1
|
Butnariu LI, Russu G, Luca AC, Sandu C, Trandafir LM, Vasiliu I, Popa S, Ghiga G, Bălănescu L, Țarcă E. Identification of Genetic Variants Associated with Hereditary Thoracic Aortic Diseases (HTADs) Using Next Generation Sequencing (NGS) Technology and Genotype-Phenotype Correlations. Int J Mol Sci 2024; 25:11173. [PMID: 39456956 PMCID: PMC11508433 DOI: 10.3390/ijms252011173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Hereditary thoracic aorta diseases (HTADs) are a heterogeneous group of rare disorders whose major manifestation is represented by aneurysm and/or dissection frequently located at the level of the ascending thoracic aorta. The diseases have an insidious evolution and can be encountered as an isolated manifestation or can also be associated with systemic, extra-aortic manifestations (syndromic HTADs). Along with the development of molecular testing technologies, important progress has been made in deciphering the heterogeneous etiology of HTADs. The aim of this study is to identify the genetic variants associated with a group of patients who presented clinical signs suggestive of a syndromic form of HTAD. Genetic testing based on next-generation sequencing (NGS) technology was performed using a gene panel (Illumina TruSight Cardio Sequencing Panel) or whole exome sequencing (WES). In the majority of cases (8/10), de novo mutations in the FBN1 gene were detected and correlated with the Marfan syndrome phenotype. In another case, a known mutation in the TGFBR2 gene associated with Loeys-Dietz syndrome was detected. Two other pathogenic heterozygous variants (one de novo and the other a known mutation) in the SLC2A10 gene (compound heterozygous genotype) were identified in a patient diagnosed with arterial tortuosity syndrome (ATORS). We presented the genotype-phenotype correlations, especially related to the clinical evolution, highlighting the particularities of each patient in a family context. We also emphasized the importance of genetic testing and patient monitoring to avoid acute aortic events.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Georgiana Russu
- Departament of Cardiology, Saint Mary’s Emergency Children Hospital, 700309 Iași, Romania; (G.R.); (A.-C.L.)
| | - Alina-Costina Luca
- Departament of Cardiology, Saint Mary’s Emergency Children Hospital, 700309 Iași, Romania; (G.R.); (A.-C.L.)
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Constantin Sandu
- Department of Medical Abilities, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Laura Mihaela Trandafir
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Ioana Vasiliu
- Department of Morphofunctional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Gabriela Ghiga
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Laura Bălănescu
- Department of Pediatric Surgery and Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| |
Collapse
|
2
|
Mazzolai L, Teixido-Tura G, Lanzi S, Boc V, Bossone E, Brodmann M, Bura-Rivière A, De Backer J, Deglise S, Della Corte A, Heiss C, Kałużna-Oleksy M, Kurpas D, McEniery CM, Mirault T, Pasquet AA, Pitcher A, Schaubroeck HAI, Schlager O, Sirnes PA, Sprynger MG, Stabile E, Steinbach F, Thielmann M, van Kimmenade RRJ, Venermo M, Rodriguez-Palomares JF. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases. Eur Heart J 2024; 45:3538-3700. [PMID: 39210722 DOI: 10.1093/eurheartj/ehae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
|
3
|
Erez E, Acuna Higaki AR, Cupo M, Phu TA, Verma S, Assi R, Vallabhajosyula P. Clinical effectiveness of genetic testing guidelines in patients with thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2024:S0022-5223(24)00833-X. [PMID: 39321868 DOI: 10.1016/j.jtcvs.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE To analyze the effectiveness of the current genetic testing guidelines for patients with thoracic aortic aneurysms. METHODS We evaluated genetic tests for thoracic aortic disease (TAD) from 2012 to 2023 in patients aged 18 and older with a thoracic aorta diameter greater than 4 cm. Mutation rates were compared by American College of Cardiology/American Heart Association testing criteria met by patients: age younger than 60 years, syndromic features of connective tissue diseases (CTDs), family history, or none. Results were classified as pathogenic, variants of uncertain significance (VUS), or negative. Genes tested were analyzed in 2 categories: primary (strongly associated with heritable diseases) or secondary (less strongly associated). RESULTS In total, 1034 patients were included: 42.4% aged younger than 60 years, 19.1% with syndromic features of CTD, 41.8% with family history, and 30.7% meeting no criteria. Overall, 3.97% had pathogenic mutations, and 27.27% had VUS. Mutation rates were greatest in patients with syndromic features of CTD (13.2%), followed by patients aged younger than 60 years (5.48%), with a family history (4.63%), and with no criteria met (2.21%). Primary genes had pathogenic mutation rates of 3.29% and VUS rates of 12.19%. Secondary genes had lower pathogenic rates (0.68%) but greater VUS (17.5%). Mutation rates in primary genes peaked at 22% in patients meeting all criteria, whereas those younger than 60 years without family history or syndromic features of CTD had the lowest rate (0.54%). CONCLUSIONS Refining genetic testing guidelines to incorporate multiple patient criteria could enhance risk stratification and support informed decision-making in genetic testing for TAD. Limiting testing to genes strongly associated with TAD could lower VUS rates.
