1
|
Köhler I, Bivik Eding C, Kasic NK, Verma D, Enerbäck C. NOS2-derived low levels of NO drive psoriasis pathogenesis. Cell Death Dis 2024; 15:449. [PMID: 38926337 PMCID: PMC11208585 DOI: 10.1038/s41419-024-06842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Psoriasis is an IL-23/Th17-mediated skin disorder with a strong genetic predisposition. The impact of its susceptibility gene nitric oxide synthase 2 (NOS2) remains unknown. Here, we demonstrate strong NOS2 mRNA expression in psoriatic epidermis, an effect that is IL-17 dependent. However, its complete translation to protein is prevented by the IL-17-induced miR-31 implying marginally upregulated NO levels in psoriatic skin. We demonstrate that lower levels of NO, as opposed to higher levels, increase keratinocyte proliferation and mediate IL-17 downstream effects. We hypothesized that the psoriatic phenotype may be alleviated by either eliminating or increasing cellular NO levels. In fact, using the imiquimod psoriasis mouse model, we found a profound impact on the psoriatic inflammation in both IMQ-treated NOS2 KO mice and wild-type mice treated with IMQ and the NO-releasing berdazimer gel. In conclusion, we demonstrate that IL-17 induces NOS2 and fine-tunes its translation towards a window of proinflammatory and hyperproliferative effects and identify NO donor therapy as a new treatment modality for psoriasis.
Collapse
Affiliation(s)
- Ines Köhler
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Bivik Eding
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nada-Katarina Kasic
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Deepti Verma
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Enerbäck
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Yang Y, Yang R, Deng F, Yang L, Yang G, Liu Y, Tian Q, Wang Z, Li A, Shang L, Cheng G, Zhang L. Immunoactivation by Cutaneous Blue Light Irradiation Inhibits Remote Tumor Growth and Metastasis. ACS Pharmacol Transl Sci 2024; 7:1055-1068. [PMID: 38633599 PMCID: PMC11019738 DOI: 10.1021/acsptsci.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
An improved innate immunity will respond quickly to pathogens and initiate efficient adaptive immune responses. However, up to now, there have been limited clinical ways for effective and rapid consolidation of innate immunity. Here, we report that cutaneous irradiation with blue light of 450 nm rapidly stimulates the innate immunity through cell endogenous reactive oxygen species (ROS) regulation in a noninvasive way. The iron porphyrin-containing proteins, mitochondrial cytochrome c (Cyt-c), and cytochrome p450 (CYP450) can be mobilized by blue light, which boosts electron transport and ROS production in epidermal and dermal tissues. As a messenger of innate immune activation, the increased level of ROS activates the NF-κB signaling pathway and promotes the secretion of immunomodulatory cytokines in skin. Initiated from skin, a regulatory network composed of cytokines and immune cells is established through the circulation system for innate immune activation. The innate immunity activated by whole-body blue light irradiation inhibits tumor growth and metastasis by increasing the infiltration of antitumor neutrophils and tumor-associated macrophages. Our results elucidate the remote immune modulation mechanism of blue light and provide a clinically applicable way for innate immunity activation.
Collapse
Affiliation(s)
- Yingchun Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fangqing Deng
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Luqiu Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guanghao Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanyan Liu
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qing Tian
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zixi Wang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Aipeng Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Shang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Genyang Cheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lianbing Zhang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Ene CD, Tampa M, Georgescu SR, Matei C, Leulescu IMT, Dogaru CI, Penescu MN, Nicolae I. Disturbances in Nitric Oxide Cycle and Related Molecular Pathways in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2023; 15:5797. [PMID: 38136342 PMCID: PMC10741465 DOI: 10.3390/cancers15245797] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
It is important to note that maintaining adequate levels of nitric oxide (NO), the turnover, and the oxidation level of nitrogen are essential for the optimal progression of cellular processes, and alterations in the NO cycle indicate a crucial step in the onset and progression of multiple diseases. Cellular accumulation of NO and reactive nitrogen species in many types of tumour cells is expressed by an increased susceptibility to oxidative stress in the tumour microenvironment. Clear cell renal cell carcinoma (ccRCC) is a progressive metabolic disease in which tumour cells can adapt to metabolic reprogramming to enhance NO production in the tumour space. Understanding the factors governing NO biosynthesis metabolites in ccRCC represents a relevant, valuable approach to studying NO-based anticancer therapy. Exploring the molecular processes mediated by NO, related disturbances in molecular pathways, and NO-mediated signalling pathways in ccRCC could have significant therapeutic implications in managing and treating this condition.
Collapse
Affiliation(s)
- Corina Daniela Ene
- Department of Nephrology, Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania; (C.D.E.); (M.N.P.)
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania; (I.M.T.L.); (C.I.D.); (I.N.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania; (I.M.T.L.); (C.I.D.); (I.N.)
| | - Clara Matei
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Iulia Maria Teodora Leulescu
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania; (I.M.T.L.); (C.I.D.); (I.N.)
| | - Claudia Ioana Dogaru
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania; (I.M.T.L.); (C.I.D.); (I.N.)
| | - Mircea Nicolae Penescu
- Department of Nephrology, Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania; (C.D.E.); (M.N.P.)
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ilinca Nicolae
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania; (I.M.T.L.); (C.I.D.); (I.N.)
| |
Collapse
|
4
|
Zisman D, Safieh M, Simanovich E, Feld J, Kinarty A, Zisman L, Gazitt T, Haddad A, Elias M, Rosner I, Kaly L, Rahat MA. Tocilizumab (TCZ) Decreases Angiogenesis in Rheumatoid Arthritis Through Its Regulatory Effect on miR-146a-5p and EMMPRIN/CD147. Front Immunol 2021; 12:739592. [PMID: 34975837 PMCID: PMC8714881 DOI: 10.3389/fimmu.2021.739592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/29/2021] [Indexed: 01/25/2023] Open
Abstract
Background Angiogenesis is a major contributor to the development of inflammation during Rheumatoid arthritis (RA), as the vascularization of the pannus provides nutrients and oxygen for the infiltrating immune cells and proliferating synoviocytes. Tocilizumab (TCZ) is an anti-IL-6 receptor antibody that is used in the treatment of RA patients, and has been shown to exert anti-inflammatory effects. However, its effects on angiogenesis are not fully elucidated, and the molecular mechanisms regulating this effect are unknown. Methods We evaluated the concentrations of several pro- and anti-angiogenic factors and the expression levels of several microRNA molecules that are associated with RA and angiogenesis in serum samples obtained from 40 RA patients, before and 4 months after the initiation of TCZ treatment. Additionally, we used an in vitro co-culture system of fibroblasts (the HT1080 cell line) and monocytes (the U937 cell line) to explore the mechanisms of TCZ action. Results Serum samples from RA patients treated with TCZ exhibited reduced circulating levels of EMMPRIN/CD147, enhanced expression of circulating miR-146a-5p and miR-150-5p, and reduced the angiogenic potential as was manifested by the lower number of tube-like structures that were formed by EaHy926 endothelial cell line. In vitro, the accumulation in the supernatants of the pro-angiogenic factors EMMPRIN, VEGF and MMP-9 was increased by co-culturing the HT1080 fibroblasts and the U937 monocytes, while the accumulation of the anti-angiogenic factor thrombospondin-1 (Tsp-1) and the expression levels of miR-146a-5p were reduced. Transfection of HT1080 cells with the miR-146a-5p mimic, decreased the accumulation of EMMPRIN, VEGF and MMP-9. When we neutralized EMMPRIN with a blocking antibody, the supernatants derived from these co-cultures displayed reduced migration, proliferation and tube formation in the functional assays. Conclusions Our findings implicate miR-146a-5p in the regulation of EMMPRIN and propose that TCZ affects angiogenesis through its effects on EMMPRIN and miR-146a-5p.
