1
|
Rivas VN, Tan AWK, Shaverdian M, Nguyen NP, Wouters JR, Stern JA, Li RHL. A novel ITGA2B double cytosine frameshift variant (c.1986_1987insCC) leads to Glanzmann's thrombasthenia in a cat. J Vet Intern Med 2024; 38:1408-1417. [PMID: 38426552 PMCID: PMC11099703 DOI: 10.1111/jvim.17030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Glanzmann's thrombasthenia (GT) is a congenital platelet disorder affecting approximately 1:1 000 000 people globally and characterized by impaired platelet aggregation and clot retraction. Autosomal recessive, loss-of-function, variants in ITGA2B or ITGB3 of the αIIbβ3 receptor cause the disease in humans. A cat affected by Glanzmann's and macrothrombocytopenia was presented to the UC Davis VMTH. HYPOTHESIS/OBJECTIVES Severe thrombopathia in this cat has an underlying genetic etiology. ANIMALS A single affected patient, 2 age-matched clinically healthy controls, and a geriatric population (n = 20) of normal cats. METHODS Physical examination and clinical pathology tests were performed on the patient. Flow cytometry and platelet aggregometry analyses for patient phenotyping were performed. Patient and validation cohort gDNA samples were extracted for Sanger sequencing of a previously identified ITGA2B (c.1986delC) variant. Reverse transcriptase PCR was performed on patient and healthy control PRP samples to verify ITGA2B variant consequence. RESULTS A novel c.1986_1987insCC autosomal recessive variant in ITGA2B was identified. This variant was absent in a population of 194 unrelated cats spanning 44 different breeds. Complete loss of ITGA2B transcript and protein expression was verified by RT-PCR and flow cytometry, explaining the underlying etiology of GT, and likely macrothrombocytopenia, in this cat. CONCLUSIONS AND CLINICAL IMPORTANCE This study emphasizes the role of precision medicine in cardiovascular disease of cats and identified yet another variant that may be of utility for screening in the feline population. This study provides a small-volume, standardized, successful protocol for adequate platelet RNA isolation and subsequent molecular assessment of gene expression in cats.
Collapse
Affiliation(s)
- Victor N. Rivas
- Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of California‐DavisDavisCaliforniaUSA
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Avalene W. K. Tan
- Department of Surgical and Radiological Sciences, School of Veterinary MedicineUniversity of California‐DavisDavisCaliforniaUSA
| | - Meg Shaverdian
- Department of Surgical and Radiological Sciences, School of Veterinary MedicineUniversity of California‐DavisDavisCaliforniaUSA
| | - Nghi P. Nguyen
- Department of Surgical and Radiological Sciences, School of Veterinary MedicineUniversity of California‐DavisDavisCaliforniaUSA
| | - Jalena R. Wouters
- Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of California‐DavisDavisCaliforniaUSA
| | - Joshua A. Stern
- Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of California‐DavisDavisCaliforniaUSA
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ronald H. L. Li
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Department of Surgical and Radiological Sciences, School of Veterinary MedicineUniversity of California‐DavisDavisCaliforniaUSA
| |
Collapse
|
2
|
One Health: Animal Models of Heritable Human Bleeding Diseases. Animals (Basel) 2022; 13:ani13010087. [PMID: 36611696 PMCID: PMC9818017 DOI: 10.3390/ani13010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022] Open
Abstract
Animal models of human and animal diseases have long been used as the lynchpin of experimental and clinical research. With the discovery and implementation of novel molecular and nano-technologies, cellular research now has advanced to assessing signal transduction pathways, gene editing, and gene therapies. The contribution of heritable animal models to human and animal health as related to hemostasis is reviewed and updated with the advent of gene editing, recombinant and gene therapies.