Collapse
Affiliation(s)
- Ely Erez
- Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, Conn
| | - Adrian R Acuna Higaki
- Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, Conn
| | - Michela Cupo
- Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, Conn
| | - Tuan Anh Phu
- Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, Conn
| | - Shiv Verma
- Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, Conn
| | - Roland Assi
- Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, Conn
| | | |
Collapse
|
4
|
D'Oria M, Lepidi S, Giudice R, Budtz-Lilly J, Ferrer C. A national cross-sectional survey on time-trends for endovascular repair of genetically-triggered aortic disease and connective tissue disorders over two decades. THE JOURNAL OF CARDIOVASCULAR SURGERY 2024; 65:351-357. [PMID: 38483793 DOI: 10.23736/s0021-9509.24.12941-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND By this survey, we aim to gain national-based information regarding trends in endovascular repair (ER) for the treatment of aortic disease in patients with genetically-triggered aortic disease (GTAD) and connective tissue disorder (CTD) over the last two decades. METHODS All Italian vascular surgery centers (N.=80) were invited to participate in an anonymous electronic cross-sectional survey on ER for GTAD/CTD. RESULTS Overall, 29 institutions completed the survey, thereby yielding a 36% response rate. The percentage of responding institutions rises to 64% if only regional hubs were considered (23/36). The median number of index procedures per center was 6.2, and a steady increase in the overall number of interventions over time was also noted. Most patients were males (73%) with a median age of 48 years. The most common endovascular procedure was TEVAR (N.=101), followed by F/BEVAR (N.=43) and EVAR (N.=37). The overall technical success rate was 83.4% while major adverse events and mortality at thirty days were reported at 18.2% and 9.9%, respectively. An additional 5.0% mortality rate was noted for an overall one-year mortality of 14.9%, while 3.7% of all treated patients were diagnosed with a type 1 endoleak. CONCLUSIONS This national cross-sectional survey, investigating trends in ER of GTADs and CTDs over two decades, highlights a consistent increase in the use of endovascular techniques for their treatment. Early mortality was acceptably low, yet influenced by the urgency of presentation. At one-year follow-up, a 5% additional death rate was noted, and the reintervention rate remained below one in ten.