Collapse
Affiliation(s)
- Devy Zisman
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Mirna Safieh
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | | | - Joy Feld
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Amalia Kinarty
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Liron Zisman
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Tal Gazitt
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Amir Haddad
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Muna Elias
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Itzhak Rosner
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Rheumatology Unit, Bnei Zion Medical Center, Haifa, Israel
| | - Lisa Kaly
- Rheumatology Unit, Bnei Zion Medical Center, Haifa, Israel
| | - Michal A. Rahat
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| |
Collapse
|
5
|
Moradi Z, Rabiei Z, Anjomshoa M, Amini-Farsani Z, Massahzadeh V, Asgharzade S. Neuroprotective effect of wild lowbush blueberry (Vaccinium angustifolium) on global cerebral ischemia/reperfusion injury in rats: Downregulation of iNOS/TNF-α and upregulation of miR-146a/miR-21 expression. Phytother Res 2021; 35:6428-6440. [PMID: 34580912 DOI: 10.1002/ptr.7296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 11/08/2022]
Abstract
This study aims to investigate the neuroprotective effect of wild lowbush blueberry on CIRI in rats. Accordingly, CIRI and reperfusion were induced in rats for 60 min and 24 h, respectively. Then, the mechanisms of the neuroprotective effects of BBE were investigated in the injury through evaluating miR-146a, miR-21, and their targets in a CIRI rat model. After that, the BBE (30, 60, and 120 mg/kg b.wt) was intraperitoneally injected for 14 days, then CIRI was induced by BCCAO for 60 min for ischemic stroke and reperfusion for 24 h. Several parameters including the oxidative stress levels in the hippocampus and serum were measured 24 h after the CIRI. The findings showed that the BBE significantly decreased the levels of malondialdehyde (MDA) and nitric oxide (NO) and increased ferric ion reducing antioxidant power (FRAP) levels in the hippocampus and serum following the stroke. The BBE also maximized the miR-146a and miR-21 expressions and moderated iNOS and TNF-α expressions in the hippocampus. Likewise, the BBE enlarged the CA1 and CA3 domains of the post-stroke pyramidal cell layers of the hippocampus. Overall, the results revealed that BBE had potent neuroprotective efficacy against CIRI via the effective modulation of neuroinflammatory cascades and protected neurons against ischemic death.
Collapse
Affiliation(s)
- Zahra Moradi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Rabiei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoa
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zeinab Amini-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahid Massahzadeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Hijaze N, Ledersnaider M, Simanovich E, Kassem S, Rahat MA. Inducing regulated necrosis and shifting macrophage polarization with anti-EMMPRIN antibody (161-pAb) and complement factors. J Leukoc Biol 2021; 110:343-356. [PMID: 33205451 PMCID: PMC8359428 DOI: 10.1002/jlb.3a0520-333r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/02/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment of solid tumors is often hindered by an immunosuppressive tumor microenvironment (TME) that prevents effector immune cells from eradicating tumor cells and promotes tumor progression, angiogenesis, and metastasis. Therefore, targeting components of the TME to restore the ability of immune cells to drive anti-tumoral responses has become an important goal. One option is to induce an immunogenic cell death (ICD) of tumor cells that would trigger an adaptive anti-tumoral immune response. Here we show that incubating mouse renal cell carcinoma (RENCA) and colon carcinoma cell lines with an anti-extracellular matrix metalloproteinase inducer polyclonal antibody (161-pAb) together with complement factors can induce cell death that inhibits caspase-8 activity and enhances the phosphorylation of receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase-like domain (MLKL). This regulated necrotic death releases high levels of dsRNA molecules to the conditioned medium (CM) relative to the necrotic death of tumor cells induced by H2 O2 or the apoptotic death induced by etoposide. RAW 264.7 macrophages incubated with the CM derived from these dying cells markedly enhanced the secretion of IFNβ, and enhanced their cytotoxicity. Furthermore, degradation of the dsRNA in the CM abolished the ability of RAW 264.7 macrophages to secrete IFNβ, IFNγ-induced protein 10 (IP-10), and TRAIL. When mice bearing RENCA tumors were immunized with the 161-pAb, their lysates displayed elevated levels of phosphorylated RIPK3 and MLKL, as well as increased concentrations of dsRNA, IFNβ, IP-10, and TRAIL. This shows that an antigen-targeted therapy using an antibody and complement factors that triggers ICD can shift the mode of macrophage activation by triggering regulated necrotic death of tumor cells.
Collapse
Affiliation(s)
- Nizar Hijaze
- Department of Internal Medicine ACarmel Medical CenterHaifaIsrael
| | | | | | - Sameer Kassem
- Department of Internal Medicine ACarmel Medical CenterHaifaIsrael
- Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Michal A. Rahat
- Immunotherapy LaboratoryCarmel Medical CenterHaifaIsrael
- Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
7
|
Du T, Han J. Arginine Metabolism and Its Potential in Treatment of Colorectal Cancer. Front Cell Dev Biol 2021; 9:658861. [PMID: 34095122 PMCID: PMC8172978 DOI: 10.3389/fcell.2021.658861] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is the leading cause of death from cancer globally. The current treatment protocol still heavily relies on early detection and surgery. The molecular mechanisms underlying development of colorectal cancer are clinically important and determine the prognosis and treatment response. The arginine metabolism pathway is hyperactive in colorectal cancer and several molecules involved in the pathway are potential targets for chemoprevention and targeted colorectal cancer therapy. Endothelial nitric oxide synthase (eNOS), argininosuccinate synthetase and ornithine decarboxylase (ODC) are the main enzymes for arginine metabolism. Limiting arginine-rich meat consumption and inhibiting ODC activity largely reduces polyamine synthesis and the incidence of colorectal cancer. Arginine transporter CAT-1 and Human member 14 of the solute carrier family 6 (SLC6A14) are overexpressed in colorectal cancer cells and contributes to intracellular arginine levels. Human member 9 of the solute carrier family 38 (SLC38A9) serves as a component of the lysosomal arginine-sensing machinery. Pharmaceutical inhibition of single enzyme or arginine transporter is hard to meet requirement of restoring of abnormal arginine metabolic network. Apart from application in early screening for colorectal cancer, microRNA-based therapeutic strategy that simultaneously manipulating multiple targets involved in arginine metabolism brings promising future in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tao Du
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| | - Junyi Han
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| |
Collapse
|
8
|
Mintz J, Vedenko A, Rosete O, Shah K, Goldstein G, Hare JM, Ramasamy R, Arora H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines (Basel) 2021; 9:94. [PMID: 33513777 PMCID: PMC7912608 DOI: 10.3390/vaccines9020094] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumorigenic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the level of production, the oxidative/reductive (redox) environment in which this radical is generated, the presence or absence of NO transduction elements, and the tumor microenvironment. Generally, there are four major categories of NO-based anticancer therapies: NO donors, phosphodiesterase inhibitors (PDE-i), soluble guanylyl cyclase (sGC) activators, and immunomodulators. Of these, NO donors are well studied, well characterized, and also the most promising. In this study, we review the current knowledge in this area, with an emphasis placed on the role of NO as an anticancer therapy and dysregulated molecular interactions during the evolution of cancer, highlighting the strategies that may aid in the targeting of cancer.
