1
|
Du H, Wu C, Li C, Fang R, Ma J, Ji J, Li Z, Li N, Peng Y, Zhou Z. Two novel cross‑protective antigens for bovine Pasteurella multocida. Mol Med Rep 2017; 16:4627-4633. [PMID: 28791368 PMCID: PMC5647017 DOI: 10.3892/mmr.2017.7153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/20/2017] [Indexed: 11/12/2022] Open
Abstract
Pasteurella multocida is an important pathogen that leads to a range of diseases that have severe economic consequences on cattle production. In order to develop an effective cross-protective component vaccine, an immunoproteomics approach was used to analyze outer membrane proteins (OMPs) of the P. multocida serotype A, B and F strains. Candidate antigen molecules from the whole genome were screened via linear trap quadrupole mass spectrometry and bioinformatics analysis, and the reactogenicity of the candidate antigen molecules was analyzed via cloning, expression, and ELISA or protein immunoblotting, and the vaccine efficacy of the candidate molecules was determined in infective animal models and cross-protective antigens may be obtained. rPmCQ2_2g0128, rPmCQ2_1g0327 and rPmCQ2_1g0020 proteins were selected. Their protective rates were 40/30/20% (rPmCQ2_2g0128), 50/40/0% (rPmCQ2_1g0327) and 0/40/30% (rPmCQ2_1g0020) against ten-fold median lethal dose (10LD50) of the P. multocida serotypes A, B and F in a mouse model, respectively. The results suggested that the two proteins rPmCQ2_2g0128 and rPmCQ2_1g0327 may be used as vaccine candidates against bovine P. multocida serotypes A, B. To the best of our knowledge, the present study was the first to identify cross-protective antigens, extracted OMPs from bovine P. multocida.
Collapse
Affiliation(s)
- Huihui Du
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Chenlu Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400716, P.R. China
| | - Chunming Li
- College of Animal Science and Technology, Southwest University, Chongqing 400716, P.R. China
| | - Rendong Fang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, P.R. China
| | - Jianwei Ma
- College of Animal Science and Technology, Southwest University, Chongqing 400716, P.R. China
| | - Jiale Ji
- College of Animal Science and Technology, Southwest University, Chongqing 400716, P.R. China
| | - Zhihong Li
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Nengzhang Li
- College of Animal Science and Technology, Southwest University, Chongqing 400716, P.R. China
| | - Yuanyi Peng
- College of Animal Science and Technology, Southwest University, Chongqing 400716, P.R. China
| | - Zeyang Zhou
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
2
|
Li P, Liu Q, Huang C, Zhao X, Roland KL, Kong Q. Reversible synthesis of colanic acid and O-antigen polysaccharides in Salmonella Typhimurium enhances induction of cross-immune responses and provides protection against heterologous Salmonella challenge. Vaccine 2017; 35:2862-2869. [PMID: 28412074 DOI: 10.1016/j.vaccine.2017.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/14/2017] [Accepted: 04/03/2017] [Indexed: 12/26/2022]
Abstract
Colanic Acid (CA) and lipopolysaccharide (LPS) are two major mannose-containing extracellular polysaccharides of Salmonella. Their presence on the bacterial surface can mask conserved protective outer membrane proteins (OMPs) from the host immune system. The mannose moiety in these molecules is derived from GDP-mannose, which is synthesized in several steps. The first two steps require the action of phosphomannose isomerase, encoded by pmi (manA), followed by phosphomannomutase, encoded by manB. There are two copies of manB present in the Salmonella chromosome, one located in the cps gene cluster (cpsG) responsible for CA synthesis, and the other in the rfb gene cluster (rfbK) involved in LPS O-antigen synthesis. In this study, it was demonstrated that the products of cpsG and rfbK are isozymes. To evaluate the impact of these genes on O-antigen synthesis, virulence and immunogenicity, single mutations (Δpmi, ΔrfbK or ΔcpsG) and a double mutation (ΔrfbK ΔcpsG) were introduced into both wild-type Salmonella enterica and an attenuated Δcya Δcrp vaccine strain. The Δpmi, ΔrfbK and ΔcpsG ΔrfbK mutants were defective in LPS synthesis and attenuated for virulence. In orally inoculated mice, strain S122 (Δcrp Δcya ΔcpsG ΔrfbK) and its parent S738 (Δcrp Δcya) were both avirulent and colonized internal tissues. Strain S122 elicited higher levels of anti-S. Typhimurium OMP serum IgG than its parent strain. Mice immunized with S122 were completely protected against challenge with wild-type virulent S. Typhimurium and partially protected against challenge with either wild-type virulent S. Choleraesuis or S. Enteritidis. These data indicate that deletions in rfbK and cpsG are useful mutations for inclusion in future attenuated Salmonella vaccine strains to induce cross-protective immunity.