Collapse
|
3
|
Clark JA, Hooser SB, Dreger DL, Burcham GN, Ekenstedt KJ. Investigation of a common canine factor VII deficiency variant in dogs with unexplained bleeding on autopsy. J Vet Diagn Invest 2022; 34:806-812. [PMID: 35949113 PMCID: PMC9446296 DOI: 10.1177/10406387221118581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The factor VII (FVII) protein is an integral component of the extrinsic coagulation pathway. Deleterious variants in the gene encoding this protein can result in factor VII deficiency (FVIID), a bleeding disorder characterized by abnormal (slowed) clotting with a wide range of severity, from asymptomatic to life-threatening. In canids, a single FVIID-associated variant, first described in Beagles, has been observed in 24 breeds and mixed-breed dogs. Because this variant is present in breeds of diverse backgrounds, we hypothesized that it could be a contributing factor to unexplained bleeding observed in some canine autopsy cases. DNA was extracted from paraffin-embedded tissue samples from 67 anticoagulant-negative autopsy cases with unexplained etiology for gross lesions of hemorrhage. Each dog was genotyped for the c.407G>A (F71) variant. Experimental controls included 3 known heterozygotes and 2 known homozygotes for the F71 variant, 2 normal dogs with known homozygous wild-type genotypes (F7WF7W), and 5 dogs with bleeding at autopsy that tested positive for anticoagulant rodenticide and were genotyped as F7WF7W. All 67 cases tested homozygous for the wild-type allele, indicating that the common FVIID variant was not responsible for the observed unexplained bleeding. Our work demonstrates the usefulness of retrospective studies utilizing veterinary diagnostic laboratory databases and tissue archives for genetic studies. In the case of FVIID, our results suggest that a singular molecular test for the F71 variant is not a high-yield addition to postmortem screening in these scenarios.
Collapse
Affiliation(s)
- Jessica A. Clark
- Department of Basic Medical Sciences, College
of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Stephen B. Hooser
- Animal Disease Diagnostic Laboratory,
Department of Comparative Pathobiology, College of Veterinary Medicine,
Purdue University, West Lafayette, IN, USA
| | - Dayna L. Dreger
- Department of Basic Medical Sciences, College
of Veterinary Medicine, Purdue University, West Lafayette, IN, USA. Current
address: National Human Genome Research Institute, NIH, Bethesda, MD,
USA
| | - Grant N. Burcham
- Animal Disease Diagnostic Laboratory,
Department of Comparative Pathobiology, College of Veterinary Medicine,
Purdue University, West Lafayette, IN, USA
| | - Kari J. Ekenstedt
- Department of Basic Medical Sciences, College
of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Cremer SE, Catalfamo JL, Goggs R, Seemann SE, Kristensen AT, Szklanna PB, Maguire PB, Brooks MB. The canine activated platelet secretome (CAPS): A translational model of thrombin-evoked platelet activation response. Res Pract Thromb Haemost 2021; 5:55-68. [PMID: 33537530 PMCID: PMC7845059 DOI: 10.1002/rth2.12450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Domestic dogs represent a translational animal model to study naturally occurring human disease. Proteomics has emerged as a promising tool for characterizing human platelet pathophysiology; thus a detailed characterization of the core canine activated platelet secretome (CAPS) will enhance utilization of the canine model. The objectives of this study were development of a robust, high throughput, label-free approach for proteomic identification and quantification of the canine platelet (i) thrombin releasate proteins, and (ii) the protein subgroup that constitutes CAPS. METHODS Platelets were isolated from 10 healthy dogs and stimulated with 50 nmol/L of γ-thrombin or saline. Proteins were in-solution trypsin-digested and analyzed by nano-liquid chromatography-tandem spectrometry. Core releasate proteins were defined as those present in 10 of 10 dogs, and CAPS defined as releasate proteins with a significantly higher abundance in stimulated versus saline controls (corrected P < .05). RESULTS A total of 2865 proteins were identified; 1126 releasate proteins were present in all dogs, 650 were defined as CAPS. Among the differences from human platelets were a canine lack of platelet factor 4 and vascular endothelial growth factor C, and a 10- to 20-fold lower concentration of proteins such as haptoglobin, alpha-2 macroglobulin, von Willebrand factor, and amyloid-beta A4. Twenty-eight CAPS proteins, including cytokines, adhesion molecules, granule proteins, and calcium regulatory proteins have not previously been attributed to human platelets. CONCLUSIONS CAPS proteins represent a robust characterization of a large animal platelet secretome and a novel tool to model platelet physiology, pathophysiology, and to identify translational biomarkers of platelet-mediated disease.
