to ischemic brain insults. The present study was designed to elucidate the possible association between deposition of OPN and progressive neurodegeneration in the ischemic hippocampus. To address this, we analyzed the OPN deposits in the rat hippocampus after global cerebral ischemia in the chronic phase (4 to 12 weeks) after reperfusion using immunoelectron microscopy and correlative light and electron microscopy. We identified three different types of OPN deposits based on their morphological characteristics, numbered according to the order in which they evolved. Dark degenerative cells that retained cellular morphology were frequently observed in the pyramidal cell layer, and type I OPN deposits were degenerative mitochondria that accumulated among these cells. Type II deposits evolved into more complex amorphous structures with prominent OPN deposits within their periphery and within degenerative mitochondria-like structures. Finally, type III had large concentric laminated structures with irregularly shaped bodies in the center of the deposits. In all types, OPN expression was closely correlated with calcification, as confirmed by calcium fixation and Alizarin Red staining. Notably, type II and III deposits were highly reminiscent of corpora amylacea, glycoprotein-rich aggregates found in aged brains, or neurodegenerative disease, which was further confirmed by ubiquitin expression and periodic acid-Schiff staining. Overall, our data provide a novel link between ongoing neurodegeneration and the formation of corpora amylacea-like structures and calcium deposits in the ischemic hippocampus, suggesting that OPN may play an important role in such processes.
Collapse
|
7
|
Zarb Y, Sridhar S, Nassiri S, Utz SG, Schaffenrath J, Maheshwari U, Rushing EJ, Nilsson KPR, Delorenzi M, Colonna M, Greter M, Keller A. Microglia control small vessel calcification via TREM2. SCIENCE ADVANCES 2021; 7:eabc4898. [PMID: 33637522 PMCID: PMC7909879 DOI: 10.1126/sciadv.abc4898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
Microglia participate in central nervous system (CNS) development and homeostasis and are often implicated in modulating disease processes. However, less is known about the role of microglia in the biology of the neurovascular unit (NVU). In particular, data are scant on whether microglia are involved in CNS vascular pathology. In this study, we use a mouse model of primary familial brain calcification, Pdgfbret/ret , to investigate the role of microglia in calcification of the NVU. We report that microglia enclosing vessel calcifications, coined calcification-associated microglia, display a distinct activation phenotype. Pharmacological ablation of microglia with the CSF1R inhibitor PLX5622 leads to aggravated vessel calcification. Mechanistically, we show that microglia require functional TREM2 for controlling vascular calcification. Our results demonstrate that microglial activity in the setting of pathological vascular calcification is beneficial. In addition, we identify a previously unrecognized function of microglia in halting the expansion of vascular calcification.
Collapse
Affiliation(s)
- Yvette Zarb
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sina Nassiri
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sebastian Guido Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, Zurich University Hospital, Zurich, Switzerland
| | | | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Ademosun AO, Adebayo AA, Popoola TV, Oboh G. Shaddock (Citrus maxima) peels extract restores cognitive function, cholinergic and purinergic enzyme systems in scopolamine-induced amnesic rats. Drug Chem Toxicol 2020; 45:1073-1080. [DOI: 10.1080/01480545.2020.1808668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ayokunle O. Ademosun
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Adeniyi A. Adebayo
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Chemical Sciences (Biochemistry Unit), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Temitope V. Popoola
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
9
|
Sugiyama Y, Oishi T, Yamashita A, Murata Y, Yamamoto T, Takashima I, Isa T, Higo N. Neuronal and microglial localization of secreted phosphoprotein 1 (osteopontin) in intact and damaged motor cortex of macaques. Brain Res 2019; 1714:52-64. [PMID: 30790559 DOI: 10.1016/j.brainres.2019.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 01/06/2023]
Abstract
We previously reported that mRNA encoding secreted phosphoprotein 1 (SPP1), also known as osteopontin, is preferentially expressed in large neurons in layer V of the macaque motor cortex, most of which are presumed to be corticospinal tract neurons. As a first step to elucidating the cellular function of SPP1 in macaque neurons, we examined the localization of SPP1 in the primary motor cortex (M1) of the macaque by using immunohistochemistry. SPP1 immunoreactivity was found to be localized in the cell bodies of neurons, but not outside the cells, indicating that SPP1 was not secreted from these neurons. The results of electron microscope analysis and double-labeling analysis with marker proteins suggested that SPP1 was localized in the mitochondria of neurons. The distributions of SPP1 in the neurons corresponded to those of integrin αV, a putative receptor for SPP1. The distribution of SPP1 was also investigated in macaques whose M1 had been lesioned. We found that SPP1 was secreted by proliferated microglia in the lesioned area. Double-labeling analysis indicated that SPP1 immunoreactivity in the microglia was colocalized with CD44, another putative receptor for SPP1. Success rates in the small-object-retrieval task were positively correlated with SPP1 immunoreactivity in the neurons in the perilesional area. SPP1 has multiple roles in the macaque motor cortex, and it may be a key protein during recovery of hand movement after brain damage.