Collapse
Affiliation(s)
- Pei Li
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chun Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kenneth L Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA.
| |
Collapse
|
3
|
Nowland MH, Brammer DW, Garcia A, Rush HG. Biology and Diseases of Rabbits. LABORATORY ANIMAL MEDICINE 2015. [PMCID: PMC7150064 DOI: 10.1016/b978-0-12-409527-4.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beginning in 1931, an inbred rabbit colony was developed at the Phipps Institute for the Study, Treatment and Prevention of Tuberculosis at the University of Pennsylvania. This colony was used to study natural resistance to infection with tuberculosis (Robertson et al., 1966). Other inbred colonies or well-defined breeding colonies were also developed at the University of Illinois College of Medicine Center for Genetics, the Laboratories of the International Health Division of The Rockefeller Foundation, the University of Utrecht in the Netherlands, and Jackson Laboratories. These colonies were moved or closed in the years to follow. Since 1973, the U.S. Department of Agriculture has reported the total number of certain species of animals used by registered research facilities (1997). In 1973, 447,570 rabbits were used in research. There has been an overall decrease in numbers of rabbits used. This decreasing trend started in the mid-1990s. In 2010, 210,172 rabbits were used in research. Despite the overall drop in the number used in research, the rabbit is still a valuable model and tool for many disciplines.
Collapse
|
4
|
Outer membrane proteome analysis of Indian strain of Pasteurella multocida serotype B:2 by MALDI-TOF/MS analysis. ScientificWorldJournal 2014; 2014:617034. [PMID: 25587569 PMCID: PMC4283227 DOI: 10.1155/2014/617034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/21/2014] [Indexed: 01/10/2023] Open
Abstract
Identification of outer membrane proteins (OMPs) is important to understand the bacteria structure and function, host-pathogen interaction, development of novel vaccine candidates, and diagnostic antigens. But till now the key antigens of P. multocida B:2 isolate causing haemorrhagic septicaemia (HS) in animals are not clearly defined. In this study, P52 strain of P. multocida serotype B:2 was grown in vitro under iron-rich and iron-limited condition. The OMPs were extracted by sarkosyl method followed by SDS-PAGE and the proteins were identified by MALDI-TOF/MS analysis. In total, 22 proteins were identified, of which 7 were observed exclusively under iron-limited condition. Most of the high molecular weight proteins (TbpA, HgbA, HgbB, HasR, IroA, and HemR) identified in this study were involved in iron acquisition. Some hypothetical proteins (HP-KCU-10206, HP and AAUPMB 08244, HP AAUPMB 21592, HP AAUPMB 19766, AAUPMB 11295) were observed for the first time in this study which could be unique to serotype B:2. Further functional in vivo study of the proteins identified are required to explore the utility of these proteins in developing diagnostics and vaccine against HS.
Collapse
|
5
|
Ahmad TA, Rammah SS, Sheweita SA, Haroun M, El-Sayed LH. Development of immunization trials against Pasteurella multocida. Vaccine 2013; 32:909-17. [PMID: 24295805 DOI: 10.1016/j.vaccine.2013.11.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 11/27/2022]
Abstract
Pasteurellosis is one of the most important respiratory diseases facing economically valuable farm animals such as poultry, rabbit, cattle, goats and pigs. It causes severe economic loss due to its symptoms that range from primary local infection to fatal septicemia. Pasteurella multocida is the responsible pathogen for this contagious disease. Chemotherapeutic treatment of Pasteurella is expensive, lengthy, and ineffective due to the increasing antibiotics resistance of the bacterium, as well as its toxicity to human consumers. Though, biosecurity measures played a role in diminishing the spread of the pathogen, the immunization methods were always the most potent preventive measures. Since the early 1950s, several trials for constructing and formulating effective vaccines were followed. This up-to-date review classifies and documents such trials. A section is devoted to discussing each group benefits and defects.