Collapse
Affiliation(s)
- Signe E. Cremer
- Department of Veterinary Clinical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| | - James L. Catalfamo
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| | - Robert Goggs
- Department of Clinical SciencesCornell UniversityIthacaNYUSA
| | - Stefan E. Seemann
- Department of Veterinary and Animal SciencesCenter for Non‐coding RNA in Technology and HealthUniversity of CopenhagenCopenhagenDenmark
| | | | - Paulina B. Szklanna
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Patricia B. Maguire
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Marjory B. Brooks
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| |
Collapse
|
5
|
Cortese L, Christopherson PW, Pelagalli A. Platelet Function and Therapeutic Applications in Dogs: Current Status and Future Prospects. Animals (Basel) 2020; 10:E201. [PMID: 31991713 PMCID: PMC7071006 DOI: 10.3390/ani10020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Significant progress has been made in the functional characterization of canine platelets in the last two decades. The role of canine platelets in hemostasis includes their adhesion to the subendothelium, activation, and aggregation, leading to primary clot formation at the site of injury. Studies on canine platelet function and advancements in laboratory testing have improved the diagnosis and understanding of platelet-related disorders as well as the knowledge of the mechanisms behind these diseases. This review focuses on the most recent discoveries in canine platelet structure, function, and disorders; and discusses the efficacy of various tests in the diagnosis of platelet-related disorders. With the relatively recent discovery of angiogenetic and reparative effects of growth factors found in platelets, this review also summarizes the use of canine platelet-rich plasma (PRP) alone or in association with stem cells in regenerative therapy. The characterization of proteomic and lipidomic profiles and development of platelet gene therapy in veterinary species are areas of future study with potential for major therapeutic benefits.
Collapse
Affiliation(s)
- Laura Cortese
- Department of Veterinary Medicine and Animal Productions, Division of Internal Medicine, University of Naples Federico II, Via Delpino, 1, 80137 Naples, Italy;
| | - Pete W. Christopherson
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
6
|
Proteomic profiling of the thrombin-activated canine platelet secretome (CAPS). PLoS One 2019; 14:e0224891. [PMID: 31721811 PMCID: PMC6853320 DOI: 10.1371/journal.pone.0224891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022] Open
Abstract
Domestic dogs share the same environment as humans, and they represent a valuable animal model to study naturally-occurring human disease. Platelet proteomics holds promise for the discovery of biomarkers that capture the contribution of platelets to the pathophysiology of many disease states, however, canine platelet proteomic studies are lacking. Our study objectives were to establish a protocol for proteomic identification and quantification of the thrombin-activated canine platelet secretome (CAPS), and to compare the CAPS proteins to human and murine platelet proteomic data. Washed platelets were isolated from healthy dogs, and stimulated with saline (control) or gamma-thrombin (releasate). Proteins were separated by SDS-page, trypsin-digested and analyzed by liquid chromatography and tandem mass spectrometry (MS). CAPS proteins were defined as those with a MS1-abundance ratio of two or more for releasate vs. unstimulated saline control. A total of 1,918 proteins were identified, with 908 proteins common to all dogs and 693 characterized as CAPS proteins. CAPS proteins were similar to human and murine platelet secretomes and were highly represented in hemostatic pathways. Differences unique to CAPS included replacement of platelet factor 4 with other cleavage products of platelet basic protein (e.g. interleukin-8), novel proteins (e.g. C-C motif chemokine 14), and proteins in relatively high (e.g. protease nexin-1) or low (e.g. von Willebrand factor) abundance. This study establishes the first in-depth platelet releasate proteome from healthy dogs with a reference database of 693 CAPS proteins. Similarities between CAPS and the human secretome confirm the utility of dogs as translational models of human disease, but we also identify differences unique to canine platelets. Our findings provide a resource for further investigations into disease-related CAPS profiles, and for comparative pathway analyses of platelet activation among species.