Collapse
Affiliation(s)
- Yoko Sugiyama
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8574, Japan
| | - Takao Oishi
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Akiko Yamashita
- Division of Biology, Department of Liberal Education, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yumi Murata
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Tatsuya Yamamoto
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan; Department of Physical Therapy, Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Ibaraki 300-0051, Japan
| | - Ichiro Takashima
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8574, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Noriyuki Higo
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
10
|
Mazzini L, Gelati M, Profico DC, Sorarù G, Ferrari D, Copetti M, Muzi G, Ricciolini C, Carletti S, Giorgi C, Spera C, Frondizi D, Masiero S, Stecco A, Cisari C, Bersano E, De Marchi F, Sarnelli MF, Querin G, Cantello R, Petruzzelli F, Maglione A, Zalfa C, Binda E, Visioli A, Trombetta D, Torres B, Bernardini L, Gaiani A, Massara M, Paolucci S, Boulis NM, Vescovi AL. Results from Phase I Clinical Trial with Intraspinal Injection of Neural Stem Cells in Amyotrophic Lateral Sclerosis: A Long-Term Outcome. Stem Cells Transl Med 2019; 8:887-897. [PMID: 31104357 PMCID: PMC6708070 DOI: 10.1002/sctm.18-0154] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
The main objective of this phase I trial was to assess the feasibility and safety of microtransplanting human neural stem cell (hNSC) lines into the spinal cord of patients with amyotrophic lateral sclerosis (ALS). Eighteen patients with a definite diagnosis of ALS received microinjections of hNSCs into the gray matter tracts of the lumbar or cervical spinal cord. Patients were monitored before and after transplantation by clinical, psychological, neuroradiological, and neurophysiological assessment. For up to 60 months after surgery, none of the patients manifested severe adverse effects or increased disease progression because of the treatment. Eleven patients died, and two underwent tracheotomy as a result of the natural history of the disease. We detected a transitory decrease in progression of ALS Functional Rating Scale Revised, starting within the first month after surgery and up to 4 months after transplantation. Our results show that transplantation of hNSC is a safe procedure that causes no major deleterious effects over the short or long term. This study is the first example of medical transplantation of a highly standardized cell drug product, which can be reproducibly and stably expanded ex vivo, comprising hNSC that are not immortalized, and are derived from the forebrain of the same two donors throughout this entire study as well as across future trials. Our experimental design provides benefits in terms of enhancing both intra‐ and interstudy reproducibility and homogeneity. Given the potential therapeutic effects of the hNSCs, our observations support undertaking future phase II clinical studies in which increased cell dosages are studied in larger cohorts of patients. stem cells translational medicine2019;8:887&897
Collapse
Affiliation(s)
- Letizia Mazzini
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Maurizio Gelati
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, Terni Hospital, Italy.,Fondazione IRCCS Casa Sollievo della Sofferenza, Advanced Therapies Production Unit, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Celeste Profico
- Fondazione IRCCS Casa Sollievo della Sofferenza, Advanced Therapies Production Unit, San Giovanni Rotondo, Foggia, Italy
| | - Gianni Sorarù
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Daniela Ferrari