Collapse
Affiliation(s)
- Tarek A Ahmad
- Scientific Support and Projects Section, Bibliotheca Alexandrina, Alexandria, Egypt.
| | - Samar S Rammah
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Salah A Sheweita
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Laila H El-Sayed
- Immunology Department, Medical Researches Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Abstract
In a world where most emerging and reemerging infectious diseases are zoonotic in nature and our contacts with both domestic and wild animals abound, there is growing awareness of the potential for human acquisition of animal diseases. Like other Pasteurellaceae, Pasteurella species are highly prevalent among animal populations, where they are often found as part of the normal microbiota of the oral, nasopharyngeal, and upper respiratory tracts. Many Pasteurella species are opportunistic pathogens that can cause endemic disease and are associated increasingly with epizootic outbreaks. Zoonotic transmission to humans usually occurs through animal bites or contact with nasal secretions, with P. multocida being the most prevalent isolate observed in human infections. Here we review recent comparative genomics and molecular pathogenesis studies that have advanced our understanding of the multiple virulence mechanisms employed by Pasteurella species to establish acute and chronic infections. We also summarize efforts being explored to enhance our ability to rapidly and accurately identify and distinguish among clinical isolates and to control pasteurellosis by improved development of new vaccines and treatment regimens.
Collapse
Affiliation(s)
- Brenda A Wilson
- Department of Microbiology and Host-Microbe Systems Theme of the Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | |
Collapse
|
7
|
Singh S, Singh VP, Cheema PS, Sandey M, Ranjan R, Gupta SK, Sharma B. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida. Braz J Microbiol 2011; 42:750-60. [PMID: 24031690 PMCID: PMC3769852 DOI: 10.1590/s1517-838220110002000043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 01/13/2011] [Indexed: 11/29/2022] Open
Abstract
Haemorrhagic Septicaemia (HS), an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA) has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS.
Collapse
Affiliation(s)
- Satparkash Singh
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute , Izatnagar-243122 , India
| | | | | | | | | | | | | |
Collapse
|
8
|
Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res 2006; 37:511-39. [PMID: 16611561 DOI: 10.1051/vetres:2006014] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 01/10/2006] [Indexed: 12/21/2022] Open
Abstract
In developing veterinary mucosal vaccines and vaccination strategies, mucosal adjuvants are one of the key players for inducing protective immune responses. Most of the mucosal adjuvants seem to exert their effect via binding to a receptor/or target cells and these properties were used to classify the mucosal adjuvants reviewed in the present paper: (1) ganglioside receptor-binding toxins (cholera toxin, LT enterotoxin, their B subunits and mutants); (2) surface immunoglobulin binding complex CTA1-DD; (3) TLR4 binding lipopolysaccharide; (4) TLR2-binding muramyl dipeptide; (5) Mannose receptor-binding mannan; (6) Dectin-1-binding ss 1,3/1,6 glucans; (7) TLR9-binding CpG-oligodeoxynucleotides; (8) Cytokines and chemokines; (9) Antigen-presenting cell targeting ISCOMATRIX and ISCOM. In addition, attention is given to two adjuvants able to prime the mucosal immune system following a systemic immunization, namely 1alpha, 25(OH)2D3 and cholera toxin.
Collapse
Affiliation(s)
- Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
9
|
Prado ME, Dabo SM, Confer AW. Immunogenicity of iron-regulated outer membrane proteins of Pasteurella multocida A:3 in cattle: molecular characterization of the immunodominant heme acquisition system receptor (HasR) protein. Vet Microbiol 2005; 105:269-80. [PMID: 15708825 DOI: 10.1016/j.vetmic.2004.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 11/12/2004] [Accepted: 11/17/2004] [Indexed: 11/20/2022]
Abstract
The iron-regulated outer membrane proteins (IROMPs) of Pasteurella multocida A:3 strain 232 (Pm232), a bovine isolate, were investigated as potential immunogens in cattle. We addressed the ability of P. multocida IROMP-enriched fractions to induce antibody responses in cattle by different vaccination strategies and the protective efficacy of these antibodies using a P. multocida-induced pneumonia challenge model. Vaccination of cattle with outer membrane-enriched fractions derived from Pm232 grown on either iron-depleted (IROMPs) or iron-sufficient (OMPs) conditions induced significant antibody responses; however, the correlation with lung lesion scores was not significant (P = 0.01 and P < 0.07, respectively). SDS-PAGE, Western blots and densitometric analyses of Pm232 grown under iron-deficient conditions revealed five major IROMPs including an immunodominant 96 kDa protein band. Mass spectrometry analysis of the 96kDa protein band suggested homology with the heme acquisition system receptor (HasR) of avian P. multocida (strain Pm70) and was confirmed by DNA sequence analysis of the cloned Pm232 hasR gene. Further analyses indicated that Pm232 HasR is a surface-exposed OMP and conserved among most P. multocida isolates investigated. In addition, cattle vaccinated with live Pm232 or IROMPs had significantly higher antibody responses to the 96 kDa protein band and the correlation with lung lesion scores approached significance (P = 0.056). These results indicate that antibody responses in cattle are induced by P. multocida IROMPs, and that the 96 kDa HasR protein is an immunodominant IROMP.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/blood