Collapse
Affiliation(s)
- Mario D'Oria
- Division of Vascular and Endovascular Surgery, Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy -
| | - Sandro Lepidi
- Division of Vascular and Endovascular Surgery, Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Rocco Giudice
- Unit of Vascular and Endovascular Surgery, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Jacob Budtz-Lilly
- Division of Vascular Surgery, Department of Cardiovascular Surgery, University Hospital of Aarhus, Aarhus, Denmark
| | - Ciro Ferrer
- Unit of Vascular and Endovascular Surgery, San Giovanni-Addolorata Hospital, Rome, Italy
| |
Collapse
|
5
|
Goncharova IA, Shipulina SA, Sleptcov AA, Zarubin AA, Valiakhmetov NR, Panfilov DS, Lelik EV, Saushkin VV, Kozlov BN, Nazarenko LP, Nazarenko MS. Identification of Variants of Uncertain Significance in the Genes Associated with Thoracic Aortic Disease in Russian Patients with Nonsyndromic Sporadic Subtypes of the Disorder. Int J Mol Sci 2024; 25:8315. [PMID: 39125885 PMCID: PMC11312146 DOI: 10.3390/ijms25158315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Nonsyndromic sporadic thoracic aortic aneurysm (nssTAA) is characterized by diverse genetic variants that may vary in different populations. Our aim was to identify clinically relevant variants in genes implicated in hereditary aneurysms in Russian patients with nssTAA. Forty-one patients with nssTAA without dissection were analyzed. Using massive parallel sequencing, we searched for variants in exons of 53 known disease-causing genes. Patients were found to have no (likely) pathogenic variants in the genes of hereditary TAA. Six variants of uncertain significance (VUSs) were identified in four (9.8%) patients. Three VUSs [FBN1 c.7841C>T (p.Ala2614Val), COL3A1 c.2498A>T (p.Lys833Ile), and MYH11 c.4993C>T (p.Arg1665Cys)] are located in genes with "definitive" disease association (ClinGen). The remaining variants are in "potentially diagnostic" genes or genes with experimental evidence of disease association [NOTCH1 c.964G>A (p.Val322Met), COL4A5 c.953C>G (p.Pro318Arg), and PLOD3 c.833G>A (p.Gly278Asp)]. Russian patients with nssTAA without dissection examined in this study have ≥1 VUSs in six known genes of hereditary TAA (FBN1, COL3A1, MYH11, NOTCH1, COL4A5, or PLOD3). Experimental studies expanded genetic testing, and clinical examination of patients and first/second-degree relatives may shift VUSs to the pathogenic (benign) category or to a new class of rare "predisposing" low-penetrance variants causing the pathology if combined with other risk factors.
Collapse
Affiliation(s)
- Irina A. Goncharova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Sofia A. Shipulina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Aleksei A. Sleptcov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Aleksei A. Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Nail R. Valiakhmetov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Dmitry S. Panfilov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Str., Tomsk 634012, Russia; (D.S.P.); (E.V.L.); (V.V.S.); (B.N.K.)
| | - Evgeniya V. Lelik
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Str., Tomsk 634012, Russia; (D.S.P.); (E.V.L.); (V.V.S.); (B.N.K.)
| | - Viktor V. Saushkin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Str., Tomsk 634012, Russia; (D.S.P.); (E.V.L.); (V.V.S.); (B.N.K.)
| | - Boris N. Kozlov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Str., Tomsk 634012, Russia; (D.S.P.); (E.V.L.); (V.V.S.); (B.N.K.)
| | - Ludmila P. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Maria S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| |
Collapse
|
6
|
Garner M, Rajani B, Vaidya P, Dayeh SA, Cecchi AC, Miyake CC, Huff V, Wanat M, Wang E, Kurzlechner LM, Landstrom AP, An D, Liang Y, Moulik M, Wong TC, Cunha SR, Cannon A, Holt RL, Milewicz DM, Prakash SK. The UTHealth Houston Adult Cardiovascular Genomics Certificate Program: Efficacy and Impact on Healthcare Professionals. RESEARCH SQUARE 2024:rs.3.rs-4469272. [PMID: 38947076 PMCID: PMC11213163 DOI: 10.21203/rs.3.rs-4469272/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background The demand for genetic services has outpaced the availability of resources, challenging clinicians untrained in genetic integration into clinical decision-making. The UTHealth Adult Cardiovascular Genomics Certificate (CGC) program trains non-genetic healthcare professionals to recognize, assess, and refer patients with heritable cardiovascular diseases. This asynchronous online course includes 24 modules in three tiers of increasing complexity, using realistic clinical scenarios, interactive dialogues, quizzes, and tests to reinforce learning. We hypothesized that the CGC will increase genomic competencies in this underserved audience and encourage applying genomic concepts in clinical practice. Methods Required course evaluations include pre- and post-assessments, knowledge checks in each module, and surveys for module-specific feedback. After 6 months, longitudinal feedback surveys gathered data on the long-term impact of the course on clinical practice and conducted focused interviews with learners. Results The CGC was accredited in September 2022. Principal learners were nurses (24%), nurse practitioners (21%), physicians (16%), and physician assistants. Scores of 283 learners in paired pre- and post-assessments increased