1
|
Apelin and its ratio to lipid factors are associated with cardiovascular diseases: A systematic review and meta-analysis. PLoS One 2022; 17:e0271899. [PMID: 35913970 PMCID: PMC9342781 DOI: 10.1371/journal.pone.0271899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background
The present systematic review and meta-analysis aimed to ascertain if the circulating levels of apelin, as an important regulator of the cardiovascular homeostasis, differ in patients with cardiovascular diseases (CVDs) and controls.
Methods
A comprehensive search was performed in electronic databases including PubMed, Scopus, EMBASE, and Web of Science to identify the studies addressing apelin in CVD up to April 5, 2021. Due to the presence of different units to measure the circulating levels of apelin across the included studies, they expressed the standardized mean difference (SMD) and their 95% confidence interval (CI) as summary effect size. A random-effects model comprising DerSimonian and Laird method was used to pool SMDs.
Results
Twenty-four articles (30 studies) comprised of 1793 cases and 1416 controls were included. Pooled results obtained through random-effects model indicated that apelin concentrations in the cases’ blood samples were significantly lower than those of the control groups (SMD = -0.72, 95% CI: -1.25, -0.18, P = 0.009; I2 = 97.3%, P<0.001). New combined biomarkers showed a significant decrease in SMD of apelin/high-density lipoprotein cholesterol (apelin/HDL-C) ratio [-5.17; 95% CI, -8.72, -1.63, P = 0.000; I2 = 99.0%], apelin/low-density lipoprotein cholesterol (apelin/LDL-C) ratio [-4.31; 95% CI, -6.08, -2.55, P = 0.000; I2 = 98.0%] and apelin/total cholesterol (apelin/TC) ratio [-17.30; 95% CI, -22.85, -11.76, P = 0.000; I2 = 99.1%]. However, no significant differences were found in the SMD of apelin/triacylglycerol (apelin/TG) ratio in cases with CVDs compared to the control group [-2.96; 95% CI, -7.41, 1.49, P = 0.000; I2 = 99.2%].
Conclusion
The association of apelin with CVDs is different based on the region and disease subtypes. These findings account for the possible usefulness of apelin as an additional biomarker in the diagnosis of CVD in diabetic patients and in the diagnosis of patients with CAD. Moreover, apelin/HDL-c, apelin/LDL-c, and apelin/TC ratios could be offered as diagnostic markers for CVD.
Collapse
|
2
|
Chapman FA, Nyimanu D, Maguire JJ, Davenport AP, Newby DE, Dhaun N. The therapeutic potential of apelin in kidney disease. Nat Rev Nephrol 2021; 17:840-853. [PMID: 34389827 PMCID: PMC8361827 DOI: 10.1038/s41581-021-00461-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a leading cause of global morbidity and mortality and is independently associated with cardiovascular disease. The mainstay of treatment for CKD is blockade of the renin-angiotensin-aldosterone system (RAAS), which reduces blood pressure and proteinuria and slows kidney function decline. Despite this treatment, many patients progress to kidney failure, which requires dialysis or kidney transplantation, and/or die as a result of cardiovascular disease. The apelin system is an endogenous physiological regulator that is emerging as a potential therapeutic target for many diseases. This system comprises the apelin receptor and its two families of endogenous ligands, apelin and elabela/toddler. Preclinical and clinical studies show that apelin receptor ligands are endothelium-dependent vasodilators and potent inotropes, and the apelin system has a reciprocal relationship with the RAAS. In preclinical studies, apelin regulates glomerular haemodynamics and acts on the tubule to promote aquaresis. In addition, apelin is protective in several kidney injury models. Although the apelin system has not yet been studied in patients with CKD, the available data suggest that apelin is a promising potential therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Duuamene Nyimanu
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK.