- Biotechnology and Bioscience Department Bicocca University, Milan, Italy
| | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, Biostatistic Unit, San Giovanni Rotondo, Foggia, Italy
| | - Gianmarco Muzi
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, Terni Hospital, Italy
| | - Claudia Ricciolini
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, Terni Hospital, Italy
| | - Sandro Carletti
- Department of Neurosurgery and Neuroscience, "Santa Maria" Hospital, Terni, Italy
| | - Cesare Giorgi
- Department of Neurosurgery and Neuroscience, "Santa Maria" Hospital, Terni, Italy
| | - Cristina Spera
- Department of Neurosurgery and Neuroscience, "Santa Maria" Hospital, Terni, Italy
| | - Domenico Frondizi
- Department of Neurosurgery and Neuroscience, "Santa Maria" Hospital, Terni, Italy
| | - Stefano Masiero
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Alessandro Stecco
- Department of Diagnostic and Interventional Radiology, "Eastern Piedmont" University, "Maggiore della Carità" Hospital, Novara
| | - Carlo Cisari
- Department of Physical Therapy, "Eastern Piedmont" University, "Maggiore della Carità" Hospital, Novara
| | - Enrica Bersano
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Fabiola De Marchi
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Maria Francesca Sarnelli
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Giorgia Querin
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Roberto Cantello
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Francesco Petruzzelli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Obstetrics and Gynaecology Department, San Giovanni Rotondo, Foggia, Italy
| | - Annamaria Maglione
- Fondazione IRCCS Casa Sollievo della Sofferenza, Obstetrics and Gynaecology Department, San Giovanni Rotondo, Foggia, Italy
| | - Cristina Zalfa
- Biotechnology and Bioscience Department Bicocca University, Milan, Italy
| | - Elena Binda
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo, Foggia, Italy
| | | | - Domenico Trombetta
- Fondazione IRCCS Casa Sollievo della Sofferenza, Department of Oncology, San Giovanni Rotondo, Foggia, Italy
| | - Barbara Torres
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cytogenetics Unit, San Giovanni Rotondo, Foggia, Italy
| | - Laura Bernardini
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cytogenetics Unit, San Giovanni Rotondo, Foggia, Italy
| | | | - Maurilio Massara
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | - Silvia Paolucci
- Eastern Piedmont University, "Maggiore della Carità" Hospital, Dipartimento di Neurologia, Novara
| | | | - Angelo L Vescovi
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, Terni Hospital, Italy.,Fondazione IRCCS Casa Sollievo della Sofferenza, Advanced Therapies Production Unit, San Giovanni Rotondo, Foggia, Italy.,Biotechnology and Bioscience Department Bicocca University, Milan, Italy
| | | |
Collapse
|
11
|
Riew TR, Kim S, Jin X, Kim HL, Lee JH, Lee MY. Osteopontin and its spatiotemporal relationship with glial cells in the striatum of rats treated with mitochondrial toxin 3-nitropropionic acid: possible involvement in phagocytosis. J Neuroinflammation 2019; 16:99. [PMID: 31088570 PMCID: PMC6518780 DOI: 10.1186/s12974-019-1489-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Osteopontin (OPN, SPP1) is upregulated in response to acute brain injury, and based on its immunoreactivity, two distinct forms have been identified: intracellular OPN within brain macrophages and small granular OPN, identified as OPN-coated degenerated neurites. This study investigates the spatiotemporal relationship between punctate OPN deposition and astroglial and microglial reactions