specific skills related to recognizing heritable diseases, understanding inheritance patterns, and interpreting genetic tests. Interviews highlighted the CGC's modular structure and linked resources as key strengths. Learners endorsed confidence to use genetic information in clinical practice, such as discussing genetic concepts and risks with patients and referring patients for genetic testing. Learners were highly likely to recommend the CGC to colleagues, citing its role in enhancing heritable disease awareness. Conclusions The CGC program effectively empowers non-genetic clinicians to master genomic competencies, fostering collaboration to prevent deaths from heritable cardiovascular diseases, and potentially transforming healthcare education and clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vicki Huff
- University of Texas MD Anderson Cancer Center
| | | | | | | | | | - Daniel An
- University of Texas Health Science Center at Houston
| | - Yafen Liang
- University of Texas Health Science Center at Houston
| | | | | | - Shane R Cunha
- University of Texas Health Science Center at Houston
| | | | | | | | | |
Collapse
|
7
|
Mills AC, Sandhu HK, Ikeno Y, Tanaka A. Heritable thoracic aortic disease: a literature review on genetic aortopathies and current surgical management. Gen Thorac Cardiovasc Surg 2024; 72:293-304. [PMID: 38480670 DOI: 10.1007/s11748-024-02017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/09/2024] [Indexed: 04/16/2024]
Abstract
Heritable thoracic aortic disease puts patients at risk for aortic aneurysms, rupture, and dissections. The diagnosis and management of this heterogenous patient population continues to evolve. Last year, the American Heart Association/American College of Cardiology Joint Committee published diagnosis and management guidelines for aortic disease, which included those with genetic aortopathies. Additionally, evolving research studying the implications of underlying genetic aberrations with new genetic testing continues to become available. In this review, we evaluate the current literature surrounding the diagnosis and management of heritable thoracic aortic disease, as well as novel therapeutic approaches and future directions of research.
Collapse
Affiliation(s)
- Alexander C Mills
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Harleen K Sandhu
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Yuki Ikeno
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Akiko Tanaka
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Pedroza AJ, Cheng P, Dalal AR, Baeumler K, Kino A, Tognozzi E, Shad R, Yokoyama N, Nakamura K, Mitchel O, Hiesinger W, MacFarlane EG, Fleischmann D, Woo YJ, Quertermous T, Fischbein MP. Early clinical outcomes and molecular smooth muscle cell phenotyping using a prophylactic aortic arch replacement strategy in Loeys-Dietz syndrome. J Thorac Cardiovasc Surg 2023; 166:e332-e376. [PMID: 37500053 DOI: 10.1016/j.jtcvs.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Patients with Loeys-Dietz syndrome demonstrate a heightened risk of distal thoracic aortic events after valve-sparing aortic root replacement. This study assesses the clinical risks and hemodynamic consequences of a prophylactic aortic arch replacement strategy in Loeys-Dietz syndrome and characterizes smooth muscle cell phenotype in Loeys-Dietz syndrome aneurysmal and normal-sized downstream aorta. METHODS Patients with genetically confirmed Loeys-Dietz syndrome (n = 8) underwent prophylactic aortic arch replacement during valve-sparing aortic root replacement. Four-dimensional flow magnetic resonance imaging studies were performed in 4 patients with Loeys-Dietz syndrome (valve-sparing aortic root replacement + arch) and compared with patients with contemporary Marfan syndrome (valve-sparing aortic root replacement only, n = 5) and control patients (without aortopathy, n = 5). Aortic tissues from 4 patients with Loeys-Dietz syndrome and 2 organ donors were processed for anatomically segmented single-cell RNA sequencing and histologic assessment. RESULTS Patients with Loeys-Dietz syndrome valve-sparing aortic root replacement + arch had no deaths, major morbidity, or aortic events in a median of 2 years follow-up. Four-dimensional magnetic resonance imaging demonstrated altered flow parameters in patients with postoperative aortopathy relative to controls, but no clear deleterious changes due to arch replacement. Integrated analysis of aortic single-cell RNA sequencing data (>49,000 cells) identified a continuum of abnormal smooth muscle cell phenotypic modulation in Loeys-Dietz syndrome defined by reduced contractility and enriched extracellular matrix synthesis, adhesion receptors, and transforming growth factor-beta signaling. These modulated smooth muscle cells populated the Loeys-Dietz syndrome tunica media with gradually reduced density from the overtly aneurysmal root to the nondilated arch. CONCLUSIONS Patients with Loeys-Dietz syndrome demonstrated excellent surgical outcomes without overt downstream flow or shear stress disturbances after concomitant valve-sparing aortic root replacement + arch operations. Abnormal smooth muscle cell-mediated aortic remodeling occurs within the normal diameter, clinically at-risk Loeys-Dietz syndrome arch segment. These initial clinical and pathophysiologic findings support concomitant arch replacement in Loeys-Dietz syndrome.