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Kim YM, Lakin R, Zhang H, Liu J, Sachedina A, Singh M, Wilson E, Perez M, Verma S, Quertermous T, Olgin J, Backx PH, Ashley EA. Apelin increases atrial conduction velocity, refractoriness, and prevents inducibility of atrial fibrillation. JCI Insight 2020; 5:126525. [PMID: 32879139 PMCID: PMC7526452 DOI: 10.1172/jci.insight.126525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/22/2020] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown an association between elevated atrial NADPH-dependent oxidative stress and decreased plasma apelin in patients with atrial fibrillation (AF), though the basis for this relationship is unclear. In the current study, RT-PCR and immunofluorescence studies of human right atrial appendages (RAAs) showed expression of the apelin receptor, APJ, and reduced apelin content in the atria, but not in plasma, of patients with AF versus normal sinus rhythm. Disruption of the apelin gene in mice increased (2.4-fold) NADPH-stimulated superoxide levels and slowed atrial conduction velocities in optical mapping of a Langendorff-perfused isolated heart model, suggesting that apelin levels may influence AF vulnerability. Indeed, in mice with increased AF vulnerability (induced by chronic intense exercise), apelin administration reduced the incidence and duration of induced atrial arrhythmias in association with prolonged atrial refractory periods. Moreover, apelin decreased AF induction in isolated atria from exercised mice while accelerating conduction velocity and increasing action potential durations. At the cellular level, these changes were associated with increased atrial cardiomyocyte sodium currents. These findings support the conclusion that reduced atrial apelin is maladaptive in fibrillating human atrial myocardium and that increasing apelin bioavailability may be a worthwhile therapeutic strategy for treating and preventing AF.
Collapse
Affiliation(s)
- Young M Kim
- Division of Cardiovascular Medicine, Stanford Medicine, Stanford, California, USA
| | - Robert Lakin
- Department of Biology, York University, Toronto, Ontario, Canada.,Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Hao Zhang
- Division of Cardiovascular Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jack Liu
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Ayaaz Sachedina
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Maneesh Singh
- Division of Cardiovascular Medicine, Stanford Medicine, Stanford, California, USA
| | - Emily Wilson
- Division of Cardiovascular Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Marco Perez
- Division of Cardiovascular Medicine, Stanford Medicine, Stanford, California, USA
| | - Subodh Verma
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford Medicine, Stanford, California, USA
| | - Jeffrey Olgin
- Division of Cardiovascular Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Peter H Backx
- Department of Biology, York University, Toronto, Ontario, Canada.,Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Euan A Ashley
- Division of Cardiovascular Medicine, Stanford Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Apelin and Atrial Fibrillation: The Role in the Arrhythmia Recurrence Prognosis. DISEASE MARKERS 2018; 2018:5285392. [PMID: 29721104 PMCID: PMC5867588 DOI: 10.1155/2018/5285392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/10/2018] [Accepted: 02/05/2018] [Indexed: 01/23/2023]
Abstract
Apelin is a novel peptide of wide expression and multiple biological functions including the crucial role in cardiovascular homeostasis. The apelin role in the pathophysiology of heart rhythm disorders is considered, although the reports are scarce so far. The purpose of this study is to investigate the potential utility of apelin as a marker of arrhythmia recurrence after direct-current cardioversion (DC). The prospective, observational study included 60 patients (aged 41–86; 30% female) with nonvalvular, persistent atrial fibrillation from the group of 204 consecutive patients scheduled for DC during the 12-month period (from May 2010 to May 2011) in the Cardiology Clinic Medical University of Lodz, Poland. The study group was divided into SCD (successful DC), 45 (75%) patients, and NDC (nonsuccessful DC), 15 (25%) patients. Within the SCD group, the subgroups were distinguished depending on the time sinus rhythm maintenance after DC: up to 7 days (SDC-7), 11 patients; 7 to 30 days (SDC-30), 12 patients; over 90 days (SDC-90), 22 patients. Patients were evaluated during the hospitalization and within the 3-month follow-up period. The apelin level was determined within the plasma samples collected at the admission, using the commercially available enzyme-linked immunosorbent assay (ELISA) Kit for apelin-36. It was found that the median value of initial apelin in the subset of patients from groups NDC + SDC-7 + SDC-30 is significantly higher than from group SDC-90 (p = 0.0463); there was no relationship between NDC and SCD overall. Neither of the compared subgroup pairs revealed statistically significant correlation between the proBNP concentration and the DC effectiveness in our population. In conclusion, in our study, proBNP was not a marker of arrhythmia recurrence whereas higher apelin concentration at the admission indicated patients in whom DC was not effective or they had an arrhythmia recurrence within a month-period observation.
Collapse
|
5
|
Riazian M, Khorrami E, Alipoor E, Moradmand S, Yaseri M, Hosseinzadeh-Attar MJ. Assessment of Apelin Serum Levels in Persistent Atrial Fibrillation and Coronary Artery Disease. Am J Med Sci 2016; 352:354-359. [DOI: 10.1016/j.amjms.2016.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/06/2016] [Accepted: 06/24/2016] [Indexed: 01/21/2023]
|