elicited by 3-nitropropionic acid (3-NP). Methods Male Sprague-Dawley rats were intraperitoneally injected with mitochondrial toxin 3-NP and euthanized at 3, 7, 14, and 28 days. Quantitative and qualitative light and electron microscopic techniques were used to assess the relationship between OPN and glial cells. Statistical significance was determined by Student’s t test or a one-way analysis of variance followed by Tukey’s multiple comparisons test. Results Punctate OPN-immunoreactive profiles were synthesized and secreted by amoeboid-like brain macrophages in the lesion core, but not by reactive astrocytes and activated microglia with a stellate shape in the peri-lesional area. Punctate OPN accumulation was detected only in the lesion core away from reactive astrocytes in the peri-lesional area at day 3, but had direct contact with, and even overlapped with astroglial processes at day 7. The distance between the OPN-positive area and the astrocytic scar significantly decreased from days 3 to 7. By days 14 and 28 post-lesion, when the glial scar was fully formed, punctate OPN distribution mostly overlapped with the astrocytic scar. Three-dimensional reconstructions and quantitative image analysis revealed numerous granular OPN puncta inside the cytoplasm of reactive astrocytes and brain macrophages. Reactive astrocytes showed prominent expression of the lysosomal marker lysosomal-associated membrane protein 1, and ultrastructural analysis confirmed OPN-coated degenerating neurites inside astrocytes, suggesting the phagocytosis of OPN puncta by reactive astrocytes after injury. Conclusions Punctate OPN-immunoreactive profiles corresponded to OPN-coated degenerated neurites, which were closely associated with, or completely engulfed by, the reactive astrocytes forming the astroglial scar in 3-NP lesioned striatum, suggesting that OPN may cause astrocytes to migrate towards these degenerated neurites in the lesion core to establish physical contact with, and possibly, to phagocytose them. Our results provide novel insights essential to understanding the recovery and repair of the central nervous system tissue. Electronic supplementary material The online version of this article (10.1186/s12974-019-1489-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Soojin Kim
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
12
|
Abstract
Osteopontin (OPN) is a secreted glycosylated phosphoprotein that influences cell survival, inflammation, migration, and homeostasis after injury. As the role of OPN in the retina remains unclear, this study issue was addressed by aiming to study how the absence of OPN in knock-out mice affects the retina and the influence of age on these effects. The study focused on retinal ganglion cells (RGCs) and glial cells (astrocytes, Müller cells, and resident microglia) in 3- and 20-month-old mice. The number of RGCs in the retina was quantified and the area occupied by astrocytes was measured. In addition, the morphology of Müller cells and microglia was examined in retinal sections. The deficiency in OPN reduces RGC density by 25.09% at 3 months of age and by 60.37% at 20 months of age. The astrocyte area was also reduced by 51.01% in 3-month-old mice and by 57.84% at 20 months of age, although Müller glia and microglia did not seem to be affected by the lack of OPN. This study demonstrates the influence of OPN on astrocytes and RGCs, whereby the absence of OPN in the retina diminishes the area occupied by astrocytes and produces a secondary reduction in the number of RGCs. Accordingly, OPN could be a target to develop therapies to combat neurodegenerative diseases and astrocytes may represent a key mediator of such effects.