Collapse
Affiliation(s)
- Joel Mintz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Anastasia Vedenko
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
| | - Omar Rosete
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Khushi Shah
- College of Arts and Sciences, University of Miami, Miami, FL 33146, USA;
| | - Gabriella Goldstein
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Joshua M. Hare
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Himanshu Arora
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
9
|
Dang CP, Leelahavanichkul A. Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis. PLoS One 2020; 15:e0236038. [PMID: 32658933 PMCID: PMC7357756 DOI: 10.1371/journal.pone.0236038] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/27/2020] [Indexed: 12/31/2022] Open
Abstract
The attenuation of hyper-inflammation in sepsis with the administration of anti-inflammatory macrophages is an interesting adjuvant therapy for sepsis. Because the induction of anti-inflammatory macrophages by microRNA (miR), a regulator of mRNA, has been mentioned, the exploration on miR-induced anti-inflammatory macrophages was performed. The over-expression of miR-223 and miR-146a in RAW264.7 induced M2 macrophage-polarization (anti-inflammatory macrophages) as evaluated by the enhanced expression of Arginase-1 and Fizz. However, miR-223 over-expressed cells demonstrated the more potent anti-inflammatory property against LPS stimulation as lesser iNOS expression, lower supernatant IL-6 and higher supernatant IL-10 compared with miR-146a over-expressed cells. Interestingly, LPS stimulation in miR-223 over-expressed cells, compared with LPS-stimulated control cells, demonstrated lower activity of glycolysis pathway and higher mitochondrial respiration, as evaluated by the extracellular flux analysis, and also down-regulated HIF-1α, an important enzyme of glycolysis pathway. In addition, the administration of miR-223 over-expressed macrophages with IL-4 pre-conditioning, but not IL-4 stimulated control cells, attenuated sepsis severity in LPS injected mice as evaluated by serum creatinine, liver enzymes, lung histology and serum cytokines. In conclusion, miR-223 interfered with the glycolysis pathway through the down-regulation of HIF-1α, resulting in the anti-inflammatory status. The over-expression of miR-223 in macrophages prevented the conversion into M1 macrophage polarization after LPS stimulation. The administration of miR-223 over-expressed macrophages, with IL-4 preconditioning, attenuated sepsis severity in LPS model. Hence, a proof of concept in the induction of anti-inflammatory macrophages through the cell-energy interference for sepsis treatment was proposed as a basis of cell-based therapy in sepsis.
Collapse
Affiliation(s)
- Cong Phi Dang
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
10
|
Stevenson M, Nath Banerjee H, Banerjee N, Rawat K, Chen L, Worthington M, Hodge S, Walker R, Verma M, Sarkar F, Mandal S. A health disparities study of MicroRNA-146a expression in prostate cancer samples derived from African American and European American patients. ACTA ACUST UNITED AC 2020; 10. [PMID: 32968471 DOI: 10.5430/jst.v10n2p1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considering the prevalence of prostate cancer all over the world, it is desired to have tools, technologies, and biomarkers which help in early detection of the disease and discriminate different races and ethnic groups. Genetic information from the single gene analysis and genome-wide association studies have identified few biomarkers, however, the drivers of prostate cancer remain unknown in the majority of prostate cancer patients. In those cases where genetic association has been identified, the genes confer only a modest risk of this cancer, hence, making them less relevant for risk counseling and disease management. There is a need for additional biomarkers for diagnosis and prognosis of prostate cancer. MicroRNAs are a class of non-protein coding RNA molecules that are frequently dysregulated in different cancers including prostate cancer and show promise as diagnostic biomarkers and targets for therapy. Here we describe the role of micro RNA 146a (miR-146a) which may serve as a diagnostic and prognostic marker for prostate cancer, as indicated from the data presented in this report. Also, a pilot study indicated differential expression of miR-146a in prostate cancer cell lines and tissues from different racial groups. Reduced expression of miR-146a was observed in African American tumor tissues compared to those from European Whites This report provides a novel insight into understanding the prostate carcinogenesis.
Collapse
Affiliation(s)
- Monet Stevenson
- Department of Natural,Pharmacy and Health, Elizabeth City State University/University of North Carolina, Elizabeth, United States
| | - Hirendra Nath Banerjee
- Department of Natural,Pharmacy and Health, Elizabeth City State University/University of North Carolina, Elizabeth, United States
| | - Narendra Banerjee
- Department of Natural,Pharmacy and Health, Elizabeth City State University/University of North Carolina, Elizabeth, United States
| | - Kuldeep Rawat
- Department of Natural,Pharmacy and Health, Elizabeth City State University/University of North Carolina, Elizabeth, United States
| | - Lin Chen
- Department of Natural,Pharmacy and Health, Elizabeth City State University/University of North Carolina, Elizabeth, United States
| | - Myla Worthington
- Department of Natural,Pharmacy and Health, Elizabeth City State University/University of North Carolina, Elizabeth, United States
| | - Sasha Hodge
- Department of Natural,Pharmacy and Health, Elizabeth City State University/University of North Carolina, Elizabeth, United States
| | - Rayshawn Walker
- Department of Natural,Pharmacy and Health, Elizabeth City State University/University of North Carolina, Elizabeth, United States
| | - Mukesh Verma
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Suite 4E102, 9609 Medical Center Drive, Bethesda, United States
| | - Fazlul Sarkar
- Department of Pathology, Wayne State University and Barbara Karmanos Cancer Center, Detroit, United States
| | - Santosh Mandal
- Department of Chemistry, Morgan State University, Baltimore, United States
| |
Collapse
|
11
|
Anticancer Activity of Liquid Treated with Microwave Plasma-Generated Gas through Macrophage Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2946820. [PMID: 32089766 PMCID: PMC7013299 DOI: 10.1155/2020/2946820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Abstract
Reactive nitrogen species (RNS), including nitric oxide (NO·) has been known as one of the key regulatory molecules in the immune system. In this study, we generated RNS-containing water treated with microwave plasma-generated gas in which the major component was nitric oxide (PGNO), and the effect on the macrophage polarization was investigated. The RNS-containing water was diluted in complete cell culture media (PGNO-solution) into the concentration that did not induce cell death in RAW 264.7 murine macrophages. PGNO-solution upregulates M1-type macrophage activation and downregulates the characteristics of M2-type macrophage at the transcriptional level. In addition, the PGNO-solution-treated M2-like macrophages had higher potential in killing melanoma cells. The anticancer potential was also investigated in a syngeneic mouse model. Our results show that PGNO-solution has the potential to convert the fate of macrophages, suggesting PGNO-solution treatment as a supportive method for controlling the function of macrophages under the tumor microenvironment.
Collapse
|
12
|
Shan S, Fang B, Zhang Y, Wang C, Zhou J, Niu C, Gao Y, Zhao D, He J, Wang J, Zhang X, Li Q. Mechanical stretch promotes tumoricidal M1 polarization via the FAK/NF-κB signaling pathway. FASEB J 2019; 33:13254-13266. [PMID: 31539281 DOI: 10.1096/fj.201900799rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages (Mφs) can be used as a part of cell-based cancer immunotherapy. However, they may be hampered by a failure to effectively and stably regulate their polarization state to enhance their tumoricidal effects. In this work, mechanical stretch (MS), as a biology-free modulatory method, was shown to enhance M1 polarization and tumoricidal effects. By using an in vitro Flexcell Tension system, we found that murine Mφ RAW264.7 cells showed higher M1 polarization-related mRNA expression and cytokine release after MS. Further molecular analyses found that focal adhesion kinase and NF-κB activation occurred in the MS-induced M1 polarization. Coculture of MS-preconditioned Mφ with B16F10 skin melanoma cells in vitro showed that the proliferation of B16F10 cells decreased, whereas caspase-3-induced apoptosis increased. Importantly, the injection of MS-preconditioned Mφ into murine skin melanomas in vivo impeded tumor growth; lesions were characterized by increased amounts of M1 Mφ, decreased tumor cell proliferation, and increased tumor cell apoptosis in the tumor microenvironment. Together, our results suggest that MS could be used as a simple preconditioning approach to prepare tumoricidal M1 Mφ for cancer immunotherapy.-Shan, S., Fang, B., Zhang, Y., Wang, C., Zhou, J., Niu, C., Gao, Y., Zhao, D., He, J., Wang, J., Zhang, X., Li, Q. Mechanical stretch promotes tumoricidal M1 polarization via the FAK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Gather F, Schmitz K, Koch K, Vogt LM, Pautz A, Kleinert H. Regulation of human inducible nitric oxide synthase expression by an upstream open reading frame. Nitric Oxide 2019; 88:50-60. [PMID: 31004763 DOI: 10.1016/j.niox.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
The human inducible nitric oxide synthase (iNOS) gene contains an upstream open reading frame (uORF) in its 5'-untranslated region (5'-UTR) implying a translational regulation of iNOS expression. Transfection experiments in human DLD-1 cells revealed that the uORF although translatable seems not to inhibit the translation start at the bona fide ATG. Our data clearly show that human iNOS translation is cap-dependent and that the 5'-UTR of the iNOS mRNA contains no internal ribosome entry site. Translation of the bona fide coding sequence is most likely mediated by a leaky scanning mechanism. The 5'-UTR is encoded by exon 1 and exon 2 of the iNOS gene with the uORF stop codon located in front of the first intron indicating an involvement of the nonsense mediated RNA decay (NMD) in iNOS regulation. SiRNA-mediated down-regulation of Upf1 resulted in enhanced endogenous cytokine iNOS expression in human DLD-1 cells. Transfection of constructs containing iNOS exon 1, intron 1 and exon 2 in front of a luciferase gene showed a clear effect of the mutation of the uORF-ATG on luciferase reportergene expression. Our data indicate that the uORF in the 5'-UTR sequence of human iNOS gene reduces its expression via the NMD mechanism.