Collapse
|
7
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Haysom LZ, Kennerly RM, Müller RD, Smith-Carr S, Christopherson PW, Boudreaux MK. Identification and Characterization of Glanzmann Thrombasthenia in 2 Closely Related Mixed-breed Dogs. J Vet Intern Med 2016; 30:642-6. [PMID: 26764135 PMCID: PMC4913590 DOI: 10.1111/jvim.13825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/08/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- L Z Haysom
- Bailey Small Animal Teaching Hospital, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - R M Kennerly
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - R D Müller
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - S Smith-Carr
- Bailey Small Animal Teaching Hospital, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - P W Christopherson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - M K Boudreaux
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| |
Collapse
|
9
|
Parker HG, Gilbert SF. From caveman companion to medical innovator: genomic insights into the origin and evolution of domestic dogs. ACTA ACUST UNITED AC 2015; 5:239-255. [PMID: 28490917 DOI: 10.2147/agg.s57678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The phenotypic and behavioral diversity of the domestic dog has yet to be matched by any other mammalian species. In their current form, which comprises more than 350 populations known as breeds, there is a size range of two orders of magnitude and morphological features reminiscent of not only different species but also different phylogenetic families. The range of both appearance and behavior found in the dog is the product of millennia of human interference, and though humans created the diversity it remains a point of fascination to both lay and scientific communities. In this review we summarize the current understanding of the history of dog domestication based on molecular data. We will examine the ways that canine genetic and genomic studies have evolved and look at examples of dog genetics in the light of human disease.
Collapse
Affiliation(s)
- Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD, 20892 USA
| | - Samuel F Gilbert
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD, 20892 USA
| |
Collapse
|
10
|
LeVine DN, Birkenheuer AJ, Brooks MB, Nordone SK, Bellinger DA, Jones SL, Fischer TH, Oglesbee SE, Frey K, Brinson NS, Peters AP, Marr HS, Motsinger-Reif A, Gudbrandsdottir S, Bussel JB, Key NS. A novel canine model of immune thrombocytopenia: has immune thrombocytopenia (ITP) gone to the dogs? Br J Haematol 2014; 167:110-20. [PMID: 25039744 DOI: 10.1111/bjh.13005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/11/2014] [Indexed: 01/25/2023]
Abstract
Canine immune thrombocytopenia (ITP) is analogous to human ITP, with similar platelet counts and heterogeneity in bleeding phenotype among affected individuals. With a goal of ultimately investigating this bleeding heterogeneity, a canine model of antibody-mediated ITP was developed. Infusion of healthy dogs with 2F9, a murine IgG2a monoclonal antibody to the canine platelet glycoprotein GPIIb (a common target of autoantibodies in ITP) resulted in profound, dose-dependent thrombocytopenia. Model dogs developed variable bleeding phenotypes, e.g. petechiae and haematuria, despite similar degrees of thrombocytopenia. 2F9 infusion was not associated with systemic inflammation, consumptive coagulopathy, or impairment of platelet function. Unexpectedly however, evaluation of cytokine profiles led to the identification of platelets as a potential source of serum interleukin-8 (IL8) in dogs. This finding was confirmed in humans with ITP, suggesting that platelet IL8 may be a previously unrecognized modulator of platelet-neutrophil crosstalk. The utility of this model will allow future study of bleeding phenotypic heterogeneity including the role of neutrophils and endothelial cells in ITP.
Collapse
Affiliation(s)
- Dana N LeVine
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Department of Pathology and Laboratory Animal Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Barr JW, McMichael M. Inherited disorders of hemostasis in dogs and cats. Top Companion Anim Med 2012; 27:53-8. [PMID: 23031456 DOI: 10.1053/j.tcam.2012.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 11/11/2022]
Abstract
Inherited disorders of hemostasis encompass abnormalities in primary hemostasis, coagulation, and fibrinolysis resulting from genetic mutations. There is significant variation in the phenotype expressed ranging from life limiting to the absence of overt clinical signs. Von Willebrand disease is the most common primary hemostatic disorder in dogs, and hemophilia A is the most common coagulation factor disorder. The diagnosis of inherited bleeding disorders is made by functional and/or quantitative evaluation. Genetic testing has added to the knowledge base, allowing prevention through targeted breeding. Avoidance of trauma and injury is paramount in the prevention of bleeding in animals diagnosed with inherited hemostatic disorders. Current therapeutic options include platelet transfusions, broad replacement of coagulation factors (e.g., plasma), targeted factor replacement (e.g., cryoprecipitate), antifibrinolytic agents and specific factor replacement, and treatment of the symptoms (i.e., bleeding) with blood transfusions.