Collapse
|
13
|
Riew TR, Kim HL, Jin X, Choi JH, Shin YJ, Kim JS, Lee MY. Spatiotemporal expression of osteopontin in the striatum of rats subjected to the mitochondrial toxin 3-nitropropionic acid correlates with microcalcification. Sci Rep 2017; 7:45173. [PMID: 28345671 PMCID: PMC5366947 DOI: 10.1038/srep45173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/20/2017] [Indexed: 11/18/2022] Open
Abstract
Our aim was to elucidate whether osteopontin (OPN) is involved in the onset of mineralisation and progression of extracellular calcification in striatal lesions due to mitochondrial toxin 3-nitropropionic acid exposure. OPN expression had two different patterns when observed using light microscopy. It was either localised to the Golgi complex in brain macrophages or had a small granular pattern scattered in the affected striatum. OPN labelling tended to increase in number and size over a 2-week period following the lesion. Ultrastructural investigations revealed that OPN is initially localised to degenerating mitochondria within distal dendrites, which were then progressively surrounded by profuse OPN on days 7–14. Electron probe microanalysis of OPN-positive and calcium-fixated neurites indicated that OPN accumulates selectively on the surfaces of degenerating calcifying dendrites, possibly via interactions between OPN and calcium. In addition, 3-dimensional reconstruction of OPN-positive neurites revealed that they are in direct contact with larger OPN-negative degenerating dendrites rather than with fragmented cell debris. Our overall results indicate that OPN expression is likely to correlate with the spatiotemporal progression of calcification in the affected striatum, and raise the possibility that OPN may play an important role in the initiation and progression of microcalcification in response to brain insults.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Heon Choi
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Soo Kim
- Gumi Electronics &Information Technology Research Institute, Gumi, Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
14
|
Riew TR, Shin YJ, Kim HL, Cho JM, Pak HJ, Lee MY. Spatiotemporal Progression of Microcalcification in the Hippocampal CA1 Region following Transient Forebrain Ischemia in Rats: An Ultrastructural Study. PLoS One 2016; 11:e0159229. [PMID: 27414398 PMCID: PMC4945069 DOI: 10.1371/journal.pone.0159229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Calcification in areas of neuronal degeneration is a common finding in several neuropathological disorders including ischemic insults. Here, we performed a detailed examination of the onset and spatiotemporal profile of calcification in the CA1 region of the hippocampus, where neuronal death has been observed after transient forebrain ischemia. Histopathological examinations showed very little alizarin red staining in the CA1 pyramidal cell layer until day 28 after reperfusion, while prominent alizarin red staining was detected in CA1 dendritic subfields, particularly in the stratum radiatum, by 14 days after reperfusion. Electron microscopy using the osmium/potassium dichromate method and electron probe microanalysis revealed selective calcium deposits within the mitochondria of degenerating dendrites at as early as 7 days after reperfusion, with subsequent complete mineralization occurring throughout the dendrites, which then coalesced to form larger mineral conglomerates with the adjacent calcifying neurites by 14 days after reperfusion. Large calcifying deposits were frequently observed at 28 days after reperfusion, when they were closely associated with or completely engulfed by astrocytes. In contrast, no prominent calcification was observed in the somata of CA1 pyramidal neurons showing the characteristic features of necrotic cell death after ischemia, although what appeared to be calcified mitochondria were noted in some degenerated neurons that became dark and condensed. Thus, our data indicate that intrahippocampal calcification after ischemic insults initially occurs within the mitochondria of degenerating dendrites, which leads to the extensive calcification that is associated with ischemic injuries. These findings suggest that in degenerating neurons, the calcified mitochondria in the dendrites, rather than in the somata, may serve as the nidus for further calcium precipitation in the ischemic hippocampus.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Korea, 137-701, Seoul, Korea
| | - Jeong Min Cho
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Ha-Jin Pak
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
- * E-mail:
| |
Collapse
|
15
|
Betsholtz C, Keller A. PDGF, pericytes and the pathogenesis of idiopathic basal ganglia calcification (IBGC). Brain Pathol 2015; 24:387-95. [PMID: 24946076 DOI: 10.1111/bpa.12158] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) are important mitogens for various types of mesenchymal cells, and as such, they exert critical functions during organogenesis in mammalian embryonic and early postnatal development. Increased or ectopic PDGF activity may also cause or contribute to diseases such as cancer and tissue fibrosis. Until recently, no loss-of-function (LOF) mutations in PDGF or PDGF receptor genes were reported as causally linked to a human disease. This changed in 2013 when reports appeared on presumed LOF mutations in the genes encoding PDGF-B and its receptor PDGF receptor-beta (PDGF-Rβ) in familial idiopathic basal ganglia calcification (IBGC), a brain disease characterized by anatomically localized calcifications in or near the blood microvessels. Here, we review PDGF-B and PDGF-Rβ biology with special reference to their functions in brain-blood vessel development, pericyte recruitment and the regulation of the blood-brain barrier. We also discuss various scenarios for IBGC pathogenesis suggested by observations in patients and genetically engineered animal models of the disease.