Collapse
Affiliation(s)
- Fabian Gather
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Katja Schmitz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Kathrin Koch
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Lea-Marie Vogt
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany.
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany.
| |
Collapse
|
14
|
Taenia crassiceps-Excreted/Secreted Products Induce a Defined MicroRNA Profile that Modulates Inflammatory Properties of Macrophages. J Immunol Res 2019; 2019:2946713. [PMID: 31218234 PMCID: PMC6536978 DOI: 10.1155/2019/2946713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Helminth parasites modulate immune responses in their host to prevent their elimination and to establish chronic infections. Our previous studies indicate that Taenia crassiceps-excreted/secreted antigens (TcES) downregulate inflammatory responses in rodent models of autoimmune diseases, by promoting the generation of alternatively activated-like macrophages (M2) in vivo. However, the molecular mechanisms triggered by TcES that modulate macrophage polarization and inflammatory response remain unclear. Here, we found that, while TcES reduced the production of inflammatory cytokines (IL-6, IL-12, and TNFα), they increased the release of IL-10 in LPS-induced bone marrow-derived macrophages (BMDM). However, TcES alone or in combination with LPS or IL-4 failed to increase the production of the canonical M1 or M2 markers in BMDM. To further define the anti-inflammatory effect of TcES in the response of LPS-stimulated macrophages, we performed transcriptomic array analyses of mRNA and microRNA to evaluate their levels. Although the addition of TcES to LPS-stimulated BMDM induced modest changes in the inflammatory mRNA profile, it induced the production of mRNAs associated with the activation of different receptors, phagocytosis, and M2-like phenotype. Moreover, we found that TcES induced upregulation of specific microRNAs, including miR-125a-5p, miR-762, and miR-484, which are predicted to target canonical inflammatory molecules and pathways in LPS-induced BMDM. These results suggest that TcES can modulate proinflammatory responses in macrophages by inducing regulatory posttranscriptional mechanisms and hence reduce detrimental outcomes in hosts running with inflammatory diseases.
Collapse
|
15
|
Miao LJ, Yan S, Zhuang QF, Mao QY, Xue D, He XZ, Chen JP. miR-106b promotes proliferation and invasion by targeting Capicua through MAPK signaling in renal carcinoma cancer. Onco Targets Ther 2019; 12:3595-3607. [PMID: 31190862 PMCID: PMC6525582 DOI: 10.2147/ott.s184674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Background: miR-106b has been reported to play a vital role in pathogenesis of some types of cancer, whilst the role of miR-106b in renal carcinoma cancer (RCC) remains unknown. Purpose: The objective of this study was to identify the mechanism of miR-106b regulating the progression of renal carcinoma. Method: The expression of miR-106b was analyzed in RCC cell lines, RCC and adjacent normal renal tissues through qRT-PCR assays. Target mRNA of miR-106b was predicted with databases and verified by luciferase reporter assays. And the effects of miR-106b or targeted mRNA on cell proliferation, invasion, the process of epithelial-mesenchymal transitions (EMTs) were assessed in vitrothrough CCK-8, transwell cell invasion assays, qRT-PCR and Western blotting assays respectively. In addition, the effects of miR-106b on the growth of xenografts mice were analyzedin vivo. Results: The results demonstrated that miR-106b was significantly increased both in RCC tissues and cell lines. Luciferase reporter assays revealed that miR-106b inhibited Capicua expression by targeting its 3'-UTR sequence. And miR-106b promoted cell proliferation, invasion, EMT progression in RCC cellin vitro, as well as promoted the tumor growth of 786-O cells derived xenografts mice. Additionally, loss of Capicua promoted the activation of MAPK signaling pathway. Conclusion: The study suggested that miR-106b regulated RCC progression through MAPK signaling pathway partly by targeting Capicua, which might provide valuable evidence for therapeutic target development of RCC.
Collapse
Affiliation(s)
- Lu-Jie Miao
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Shu Yan
- Department of General Practice, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Qian-Feng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Qing-Yan Mao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Xiao-Zhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Jian-Ping Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| |
Collapse
|
16
|
Miliani M, Nouar M, Paris O, Lefranc G, Mennechet F, Aribi M. Thymoquinone Potently Enhances the Activities of Classically Activated Macrophages Pulsed with Necrotic Jurkat Cell Lysates and the Production of Antitumor Th1-/M1-Related Cytokines. J Interferon Cytokine Res 2018; 38:539-551. [PMID: 30422744 DOI: 10.1089/jir.2018.0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antitumor activity of classically activated macrophage (Mϕ) may be impaired within the tumors, spleen, and bone marrow. Thus, it is possible to boost its antitumor activity after its pulsing with necrotic tumor cell lysates combined with an adjuvant. We set out to determine the potential adjuvant effects of thymoquinone (TQ; 2-isopropyl-5-methyl-1,4-benzoquinone, C10H12O2) on both functional activities of classically activated Mϕs, pulsed or not with necrotic Jurkat T cell line lysates (NecrJCL), and the balance of antitumor cytokines (ATCs) versus immunosuppressive cytokines (ISCs) during crosstalk with autologous human CD4+ T cells. We found that TQ treatment resulted in a significant upregulation of phagocytic activity, respiratory burst, the production of interleukin-2 (IL-2), IL-6, and IL-17 in NecrJCL-pulsed Mϕ co-culture system, and, conversely, in downregulation of the production of IL-6, IL-17, nitric oxide (NO), and arginase activity in nonpulsed TQ-treated Mϕs co-culture system. In addition, TQ has also shown low upregulation effect on the production of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-1β, pathogen killing capacity and H2O2 in NecrJCL-pulsed Mϕs co-cultures. Moreover, TQ significantly downregulated arginase activity, and significantly upregulated inducible NO synthase (iNOS) activity-to-arginase activity ratio in NecrJCL-pulsed Mϕ co-cultures. Furthermore, TQ downregulated IL-10-to-IL-17 ratio and total cellular cholesterol content (ttcCHOL), but upregulated the ratios of IL-1β-to-IL-4, IL-1β-to-IL-10, IFN-γ-to-IL-4, IFN-γ-to-IL-10, TNF-α-to-IL-4, TNF-α-to-IL-10, and combined proinflammatory cytokines (PICs)-to-anti-inflammatory cytokines (AICs) in NecrJCL-pulsed Mϕs co-culture system, whereas significant differences were highlighted only for IL-10-to-IL-17, IFN-γ-to-IL-10, and PICs-to-AICs ratios. Our outcomes demonstrated that TQ can act as potent adjuvant for enhancing both the functional activities of NecrJCL-pulsed Mϕ and the production of ATCs during their interplay with CD4+ T cells.