Collapse
Affiliation(s)
- James W Barr
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | | |
Collapse
|
13
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|
14
|
Boudreaux MK. Inherited platelet disorders. J Vet Emerg Crit Care (San Antonio) 2012; 22:30-41. [PMID: 22316339 DOI: 10.1111/j.1476-4431.2011.00702.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 11/22/2011] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To present the latest information on inherited platelet disorders in domestic animals. DATA SOURCES Research articles and reviews spanning 40 years available on PubMed. HUMAN DATA SYNTHESIS Information regarding inherited platelet disorders in people is plentiful and often descriptions of human conditions have led to the identification of similar disorders in veterinary species. There are exceptions, however, in which specific inherited platelet disorders were first described in animals with subsequent identification in people. VETERINARY DATA SYNTHESIS Many inherited platelet disorders have been documented in animals at the functional and molecular level and that information is presented in this review. CONCLUSIONS Much progress has been made in the past 20 years in the characterization of inherited platelet disorders in animals at the functional, biochemical, and molecular level. The study of inherited platelet disorders has greatly enhanced the understanding of platelet physiology and has led in some instances to the development of platelet inhibitory medications. Characterization of inherited disorders at the molecular level greatly facilitates diagnosis and identification of affected and heterozygous animals thus avoiding propagation of the defect by breeders. When used with available functional and biochemical diagnostic tests, it significantly enhances the quality of care and case management.
Collapse
Affiliation(s)
- Mary K Boudreaux
- From the Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849-5519, USA.
| |
Collapse
|
15
|
Evaluation and clinical application of platelet function testing in small animal practice. Vet Clin North Am Small Anim Pract 2011; 42:173-88. [PMID: 22285164 DOI: 10.1016/j.cvsm.2011.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tests that evaluate many aspects of platelet function have been applied in both human and veterinary medicine for the monitoring of treatment with platelet function inhibitors and for detection of platelet function abnormalities (inherited or acquired). Interspecies variation in the response to various platelet agonists is an important consideration when methods that have been developed for people are applied in other species. At the present time, many of these assays are not readily available in standard veterinary practice. Advanced platelet function testing for veterinary patients is offered at select academic institutions. Discussion with a specialist is recommended when considering the use of these tests, and the relative strengths and limitations of each assay should be considered in the interpretation of test results.
Collapse
|
16
|
Knudsen T, Kjalke M, Tranholm M, Nichols TC, Jensen AL, Kristensen AT. Development of a flow cytometric assay for detection of coated platelets in dogs and evaluation of binding of coated platelets to recombinant human coagulation factor VIIa. Am J Vet Res 2011; 72:1007-14. [DOI: 10.2460/ajvr.72.8.1007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Parker HG, Shearin AL, Ostrander EA. Man's best friend becomes biology's best in show: genome analyses in the domestic dog. Annu Rev Genet 2011; 44:309-36. [PMID: 21047261 DOI: 10.1146/annurev-genet-102808-115200] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the last five years, canine genetics has gone from map construction to complex disease deconstruction. The availability of a draft canine genome sequence, dense marker chips, and an understanding of the genome architecture has changed the types of studies canine geneticists can undertake. There is now a clear recognition that the dog system offers the opportunity to understand the genetics of both simple and complex traits, including those associated with morphology, disease susceptibility, and behavior. In this review, we summarize recent findings regarding canine domestication and review new information on the organization of the canine genome. We discuss studies aimed at finding genes controlling morphological phenotypes and provide examples of the way such paradigms may be applied to studies of behavior. We also discuss the many ways in which the dog has illuminated our understanding of human disease and conclude with a discussion on where the field is likely headed in the next five years.
Collapse
Affiliation(s)
- Heidi G Parker
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
18
|
Brooks MB, Randolph J, Warner K, Center S. Evaluation of platelet function screening tests to detect platelet procoagulant deficiency in dogs with Scott syndrome. Vet Clin Pathol 2009; 38:306-15. [DOI: 10.1111/j.1939-165x.2009.00141.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Bauer TR, Adler RL, Hickstein DD. Potential large animal models for gene therapy of human genetic diseases of immune and blood cell systems. ILAR J 2009; 50:168-86. [PMID: 19293460 DOI: 10.1093/ilar.50.2.168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genetic mutations involving the cellular components of the hematopoietic system--red blood cells, white blood cells, and platelets--manifest clinically as anemia, infection, and bleeding. Although gene targeting has recapitulated many of these diseases in mice, these murine homologues are limited as translational models by their small size and brief life span as well as the fact that mutations induced by gene targeting do not always faithfully reflect the clinical manifestations of such mutations in humans. Many of these limitations can be overcome by identifying large animals with genetic diseases of the hematopoietic system corresponding to their human disease counterparts. In this article, we describe human diseases of the cellular components of the hematopoietic system that have counterparts in large animal species, in most cases carrying mutations in the same gene (CD18 in leukocyte adhesion deficiency) or genes in interacting proteins (DNA cross-link repair 1C protein and protein kinase, DNA-activated catalytic polypeptide in radiation-sensitive severe combined immunodeficiency). Furthermore, we describe the potential of these animal models to serve as disease-specific preclinical models for testing the efficacy and safety of clinical interventions such as hematopoietic stem cell transplantation or gene therapy before their use in humans with the corresponding disease.