Collapse
Affiliation(s)
- Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
16
|
Nikodemova M, Small AL, Smith SMC, Mitchell GS, Watters JJ. Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats. Neurobiol Dis 2013; 69:43-53. [PMID: 24269728 DOI: 10.1016/j.nbd.2013.11.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/18/2013] [Accepted: 11/12/2013] [Indexed: 02/08/2023] Open
Abstract
Activation of microglia, CNS resident immune cells, is a pathological hallmark of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder affecting motor neurons. Despite evidence that microglia contribute to disease progression, the exact role of these cells in ALS pathology remains unknown. We immunomagnetically isolated microglia from different CNS regions of SOD1(G93A) rats at three different points in disease progression: presymptomatic, symptom onset and end-stage. We observed no differences in microglial number or phenotype in presymptomatic rats compared to wild-type controls. Although after disease onset there was no macrophage infiltration, there were significant increases in microglial numbers in the spinal cord, but not cortex. At disease end-stage, microglia were characterized by high expression of galectin-3, osteopontin and VEGF, and concomitant downregulated expression of TNFα, IL-6, BDNF and arginase-1. Flow cytometry revealed the presence of at least two phenotypically distinct microglial populations in the spinal cord. Immunohistochemistry showed that galectin-3/osteopontin positive microglia were restricted to the ventral horns of the spinal cord, regions with severe motor neuron degeneration. End-stage SOD1(G93A) microglia from the cortex, a less affected region, displayed similar gene expression profiles to microglia from wild-type rats, and displayed normal responses to systemic inflammation induced by LPS. On the other hand, end-stage SOD1(G93A) spinal microglia had blunted responses to systemic LPS suggesting that in addition to their phenotypic changes, they may also be functionally impaired. Thus, after disease onset, microglia acquired unique characteristics that do not conform to typical M1 (inflammatory) or M2 (anti-inflammatory) phenotypes. This transformation was observed only in the most affected CNS regions, suggesting that overexpression of mutated hSOD1 is not sufficient to trigger these changes in microglia. These novel observations suggest that microglial regional and phenotypic heterogeneity may be an important consideration when designing new therapeutic strategies targeting microglia and neuroinflammation in ALS.
Collapse
Affiliation(s)
- Maria Nikodemova
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Alissa L Small
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Stephanie M C Smith
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Gordon S Mitchell
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
17
|
Lemos RR, Ferreira J, Keasey MP, Oliveira JR. An Update on Primary Familial Brain Calcification. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 110:349-71. [DOI: 10.1016/b978-0-12-410502-7.00015-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Park JM, Shin YJ, Kim HL, Cho JM, Lee MY. Sustained expression of osteopontin is closely associated with calcium deposits in the rat hippocampus after transient forebrain ischemia. J Histochem Cytochem 2012; 60:550-9. [PMID: 22496158 DOI: 10.1369/0022155412441707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was designed to evaluate the extent and topography of osteopontin (OPN) protein expression in the rat hippocampus 4 to 12 weeks following transient forebrain ischemia, and to compare OPN expression patterns with those of calcium deposits and astroglial and microglial reactions. Two patterns of OPN staining were recognized by light microscopy: 1) a diffuse pattern of tiny granular deposits throughout the CA1 region at 4 weeks after ischemia and 2) non-diffuse ovoid to round deposits, which formed conglomerates in the CA1 pyramidal cell layer over the chronic interval of 8 to 12 weeks. Immunogold-silver electron microscopy and electron probe microanalysis demonstrated that OPN deposits were indeed diverse types of calcium deposits, which were clearly delineated by profuse silver grains indicative of OPN expression. Intracellular OPN deposits were frequently observed within reactive astrocytes and neurons 4 weeks after ischemia but rarely at later times. By contrast, extracellular OPN deposits progressively increased in size and appeared to be gradually phagocytized by microglia or brain macrophages and some astrocytes over 8 to 12 weeks. These data indicate an interaction between OPN and calcium in the hippocampus in the chronic period after ischemia, suggesting that OPN binding to calcium deposits may be involved in scavenging mechanisms.
