Sinha M, Maged R, Tarar P, Bandi VV, Koneru HM, Sarwar H. Efficacy of Traditional Anti-lipidemic Drugs in Lowering Lipoprotein(a) Levels: A Systematic Review.
Cureus 2024;
16:e69824. [PMID:
39435209 PMCID:
PMC11491766 DOI:
10.7759/cureus.69824]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Lipoprotein(a), or Lp(a), was identified in the early 1960. Its role as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD) became widely recognized by the late 20th century, regardless of other traditional risk markers such as low-density lipoproteins and high-density lipoproteins. This study aimed to systematically review available literature and compare the efficacy of different lipid-lowering drugs, both approved for clinical use and currently undergoing trials, in lowering Lp(a) levels. A comprehensive search of medical databases including PubMed, PubMed Central (PMC), Medline, ScienceDirect, Cochrane Library, and Google Scholar was conducted to identify relevant studies. A total of 29 research papers met the inclusion criteria, focusing on the impact of various lipid-lowering drugs on Lp(a) concentration in patients with significantly elevated baseline Lp(a) levels. Plasma Lp(a) levels exceeding 30 mg/dL are associated with a higher risk of ASCVD, including myocardial infarction, stroke, aortic valve stenosis, heart failure, peripheral arterial disease, and increased all-cause mortality. Most commonly used lipid-lowering agents, such as statins, fibrates, ezetimibe, and nutraceuticals like coenzyme Q10 (CoQ10), showed no significant effect on Lp(a) plasma levels. However, Lp(a) apheresis and proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors were found to effectively reduce plasma Lp(a) concentrations. Emerging therapies targeting apolipoprotein(a) RNA, including anti-sense oligonucleotides (ASO) and small interfering RNA (siRNA), significantly reduced Lp(a) levels in Phase 2 trials. While several lipid-lowering agents have minimal impact on Lp(a) levels, therapies like Lp(a) apheresis, PCSK-9 inhibitors, and novel RNA-targeting drugs show promise in effectively reducing Lp(a) concentrations. However, whether these reductions translate into decreased cardiovascular events remains to be determined.
Collapse