Collapse
Affiliation(s)
- Thomas R Bauer
- Experimental Transplantation and Immunology Branch of the Center for Cancer Research at the National Cancer Institute of the National Institutes of Health in Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
20
|
Boudreaux MK. Characteristics, diagnosis, and treatment of inherited platelet disorders in mammals. J Am Vet Med Assoc 2008; 233:1251-9, 1190. [DOI: 10.2460/javma.233.8.1251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Wilcox DA, White GC. Gene Therapy for Platelet Disorders. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Lee DH, Blajchman MA. Animal Models. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Christopherson PW, Santen VL, Livesey L, Boudreaux MK. A 10-Base-Pair Deletion in the Gene Encoding Platelet Glycoprotein IIb Associated with Glanzmann Thrombasthenia in a Horse. J Vet Intern Med 2007. [DOI: 10.1111/j.1939-1676.2007.tb02947.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Christopherson PW, Insalaco TA, van Santen VL, Livesey L, Bourne C, Boudreaux MK. Characterization of the cDNA Encoding alphaIIb and beta3 in normal horses and two horses with Glanzmann thrombasthenia. Vet Pathol 2006; 43:78-82. [PMID: 16407493 DOI: 10.1354/vp.43-1-78] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glanzmann thrombasthenia (GT) is an inherited, intrinsic platelet defect characterized by a quantitative or qualitative change in the platelet glycoprotein complex IIb-IIIa (integrin alpha(IIb)beta3). The subunits are encoded by separate genes and both subunits must be expressed for a stable complex to form on the platelet surface; therefore, a defect in either gene can result in GT.
Collapse
Affiliation(s)
- P W Christopherson
- Department of Pathobiology, 166 Greene Hall, College of Veterinary Medicine, Auburn University, AL 36849-5519, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Flow cytometry is a powerful tool for characterising the composition of complex cell populations. The accuracy and precision of this technology for describing and enumerating cells exceeds traditional methods. The number of diagnostic veterinary laboratories with access to a dedicated machine is increasing, and there is the potential to offer a clinical flow cytometry service. The improved availability of monoclonal antibodies (mAb) to cell markers expressed by the leukocytes of companion animals, permits the implementation of comprehensive mAb panels suitable for diagnosis of lympho- and myeloproliferative disease. Reticulated erythrocyte and platelet quantification, antiglobulin assays for immune-mediated cytopenias, lymphocyte subset analysis, and immunophenotyping of lymphoma and leukemia, have been validated for companion animal samples on the flow cytometer. It is now timely to consider the role of flow cytometry in diagnostic practice, and the requirement for quality assurance and standardization of testing procedures.
Collapse
Affiliation(s)
- Jacqueline M Tarrant
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK.
| |
Collapse
|
26
|
Brdecka DJ, Adin CA, Boudreaux MK, Crawford EC, Randall SR. Successful ovariectomy in a dog with Glanzmann thrombasthenia. J Am Vet Med Assoc 2004; 224:1796-8, 1788. [PMID: 15198264 DOI: 10.2460/javma.2004.224.1796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ovariectomy was performed in a 7-month-old Great Pyrenees with a severe congenital bleeding disorder. A diagnosis of Glanzmann thrombasthenia, a rare, congenital bleeding disorder characterized by a functional platelet defect, was later confirmed by isolation of genomic DNA from blood and amplification of exon 13 and intron 13 of the gene encoding for platelet glycoprotein subunit alphaIIb. Perioperative management consisted of administration of platelet-rich plasma prior to surgery and the use of high-frequency electrocoagulation to minimize tissue trauma. In addition, ovariectomy, rather than ovariohysterectomy, was performed to minimize surgical exposure required and manipulation of the urogenital tract. Results in this dog suggest that a combination of preoperative transfusion with functional platelets and use of techniques to minimize tissue trauma may allow abdominal surgery to be performed successfully in dogs with functional platelet disorders.