Collapse
Affiliation(s)
- Maroua Miliani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Mouna Nouar
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Océane Paris
- Institut de Génétique Moléculaire de Montpellier (IGMM)-UMR5535, CNRS et Université de Montpellier, Montpellier, France
| | - Gérard Lefranc
- Institut de Génétique Humaine, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - Franck Mennechet
- Institut de Génétique Moléculaire de Montpellier (IGMM)-UMR5535, CNRS et Université de Montpellier, Montpellier, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
17
|
MicroRNA-146a protects against LPS-induced organ damage by inhibiting Notch1 in macrophage. Int Immunopharmacol 2018; 63:220-226. [DOI: 10.1016/j.intimp.2018.07.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
|
18
|
MicroRNAs and histone deacetylase inhibition-mediated protection against inflammatory β-cell damage. PLoS One 2018; 13:e0203713. [PMID: 30260972 PMCID: PMC6160007 DOI: 10.1371/journal.pone.0203713] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/24/2018] [Indexed: 01/22/2023] Open
Abstract
Inflammatory β-cell failure contributes to type 1 and type 2 diabetes pathogenesis. Pro-inflammatory cytokines cause β-cell dysfunction and apoptosis, and lysine deacetylase inhibitors (KDACi) prevent β-cell failure in vitro and in vivo, in part by reducing NF-κB transcriptional activity. We investigated the hypothesis that the protective effect of KDACi involves transcriptional regulation of microRNAs (miRs), potential new targets in diabetes treatment. Insulin-producing INS1 cells were cultured with or without the broad-spectrum KDACi Givinostat, prior to exposure to the pro-inflammatory cytokines IL-1β and IFN-γ for 6 h or 24 h, and miR expression was profiled with miR array. Thirteen miRs (miR-7a-2-3p, miR-29c-3p, miR-96-5p, miR-101a-3p, miR-140-5p, miR-146a-5p, miR-146b-5p, miR-340-5p, miR-384-5p, miR-455-5p, miR-466b-2-3p, miR-652-5p, and miR-3584-5p) were regulated by both cytokines and Givinostat, and nine were examined by qRT-PCR. miR-146a-5p was strongly regulated by cytokines and KDACi and was analyzed further. miR-146a-5p expression was induced by cytokines in rat and human islets. Cytokine-induced miR-146a-5p expression was specific for INS1 and β-TC3 cells, whereas α-TC1 cells exhibited a higher basal expression. Transfection of INS1 cells with miR-146a-5p reduced cytokine signaling, including the activity of NF-κB and iNOS promoters, as well as NO production and protein levels of iNOS and its own direct targets TNF receptor associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1). miR-146a-5p was elevated in the pancreas of diabetes-prone BB-DP rats at diabetes onset, suggesting that miR-146a-5p could play a role in type 1 diabetes development. The miR array of cytokine-exposed INS1 cells rescued by KDACi revealed several other miRs potentially involved in cytokine-induced β-cell apoptosis, demonstrating the strength of this approach.
Collapse
|
19
|
MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response. Shock 2018; 46:122-31. [PMID: 26954942 DOI: 10.1097/shk.0000000000000604] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monocytes and macrophages are important components of the immune system, specialized in either removing pathogens as part of innate immunity or contributing to adaptive immunity through antigen presentation. Essential to such functions is classical activation (M1) and alternative activation (M2) of macrophages. M1 polarization of macrophages is characterized by production of pro-inflammatory cytokines, antimicrobial and tumoricidal activity, whereas M2 polarization of macrophages is linked to immunosuppression, tumorigenesis, wound repair, and elimination of parasites. MiRNAs are small non-coding RNAs with the ability to regulate gene expression and network of cellular processes. A number of studies have determined miRNA expression profiles in M1 and M2 polarized human and murine macrophages using microarray and RT-qPCR arrays techniques. More specifically, miR-9, miR-127, miR-155, and miR-125b have been shown to promote M1 polarization while miR-124, miR-223, miR-34a, let-7c, miR-132, miR-146a, and miR-125a-5p induce M2 polarization in macrophages by targeting various transcription factors and adaptor proteins. Further, M1 and M2 phenotypes play distinctive roles in cell growth and progression of inflammation-related diseases such as sepsis, obesity, cancer, and multiple sclerosis. Hence, miRNAs that modulate macrophage polarization may have therapeutic potential in the treatment of inflammation-related diseases. This review highlights recent findings in miRNA expression profiles in polarized macrophages from murine and human sources, and summarizes how these miRNAs regulate macrophage polarization. Last, therapeutic potential of miRNAs in inflammation-related diseases through modulation of macrophage polarization is also discussed.
Collapse
|
20
|
Simanovich E, Brod V, Rahat MM, Rahat MA. Function of miR-146a-5p in Tumor Cells As a Regulatory Switch between Cell Death and Angiogenesis: Macrophage Therapy Revisited. Front Immunol 2018; 8:1931. [PMID: 29354134 PMCID: PMC5760497 DOI: 10.3389/fimmu.2017.01931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors survive and progress by evading killing mechanisms of the immune system, and by generating a tumor microenvironment (TME) that reprograms macrophages in situ to produce factors that support tumor growth, angiogenesis, and metastasis. We have previously shown that by blocking the translation of the enzyme inducible nitric oxide synthase (iNOS), miR-146a-5p inhibits nitric oxide (NO) production in a mouse renal carcinoma cell line (RENCA), thereby endowing RENCA cells with resistance to macrophage-induced cell death. Here, we expand these findings to the mouse colon carcinoma CT26 cell line and demonstrate that neutralizing miR-146a-5p's activity by transfecting both RENCA and CT26 cells with its antagomir restored iNOS expression and NO production and enhanced susceptibility to macrophage-induced cell death (by 48 and 25%, respectively, p < 0.001). Moreover, miR-146a-5p suppression simultaneously inhibited the expression of the pro-angiogenic protein EMMPRIN (threefolds, p < 0.001), leading to reduced MMP-9 and vascular endothelial growth factor secretion (twofolds and threefolds, respectively, p < 0.05), and reduced angiogenesis, as estimated by in vitro tube formation and scratch assays. When we injected tumors with pro-inflammatory-stimulated RAW 264.7 macrophages together with i.v. injection of the miR-146a-5p antagomir, we found inhibited tumor growth (sixfolds, p < 0.001) and angiogenesis (twofolds, p < 0.01), and increased apoptosis (twofolds, p < 0.01). This combination therapy increased nitrites and reduced TGFβ concentrations in tumor lysates, alleviated immune suppression, and allowed enhanced infiltration of cytotoxic CD8+ T cells. Thus, miR-146a-5p functions as a control switch between angiogenesis and cell death, and its neutralization can manipulate the crosstalk between tumor cells and macrophages and profoundly change the TME. This strategy can be therapeutically utilized in combination with the macrophage therapy approach to induce the immune system to successfully attack the tumor, and should be further explored as a new therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Vera Brod
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Maya M Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
21
|
McCrudden CM, McBride JW, McCaffrey J, Ali AA, Dunne NJ, Kett VL, Coulter JA, Robson T, McCarthy HO. Systemic RALA/iNOS Nanoparticles: A Potent Gene Therapy for Metastatic Breast Cancer Coupled as a Biomarker of Treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 6:249-258. [PMID: 28325291 PMCID: PMC5363505 DOI: 10.1016/j.omtn.2016.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 01/12/2023]
Abstract
This study aimed to determine the therapeutic benefit of a nanoparticular formulation for the delivery of inducible nitric oxide synthase (iNOS) gene therapy in a model of breast cancer metastasis. Nanoparticles comprising a cationic peptide vector, RALA, and plasmid DNA were formulated and characterized using a range of physiochemical analyses. Nanoparticles complexed using iNOS plasmids and RALA approximated 60 nm in diameter with a charge of 25 mV. A vector neutralization assay, performed to determine the immunogenicity of nanoparticles in immunocompetent C57BL/6 mice, revealed that no vector neutralization was evident. Nanoparticles harboring iNOS plasmids (constitutively active cytomegalovirus [CMV]-driven or transcriptionally regulated human osteocalcin [hOC]-driven) evoked iNOS protein expression and nitrite accumulation and impaired clonogenicity in the highly aggressive MDA-MB-231 human breast cancer model. Micrometastases of MDA-MB-231-luc-D3H1 cells were established in female BALB/c SCID mice by intracardiac delivery. Nanoparticulate RALA/CMV-iNOS or RALA/hOC-iNOS increased median survival in mice bearing micrometastases by 27% compared with controls and also provoked elevated blood nitrite levels. Additionally, iNOS gene therapy sensitized MDA-MB-231-luc-D3H1 tumors to docetaxel treatment. Studies demonstrated that systemically delivered RALA-iNOS nanoparticles have therapeutic potential for the treatment of metastatic breast cancer. Furthermore, detection of nitrite levels in the blood serves as a reliable biomarker of treatment.