Collapse
Affiliation(s)
- Jang-Mi Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
19
|
Shin YJ, Kim HL, Park JM, Cho JM, Kim CY, Choi KJ, Kweon HS, Cha JH, Lee MY. Overlapping distribution of osteopontin and calcium in the ischemic core of rat brain after transient focal ischemia. J Neurotrauma 2012; 29:1530-8. [PMID: 22087764 DOI: 10.1089/neu.2011.2078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Osteopontin (OPN), an adhesive glycoprotein, has recently been proposed to act as an opsonin that facilitates phagocytosis of neuronal debris by macrophages in the ischemic brain. The present study was designed to elucidate the process whereby OPN binds to neuronal cell debris in a rat model of ischemic stroke. Significant co-localization of the OPN protein and calcium deposits in the ischemic core were observed by combining alizarin red staining and OPN immunohistochemistry. In addition, electron microscopy (EM) using the osmium/potassium dichromate method revealed that electron-dense precipitates, typical of calcium deposits, were localized mainly along the periphery of putative degenerating neurites. This topical pattern of calcium precipitates resembled the distribution of OPN as detected by immunogold-silver EM. Combining immunogold-silver EM and electron probe microanalysis further demonstrated that the OPN protein was localized at the periphery of cell debris or degenerating neurites, corresponding with locally higher concentrations of calcium and phosphorus, and that the relative magnitude of OPN accumulation was comparable to that of calcium and phosphorus. These data suggest that calcium precipitation provides a matrix for the binding of the OPN protein within the debris or degenerating neurites induced by ischemic injury. Therefore, OPN binding to calcium deposits may be involved in phagocytosis of such debris, and may participate in the regulation of ectopic calcification in the ischemic brain.
Collapse
Affiliation(s)
- Yoo-Jin Shin
- Department of Anatomy, Integrative Research Support Center, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shimada A, Hasegawa-Ishii S. Senescence-accelerated Mice (SAMs) as a Model for Brain Aging and Immunosenescence. Aging Dis 2011; 2:414-435. [PMID: 22396891 PMCID: PMC3295080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/20/2011] [Accepted: 07/20/2011] [Indexed: 05/31/2023] Open
Abstract
The Senescence-Accelerated Mouse (SAM) represents a group of inbred mouse strains developed as a model for the study of human aging and age-related diseases. Senescence-prone (SAMP) strains exhibit an early onset of age-related decline in the peripheral immunity such as thymic involution, loss of CD4(+) T cells, impaired helper T cell function, decreased antibody-forming capacity, dysfunction of antigen-presenting cells, decreased natural killer activity, increased auto-antibodies, and susceptibility to virus infection. Senescence-prone SAMP10 mice undergo age-related changes in the brain such as brain atrophy, shrinkage and loss of cortical neurons, retraction of cortical neuronal dendrites, loss of dendritic spines, loss of synapses, impaired learning and memory, depressive behavior, accumulation of neuronal DNA damage, neuronal ubiquitinated inclusions, reduced hippocampal cholinergic receptors, decreased neurotrophic factors, decreased hippocampal zinc and zinc transporters, increased sphyngomyelinase, and elevated oxidative-nitrative stress. Recent data indicating increased pro-inflammatory cytokines in the brain of SAMP10 mice are directing investigators toward an integration of immune and neural abnormalities to enhance understanding of the principles of brain aging. We highlight how mouse brain cells adopt cytokine-mediated responses and how SAMP10 mice are defective in these responses. SAMP10 model would be useful to study how age-related disturbances in peripheral immunity have an impact on dysregulation of brain tissue homeostasis, resulting in age-related neurodegeneration.
Collapse
Affiliation(s)
- Atsuyoshi Shimada
- Correspondence should be addressed to: Dr. Atsuyoshi Shimada, Department of Pathology, Institute for Developmental Research, Kasugai, Aichi 480-0392, Japan.
| | | |
Collapse
|