Collapse
Affiliation(s)
- David J Brdecka
- Department of Small Animal Clinical Sciences, Veterinary Medical Teaching Hospital, University of Florida, Gainesville, FL 32610-0126, USA
| | | | | | | | | |
Collapse
|
27
|
Cowan SM, Bartges JW, Gompf RE, Hayes JR, Moyers TD, Snider CC, Gerard DA, Craft RM, Muenchen RA, Carroll RC. Giant platelet disorder in the Cavalier King Charles Spaniel. Exp Hematol 2004; 32:344-50. [PMID: 15050744 DOI: 10.1016/j.exphem.2004.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/19/2003] [Accepted: 01/09/2004] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of this study was to describe the clinical, functional, and morphologic characteristics of platelets in Cavalier King Charles Spaniel dogs (Cavaliers). MATERIALS AND METHODS Blood from 69 clinically normal Cavaliers was collected and anticoagulated with ethylenediamine-tetraacetic acid (EDTA) and citrate. Automated and manual platelet counts were obtained. Percent platelet aggregation in response to ADP (2, 4, 8, 16, and 32 microM) was determined. Electron microscopy was performed to examine platelet internal morphology and dense granule distribution. A cardiologist recorded the quality of murmurs. RESULTS Thrombocytopenia (<100,000/microL) was present in 51.43% (36/69) of Cavaliers. Macrothrombocytes (>3 microm) were present in 33.33% (22/69). Mean manual platelet count was 118,770/microL. Manual (EDTA blood) and automated (EDTA and citrated blood) methods of platelet counting were correlated. Prevalence of cardiac murmurs was 38% (26/69). There was no association between affected dogs and murmur, signalment, or coat color. Mean percent platelet aggregation was significantly higher in controls than in Cavaliers (79% vs 38%, p=0.001). Response to ADP was unaffected by thrombocytopenia, macrothrombocytes, murmur, or any combination thereof. Platelet electron microscopy showed normal and giant sized platelets with normal internal morphology. CONCLUSIONS A benign inherited giant platelet disorder affects approximately 50% of Cavalier King Charles Spaniels. It is characterized by thrombocytopenia, macrothrombocytes, or decreased platelet aggregation in response to ADP. Platelet ultrastructure is normal. Citrated or EDTA blood provides accurate platelet counts. Further studies are indicated to determine platelet glycoprotein structure and any association with mitral endocardiosis. Cavaliers may be useful models of inherited giant platelet disorders.
Collapse
Affiliation(s)
- Sara M Cowan
- University of Tennessee College of Veterinary Medicine, Knoxville, TN 37901, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Current research aimed at correcting platelet defects are designed to further our knowledge in the use of hematopoietic stem cells for gene therapies of hemorrhagic disorders. Information gained from these studies may be directly applicable to treatment of disorders affecting platelets (e.g. Glanzmann's thrombasthenia, Bernard Soulier syndrome, gray platelet syndrome, and von Willebrand disease) as well as other disorders affecting distinct hematopoietic cell lineages. This work specifically addresses three questions: (i) can bone marrow stem cells be given sufficient genetic information to induce abnormal megakaryocytes to synthesize transgene products that help newly formed platelets to participate in normal hemostasis? (ii) can the newly synthesized receptor be maintained as a platelet-specific protein at therapeutic levels for a reasonable period of time? and (iii) will newly expressed proteins be tolerated by the immune system or become a target for B- and T-cell mediated immunity resulting in the premature destruction and clearing of the genetically altered megakaryocytes and platelets? Answers to these questions should indicate the feasibility of targeting platelets with genetic therapies that will in turn enable better management of patients with inherited bleeding disorders. The long-range benefit of this research will be an improved understanding of the regulation of protein expression during normal megakaryocytopoiesis, and the accumulation of additional scientific knowledge about normal platelet function and the way in which platelets and other cells recognize and interact with each other.
Collapse
Affiliation(s)
- D A Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|