Collapse
Affiliation(s)
- Albert J Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Paul Cheng
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Alex R Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Kathrin Baeumler
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Aya Kino
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Emily Tognozzi
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Rohan Shad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Nobu Yokoyama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Ken Nakamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Olivia Mitchel
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Elena Gallo MacFarlane
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Dominik Fleischmann
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
9
|
Banceu CM, Gurzu S, Satala CB, Ghiga D, Neamtu MH, Voth V, Liebrich M, Suciu H. Histopathological Gap in Aortic Diseases: A Prospective Analysis. Int J Mol Sci 2023; 24:15470. [PMID: 37895149 PMCID: PMC10607681 DOI: 10.3390/ijms242015470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Aortic dissection (AD) is a critical cardiovascular condition with the potential for devastating consequences. This study evaluated the histological changes in the aorta wall in patients with AD and aortic aneurysm (AA) who received surgical aortic replacement. Histopathological data showed that modifications of the media layer (p = 0.0197), myxomatous aspect (p = 0.0001), and subendothelial layer degeneration (p = 0.0107) were more frequently seen in AA versus AD samples. Patients with AA were approximately twice as likely to develop histological changes than those with AD (p = 0.0037). Patients with moderate or severe medial degeneration had a higher chance of developing AD (p = 0.0001). Because the histopathological score proved to be a predictor of both in-hospital and overall mortality, its evaluation should become the standard of care in any patients who undergo aortic replacement. Individualized postoperative management might be influenced by the histopathological aspect of the aortic layer.
Collapse
Affiliation(s)
- Cosmin Marian Banceu
- I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department of Surgery M3, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Emergency Institute for Cardiovascular Diseases and Transplantation Targu Mures, 540136 Targu Mures, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Romanian Academy of Medical Sciences, 030167 Bucharest, Romania
| | - Catalin-Bogdan Satala
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Dana Ghiga
- Department of Medical Scientific Research Methodology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Mihai Halic Neamtu
- Swiss Federal Institute of Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland;
- Institute of Environmental Engineering, ETH Zurich, 8039 Zurich, Switzerland
| | - Vladimir Voth
- Sana Cardiac Surgery, Herdweg 2, 70174 Stuttgart, Germany; (V.V.); (M.L.)
| | - Markus Liebrich
- Sana Cardiac Surgery, Herdweg 2, 70174 Stuttgart, Germany; (V.V.); (M.L.)
| | - Horatiu Suciu
- Department of Surgery M3, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Emergency Institute for Cardiovascular Diseases and Transplantation Targu Mures, 540136 Targu Mures, Romania
- Romanian Academy of Medical Sciences, 030167 Bucharest, Romania
| |
Collapse
|
10
|
Haga SB, Chung WK, Cubano LA, Curry TB, Empey PE, Ginsburg GS, Mangold K, Miyake CY, Prakash SK, Ramsey LB, Rowley R, Rohrer Vitek CR, Skaar TC, Wynn J, Manolio TA. Development of Competency-based Online Genomic Medicine Training (COGENT). Per Med 2023; 20:55-64. [PMID: 36416152 PMCID: PMC10291206 DOI: 10.2217/pme-2022-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
The fields of genetics and genomics have greatly expanded across medicine through the development of new technologies that have revealed genetic contributions to a wide array of traits and diseases. Thus, the development of widely available educational resources for all healthcare providers is essential to ensure the timely and appropriate utilization of genetics and genomics patient care. In 2020, the National Human Genome Research Institute released a call for new proposals to develop accessible, sustainable online education for health providers. This paper describes the efforts of the six teams awarded to reach the goal of providing genetic and genomic training modules that are broadly available for busy clinicians.