Collapse
Affiliation(s)
- Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - John W McBride
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - Joanne McCaffrey
- Department of Pharmacology and Therapeutics, University College Cork, Cork T12 YN60, Ireland
| | - Ahlam A Ali
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Vicky L Kett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - Jonathan A Coulter
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - Tracy Robson
- Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland.
| |
Collapse
|
22
|
Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism. Sci Rep 2017; 7:44141. [PMID: 28276497 PMCID: PMC5343489 DOI: 10.1038/srep44141] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/02/2017] [Indexed: 01/15/2023] Open
Abstract
Leishmania (Leishmania) amazonensis is an intracellular protozoan parasite responsible for the cutaneous leishmaniasis. The parasite replicates inside mammalian macrophage to establish infection. Host-pathogen interactions result in microRNA-mediated post-transcriptional regulation of host genes involved in inflammatory immune response. We analyzed macrophage miRNA profiles during L. (L.) amazonensis infection. The regulation of macrophage miRNA expression by the parasite correlates with/depends on parasite arginase activity during infection. L. (L.) amazonensis (La-WT) presented significant miRNA profile alteration (27%) compared to L. (L.) amazonensis arginase knockout (La-arg−) (~40%) in relation to uninfected-macrophages. We observed that 78% of the altered miRNAs were up-regulated in La-WT infection, while only 32% were up-regulated in La-arg−-infected macrophages. In contrast to La-WT, the lack of L. (L.) amazonensis arginase led to the inhibition of miR-294 and miR-721 expression. The expression of miR-294 and miR-721 was recovered to levels similar to La-WT in La-arg− addback mutant. The inhibition of miR-294/Nos2 and miR721/Nos2 interactions increased NOS2 expression and NO production, and reduced L. (L.) amazonensis infectivity, confirming Nos2 as target of these miRNAs. The role of miR-294 and miR-721 in the regulation of NOS2 expression during Leishmania replication in infected macrophages pointing these miRNAs as potential new targets for drug development.
Collapse
|
23
|
Simanovich E, Brod V, Rahat MM, Drazdov E, Walter M, Shakya J, Rahat MA. Inhibition of tumor growth and metastasis by EMMPRIN multiple antigenic peptide (MAP) vaccination is mediated by immune modulation. Oncoimmunology 2016; 6:e1261778. [PMID: 28197388 DOI: 10.1080/2162402x.2016.1261778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/13/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
Previously, we have identified a new epitope in EMMPRIN, a multifunctional protein that mediates tumor cell-macrophage interactions and induces both MMP-9 and VEGF. Here, we synthesized this epitope as an octa-branched multiple antigenic peptide (MAP) to vaccinate mice implanted with subcutaneous syngeneic colon (CT26), prostate (TRAMP-C2) or renal (RENCA) cell line carcinomas. Vaccination inhibited, and sometimes regressed, tumor growth in a dose-dependent manner, reaching 94%, 71% and 72% inhibition, respectively, at a 50 μg dose (p < 0.01). Mice with regressed tumors demonstrated immune memory, preventing tumor recurrence upon re-implantation (p < 0.001). When tumor cells were administered through the tail vein to generate lung metastases, vaccination reduced the number of metastatic foci (by 15- and 23-folds, p < 0.001), and increased the median survival time by 25% and 53% in RENCA and CT26 metastases, respectively (p < 0.01) relative to scrambled-MAP controls. No significant adverse responses were observed in all experiments. We show that the tumor microenvironment was immune modulated, as vaccination induced production of EMMPRIN-specific antibodies, increased CD8+ T cells infiltration and cytotoxicity, alleviated immune suppression by decreasing TGFβ concentrations, reduced angiogenesis and cell proliferation, and enhanced apoptosis. Thus, our successful active peptide vaccination strategy differs from previous, unsuccessful attempts, both in the selected target (the EMMPRIN epitope) and in the use of a modified, MAP configuration, and demonstrates that this may be an efficient approach for the treatment and prevention of some types of cancer.
Collapse
Affiliation(s)
- Elina Simanovich
- Immunotherapy Lab, Carmel Medical Center, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Vera Brod
- Immunotherapy Lab, Carmel Medical Center , Haifa, Israel
| | - Maya M Rahat
- Immunotherapy Lab, Carmel Medical Center , Haifa, Israel
| | - Ella Drazdov
- Immunotherapy Lab, Carmel Medical Center , Haifa, Israel
| | - Miriam Walter
- Immunotherapy Lab, Carmel Medical Center , Haifa, Israel
| | - Jivan Shakya
- Immunotherapy Lab, Carmel Medical Center , Haifa, Israel
| | - Michal A Rahat
- Immunotherapy Lab, Carmel Medical Center, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
24
|
Wang G, Li X, Wang H, Wang Y, Zhang L, Zhang L, Liu B, Zhang M. Later phase cardioprotection of ischemic post-conditioning against ischemia/reperfusion injury depends on iNOS and PI3K-Akt pathway. Am J Transl Res 2015; 7:2603-2611. [PMID: 26885260 PMCID: PMC4731660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The cardioprotection of ischemic post-conditioning (IPO) has been well demonstrated after a short period of reperfusion. However, little is known about the long-term effects of IPO. This study aimed to investigate the long term cardioprotection of IPO in a rat myocardial ischemia/reperfusion model and to explore the potential mechanism. METHODS AND RESULTS Rats were either sham-operated (Sham group) or underwent 30-min left anterior descending coronary artery ischemia followed by immediate reperfusion (I/R group) or post-conditioning with 5 cycles of 10-s ischemia and 10-s reperfusion (IPO group). At 24 h after reperfusion, infarct size reduced from 34.7±1.1% in I/R group to 24.9±1.3% in IPO group (P<0.05) and the iNOS expression in IPO group was 4.7-fold higher than in I/R group. iNOS inhibitor 1400 W (1 mg/kg, 5 min before postconditioning or reperfusion) prevented the increase in iNOS expression and abolished IPO-induced protection (34.4±1.0%, P>0.05 vs. I/R group). When rats were treated with PI3K inhibitor LY294002 5 min before reperfusion (0.3 mg/kg), p-Akt expression at R 3 h and iNOS expression at R 24 h were significantly inhibited. Moreover, the delayed infarct-sparing effect of IPO was absent in the presence of LY294002. CONCLUSION IPO has prolonged cardioprotective effects and iNOS as an important downstream effector of PI3K-Akt pathway contributes to the delayed phase cardioprotection of IPO.
Collapse
Affiliation(s)
- Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Xin Li
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Hong Wang
- Department of Nephrology, Taian Central HospitalTaian 271000, China
| | - Yan Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Ligong Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Le Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Bei Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| |
Collapse
|
25
|
Huang Z, Lu Z, Tian J, Wang G, Gao Z. Effect of a functional polymorphism in the pre-miR-146a gene on the risk and prognosis of renal cell carcinoma. Mol Med Rep 2015; 12:6997-7004. [PMID: 26323945 DOI: 10.3892/mmr.2015.4260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/19/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that function as regulators of tumor suppressors and oncogenes. A G>C polymorphism (rs2910164) in the miR‑146a precursor sequence leads to a functional change associated with a risk for various types of malignancy. The role of this single nucleotide polymorphism in the pathogenesis of renal cell carcinoma (RCC) has not yet been examined. The present study evaluated the association between rs2910164 genotypes and the risk and prognosis of RCC in a population comprised of 421 RCC cases and 432 controls. Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for rs2910164 genotypes according to case status. Cox proportional hazards regression modeling was used to estimate hazards ratios and 95% CIs according to the genotypes among the RCC patients. It was found that the rs2910164 GG and GC genotypes were associated with an increased risk of RCC only in senior subjects (>57‑years old; adjusted OR=1.59, 95% CI=1.04‑2.43). Furthermore, the GC and GG genotypes were associated with a poorer survival rate among patients with RCC compared with the CC genotype (P=0.002). In conclusion, the observed association between the GG and GC genotype and poorer survival rate of RCC was at least partially mediated by the decreased expression of miR-146a.
Collapse
Affiliation(s)
- Zhilong Huang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhanpeng Lu
- Department of Urology, Jining No. 1 People's Hospital, Jining, Shandong 528000, P.R. China
| | - Jingchang Tian
- Department of Urology, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161000, P.R. China
| | - Guangjian Wang
- Department of Urology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Zhenli Gao
- Department of Urology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
26
|
Radzun HJ. [History and perspectives of the monocyte-macrophage system]. DER PATHOLOGE 2015; 36:432-42. [PMID: 26310365 DOI: 10.1007/s00292-015-0050-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The macrophage cell system was identified by Metchnikoff on the basis of its phagocytic ability. Later on, the reticulohistiocytic system was defined as being composed of antigen-presenting reticulum cells and macrophages. Van Furth proposed that the mononuclear phagocyte system includes all tissue macrophages as well as antigen-presenting cells and blood monocytes as their precursors. Recent findings have shown that blood monocytes are not just transient forms involved in the recruitment of macrophages but that different dendritic and monocytic subpopulations can be observed in blood. In tissue, self-renewing macrophages derived from the yolk sac as well as monocyte-derived dendritic cells and monocyte-derived macrophages can be distinguished. Due to their plasticity and polarization, under inflammatory conditions monocyte-derived macrophages may be beneficial for the reestablishment of homeostasis or may contribute to mostly chronic diseases. Because of their ubiquitous distribution, monocytes and macrophages are increasingly considered to be possible therapeutic targets.
Collapse
Affiliation(s)
- H-J Radzun
- Institut für Pathologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland,
| |
Collapse
|
27
|
Walter M, Simanovich E, Brod V, Lahat N, Bitterman H, Rahat MA. An epitope-specific novel anti-EMMPRIN polyclonal antibody inhibits tumor progression. Oncoimmunology 2015; 5:e1078056. [PMID: 27057452 DOI: 10.1080/2162402x.2015.1078056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 01/14/2023] Open
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) mediates tumor cell-macrophage interactions, and has been shown to induce both matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF). However, the epitope responsible for MMP induction is controversial, and the epitope responsible for VEGF induction is yet unknown. We generated a novel anti-EMMPRIN antibody directed against a specific epitope that successfully inhibited the production of both MMP-9 and VEGF in tumor cell-macrophage in vitro co-culture systems, exhibiting a U-shaped dose response. Furthermore, this antibody efficiently inhibited in vivo tumor progression in both the RENCA renal cell carcinoma and CT26 colon carcinoma subcutaneous tumor models, and reduced tumor size and number of metastatic foci in the 4T1 orthotopic model. This was achieved by inhibiting angiogenesis as assessed by immunohistochemical staining for the endothelial marker CD31, by inhibiting tumor cell proliferation as assessed by the staining for Ki-67, and by enhancing tumor cell apoptosis as assessed in the TUNEL assay. Moreover, administration of the antibody recruited more macrophages into the tumor, and skewed the tumor microenvironment for macrophages from TGFβ-dominated anti-inflammatory microenvironment, to a less immunosuppressive one. The antibody improved the ability of stimulated macrophages to perform antibody-dependent cell cytotoxicity (ADCC) and kill tumor cells. Thus, our new antibody maps the epitope capable of inducing both MMPs and VEGF, and places EMMPRIN as a good target for cancer therapy.
Collapse
Affiliation(s)
- Miriam Walter
- Immunology Research Unit, Carmel Medical Center , Haifa, Israel
| | | | - Vera Brod
- Ischemia-shock Research Laboratory, Carmel Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine , Technion, Haifa, Israel
| | - Nitza Lahat
- Immunology Research Unit, Carmel Medical Center , Haifa, Israel
| | - Haim Bitterman
- Ischemia-shock Research Laboratory, Carmel Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine , Technion, Haifa, Israel
| | - Michal A Rahat
- Immunology Research Unit, Carmel Medical Center , Haifa, Israel
| |
Collapse
|
28
|
Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 2015; 36:161-78. [PMID: 25687683 DOI: 10.1016/j.it.2015.01.003] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
Thirty years after the discovery of its production by activated macrophages, our appreciation of the diverse roles of nitric oxide (NO) continues to grow. Recent findings have not only expanded our understanding of the mechanisms controlling the expression of NO synthases (NOS) in innate and adaptive immune cells, but have also revealed new functions and modes of action of NO in the control and escape of infectious pathogens, in T and B cell differentiation, and in tumor defense. I discuss these findings, in the context of a comprehensive overview of the various sources and multiple reaction partners of NO, and of the regulation of NOS2 by micromilieu factors, antisense RNAs, and 'unexpected' cytokines.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie, und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Wasserturmstraße 3/5, 91054 Erlangen, Germany.
| |
Collapse
|
29
|
Wei Q, Mi QS, Dong Z. The regulation and function of microRNAs in kidney diseases. IUBMB Life 2014; 65:602-14. [PMID: 23794512 DOI: 10.1002/iub.1174] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/26/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNA) are endogenous short noncoding RNAs, which regulate virtually all major cellular processes by inhibiting target gene expression. In kidneys, miRNAs have been implicated in renal development, homeostasis, and physiological functions. In addition, miRNAs play important roles in the pathogenesis of various renal diseases, including renal carcinoma, diabetic nephropathy, acute kidney injury, hypertensive nephropathy, polycystic kidney disease, and others. Furthermore, miRNAs may have great values as biomarkers in different kidney diseases.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | | | | |
Collapse
|
30
|
microRNA control of interferons and interferon induced anti-viral activity. Mol Immunol 2013; 56:781-93. [PMID: 23962477 DOI: 10.1016/j.molimm.2013.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 12/22/2022]
Abstract
Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.