Collapse
Affiliation(s)
- Susanne B Haga
- Department of Medicine, Duke University School of Medicine, Program in Precision Medicine, 101 Science Drive, Durham, NC 27708, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620 New York, NY 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luis A Cubano
- National Human Genome Research Institute, Division of Genomic Medicine, 6700B Rockledge Dr, Suite 3100, Bethesda, MD 20892-6908, USA
| | - Timothy B Curry
- Center for Individualized Medicine, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Anesthesia & Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Philip E Empey
- Department of Pharmacy & Therapeutics, Pharmacogenomics Center of Excellence, University of Pittsburgh School of Pharmacy, 9064 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Geoffrey S Ginsburg
- National Institutes of Health, All of Us Research Program, Bethesda, MD 20892, USA
| | - Kara Mangold
- Center for Individualized Medicine, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Christina Y Miyake
- Department of Pediatrics, Texas Children’s Hospital, 6651 Main Street, Suite E1960.22, Houston, TX 77030, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Siddharth K Prakash
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Laura B Ramsey
- Divisions of Clinical Pharmacology & Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Robb Rowley
- National Human Genome Research Institute, Division of Genomic Medicine, 6700B Rockledge Dr, Suite 3100, Bethesda, MD 20892-6908, USA
| | - Carolyn R Rohrer Vitek
- Center for Individualized Medicine, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Todd C Skaar
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620 New York, NY 10032, USA
| | - Teri A Manolio
- National Human Genome Research Institute, Division of Genomic Medicine, 6700B Rockledge Dr, Suite 3100, Bethesda, MD 20892-6908, USA
| |
Collapse
|
11
|
Luperchio TR, Kozel BA. Extending the spectrum in aortopathy: stenosis to aneurysm. Curr Opin Genet Dev 2022; 76:101962. [DOI: 10.1016/j.gde.2022.101962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 11/03/2022]
|
12
|
Crucial Genes in Aortic Dissection Identified by Weighted Gene Coexpression Network Analysis. J Immunol Res 2022; 2022:7585149. [PMID: 35178459 PMCID: PMC8844153 DOI: 10.1155/2022/7585149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023] Open
Abstract
Background Aortic dissection (AD) is a lethal vascular disease with high mortality and morbidity. Though AD clinical pathology is well understood, its molecular mechanisms remain unclear. Specifically, gene expression profiling helps illustrate the potential mechanism of aortic dissection in terms of gene regulation and its modification by risk factors. This study was aimed at identifying the genes and molecular mechanisms in aortic dissection through bioinformatics analysis. Method Nine patients with AD and 10 healthy controls were enrolled. The gene expression in peripheral mononuclear cells was profiled through next-generation RNA sequencing. Analyses including differential expressed gene (DEG) via DEGseq, weighted gene coexpression network (WGCNA), and VisANT were performed to identify crucial genes associated with AD. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was also utilized to analyze Gene Ontology (GO). Results DEG analysis revealed that 1,113 genes were associated with AD. Of these, 812 genes were markedly reduced, whereas 301 genes were highly expressed, in AD patients. DEGs were rich in certain categories such as MHC class II receptor activity, MHC class II protein complex, and immune response genes. Gene coexpression networks via WGCNA identified 3 gene hub modules, with one positively and 2 negatively correlated with AD, respectively. Specifically, module 37 was the most strongly positively correlated with AD with a correlation coefficient of 0.72. Within module 37, five hub genes (AGFG1, MCEMP1, IRAK3, KCNE1, and CLEC4D) displayed high connectivity and may have clinical significance in the pathogenesis of AD. Conclusion Our analysis provides the possible association of specific genes and gene modules for the involvement of the immune system in aortic dissection. AGFG1, MCEMP1, IRAK3, KCNE1, and CLEC4D in module M37 were highly connected and strongly linked with AD, suggesting that these genes may help understand the pathogenesis of aortic dissection.
Collapse
|