Collapse
|
31
|
Amit-Cohen BC, Rahat MM, Rahat MA. Tumor cell-macrophage interactions increase angiogenesis through secretion of EMMPRIN. Front Physiol 2013; 4:178. [PMID: 23874303 PMCID: PMC3709141 DOI: 10.3389/fphys.2013.00178] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/23/2013] [Indexed: 01/11/2023] Open
Abstract
Tumor macrophages are generally considered to be alternatively/M2 activated to induce secretion of pro-angiogenic factors such as VEGF and MMPs. EMMPRIN (CD147, basigin) is overexpressed in many tumor types, and has been shown to induce fibroblasts and endothelial cell expression of MMPs and VEGF. We first show that tumor cell interactions with macrophages resulted in increased expression of EMMPRIN and induction of MMP-9 and VEGF. Human A498 renal carcinoma or MCF-7 breast carcinoma cell lines were co-cultured with the U937 monocytic-like cell line in the presence of TNFα (1 ng/ml). Membranal EMMPRIN expression was increased in the co-cultures (by 3-4-folds, p < 0.01), as was the secretion of MMP-9 and VEGF (by 2-5-folds for both MMP-9 and VEGF, p < 0.01), relative to the single cultures with TNFα. Investigating the regulatory mechanisms, we show that EMMPRIN was post-translationally regulated by miR-146a, as no change was observed in the tumoral expression of EMMPRIN mRNA during co-culture, expression of miR-146a was increased and its neutralization by its antagomir inhibited EMMPRIN expression. The secretion of EMMPRIN was also enhanced (by 2-3-folds, p < 0.05, only in the A498 co-culture) via shedding off of the membranal protein by a serine protease that is yet to be identified, as demonstrated by the use of wide range protease inhibitors. Finally, soluble EMMPRIN enhanced monocytic secretion of MMP-9 and VEGF, as inhibition of its expression levels by neutralizing anti-EMMPRIN or siRNA in the tumor cells lead to subsequent decreased induction of these two pro-angiogenic proteins. These results reveal a mechanism whereby tumor cell-macrophage interactions promote angiogenesis via an EMMPRIN-mediated pathway.
Collapse
Affiliation(s)
- Bat-Chen Amit-Cohen
- Immunology Research Unit, Carmel Medical Center and the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology Haifa, Israel
| | | | | |
Collapse
|
32
|
Rahat MA, Hemmerlein B. Macrophage-tumor cell interactions regulate the function of nitric oxide. Front Physiol 2013; 4:144. [PMID: 23785333 PMCID: PMC3684767 DOI: 10.3389/fphys.2013.00144] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/29/2013] [Indexed: 12/12/2022] Open
Abstract
Tumor cell-macrophage interactions change as the tumor progresses, and the generation of nitric oxide (NO) by the inducible nitric oxide synthase (iNOS) plays a major role in this interplay. In early stages, macrophages employ their killing mechanisms, particularly the generation of high concentrations of NO and its derivative reactive nitrogen species (RNS) to initiate tumor cell apoptosis and destroy emerging transformed cells. If the tumor escapes the immune system and grows, macrophages that infiltrate it are reprogramed in situ by the tumor microenvironment. Low oxygen tensions (hypoxia) and immunosuppressive cytokines inhibit iNOS activity and lead to production of low amounts of NO/RNS, which are pro-angiogenic and support tumor growth and metastasis by inducing growth factors (e.g., VEGF) and matrix metalloproteinases (MMPs). We review here the different roles of NO/RNS in tumor progression and inhibition, and the mechanisms that regulate iNOS expression and NO production, highlighting the role of different subtypes of macrophages and the microenvironment. We finally claim that some tumor cells may become resistant to macrophage-induced death by increasing their expression of microRNA-146a (miR-146a), which leads to inhibition of iNOS translation. This implies that some cooperation between tumor cells and macrophages is required to induce tumor cell death, and that tumor cells may control their fate. Thus, in order to induce susceptibility of tumors cells to macrophage-induced death, we suggest a new therapeutic approach that couples manipulation of miR-146a levels in tumors with macrophage therapy, which relies on ex vivo stimulation of macrophages and their re-introduction to tumors.
Collapse
Affiliation(s)
- Michal A Rahat
- Department of Immunology, Immunology Research Unit, Carmel Medical Center and the Ruth and Bruce Rappaport Faculty of Medicine Technion, Haifa, Israel
| | | |
Collapse
|
33
|
Zhu H, Vishwamitra D, Curry CV, Manshouri R, Diao L, Khan A, Amin HM. NPM-ALK up-regulates iNOS expression through a STAT3/microRNA-26a-dependent mechanism. J Pathol 2013; 230:82-94. [PMID: 23338972 DOI: 10.1002/path.4171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 12/28/2012] [Accepted: 01/11/2013] [Indexed: 12/30/2022]
Abstract
NPM-ALK chimeric oncogene is aberrantly expressed in an aggressive subset of T-cell lymphomas that frequently occurs in children and young adults. The mechanisms underlying the oncogenic effects of NPM-ALK are not completely elucidated. Inducible nitric oxide synthase (iNOS) promotes the survival and maintains the malignant phenotype of cancer cells by generating NO, a highly active free radical. We tested the hypothesis that iNOS is deregulated in NPM-ALK(+) T-cell lymphoma and promotes the survival of this lymphoma. In line with this possibility, an iNOS inhibitor and NO scavenger decreased the viability, adhesion, and migration of NPM-ALK(+) T-cell lymphoma cells, and an NO donor reversed these effects. Moreover, the NO donor salvaged the viability of lymphoma cells treated with ALK inhibitors. In further support of an important role of iNOS, we found iNOS protein to be highly expressed in NPM-ALK(+) T-cell lymphoma cell lines and in 79% of primary tumours but not in human T lymphocytes. Although expression of iNOS mRNA was identified in NPM-ALK(+) T-cell lymphoma cell lines and tumours, iNOS mRNA was remarkably elevated in T lymphocytes, suggesting post-transcriptional regulation. Consistently, we found that miR-26a contains potential binding sites and interacts with the 3'-UTR of iNOS. In addition, miR-26a was significantly decreased in NPM-ALK(+) T-cell lymphoma cell lines and tumours compared with T lymphocytes and reactive lymph nodes. Restoration of miR-26a in lymphoma cells abrogated iNOS protein expression and decreased NO production and cell viability, adhesion, and migration. Importantly, the effects of miR-26a were substantially attenuated when the NO donor was simultaneously used to treat lymphoma cells. Our investigation of the mechanisms underlying the decrease in miR-26a in this lymphoma revealed novel evidence that STAT3, a major downstream substrate of NPM-ALK tyrosine kinase activity, suppresses MIR26A1 gene expression.
Collapse
Affiliation(s)
- Haifeng Zhu
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Tomokuni A, Eguchi H, Tomimaru Y, Wada H, Kawamoto K, Kobayashi S, Marubashi S, Tanemura M, Nagano H, Mori M, Doki Y. miR-146a suppresses the sensitivity to interferon-α in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2011; 414:675-80. [PMID: 21982769 DOI: 10.1016/j.bbrc.2011.09.124] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Interferon-based (IFN-based) therapy is effective in the treatment of advanced hepatocellular carcinoma (HCC). However, the issue of resistance to this therapy remains to be solved. The aim of this study was to identify microRNAs (miRNAs) that govern the sensitivity to IFN-α in HCC cells. METHODS miRNA microarray analysis using IFN-α-resistant clones of PLC/PRF/5 (PLC-Rs) and their parental cells (PLC-P) was conducted. Changes in the anti-cancer effects of IFN-α were studied after gain-of-function and loss-of-function of the candidate miRNA. RESULTS miR-146a expression was significantly higher in PLC-Rs than in PLC-P. miR-146a decreased the sensitivity to IFN-α through the suppression of apoptosis. Further experiments showed that miR-146a-related resistance to IFN-α was mediated through SMAD4. CONCLUSIONS The results indicated that miR-146a regulated the sensitivity of HCC cells to the cytotoxic effects of IFN-α through SMAD4, suggesting that this miRNA could be suitable for prediction of the clinical response and potential therapeutic target in HCC patients on IFN-based therapy.
Collapse
Affiliation(s)
- Akira Tomokuni
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 E2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|