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Proteins/immunology
- Bacterial Vaccines/immunology
- Base Sequence
- Blotting, Western/veterinary
- Cattle
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel/veterinary
- Enzyme-Linked Immunosorbent Assay/veterinary
- Female
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Iron/metabolism
- Iron-Binding Proteins
- Molecular Weight
- Pasteurella multocida/immunology
- Pasteurellosis, Pneumonic/immunology
- Pasteurellosis, Pneumonic/prevention & control
- Periplasmic Binding Proteins
- Random Allocation
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Vaccination/veterinary
Collapse
Affiliation(s)
- M E Prado
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, RM 250 McElroy Hall, Stillwater, OK 74078-2007, USA
| | | | | |
Collapse
|
10
|
Peacock JW, Nordone SK, Jackson SS, Liao HX, Letvin NL, Yafal AG, Gritz L, Mazzara GP, Haynes BF, Staats HF. Gender differences in human immunodeficiency virus type 1-specific CD8 responses in the reproductive tract and colon following nasal peptide priming and modified vaccinia virus Ankara boosting. J Virol 2004; 78:13163-72. [PMID: 15542668 PMCID: PMC524967 DOI: 10.1128/jvi.78.23.13163-13172.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 03/24/2004] [Indexed: 11/20/2022] Open
Abstract
Induction of mucosal anti-human immunodeficiency virus type 1 (HIV-1) T-cell responses in males and females will be important for the development of a successful HIV-1 vaccine. An HIV-1 envelope peptide, DNA plasmid, and recombinant modified vaccinia virus Ankara (rMVA) expressing the H-2D(d)-restricted cytotoxic T lymphocyte P18 epitope were used as immunogens to test for their ability to prime and boost anti-HIV-1 T-cell responses at mucosal and systemic sites in BALB/c mice. We found of all prime-boost combinations tested, an HIV-1 Env peptide subunit mucosal prime followed by systemic (intradermal) boosting with rMVA yielded the maximal induction of gamma interferon (IFN-gamma) spot-forming cells in the female genital tract and colon. However, this mucosal prime-systemic rMVA boost regimen was minimally immunogenic for the induction of genital, colon, or lung anti-HIV-1 T-cell responses in male mice. We determined that a mucosal Env subunit immunization could optimally prime an rMVA boost in female but not male mice, as determined by the magnitude of antigen-specific IFN-gamma responses in the reproductive tracts, colon, and lung. Defective mucosal priming in male mice could not be overcome by multiple mucosal immunizations. However, rMVA priming followed by an rMVA boost was the optimal prime-boost strategy for male mice as determined by the magnitude of antigen-specific IFN-gamma responses in the reproductive tract and lung. Thus, prime-boost immunization strategies able to induce mucosal antigen-specific IFN-gamma responses were identified for male and female mice. Understanding the cellular and molecular basis of gender-determined immune responses will be important for optimizing induction of anti-HIV-1 mucosal immune responses in both males and females.
Collapse
Affiliation(s)
- James W Peacock
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jordan MC, Harrington JR, Cohen ND, Tsolis RM, Dangott LJ, Weinberg ED, Martens RJ. Effects of iron modulation on growth and viability of Rhodococcus equi and expression of virulence-associated protein A. Am J Vet Res 2004; 64:1337-46. [PMID: 14620767 DOI: 10.2460/ajvr.2003.64.1337] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the importance of iron for in vitro growth of Rhodococcus equi, define potential iron sources in the environment and mechanisms by which R equi may obtain iron from the environment, and assess expression and immunogenicity of iron-regulated proteins. SAMPLE POPULATION 10 virulent and 11 avirulent strains of R equi. PROCEDURE In vitro growth rates and protein patterns of R equi propagated in media with normal, excess, or limited amounts of available iron were compared. Immunoblot analyses that used serum from foals naturally infected with R equi and monoclonal antibody against virulence-associated protein (Vap)A were conducted to determine immunogenicity and identity of expressed proteins. RESULTS Excess iron did not alter growth of any R equi strains, whereas growth of all strains was significantly decreased in response to limited amounts of available iron. Virulent R equi were able to use iron from ferrated deferoxamine, bovine transferrin, and bovine lactoferrin. Only virulent R equi expressed an iron-regulated, immunogenic, surface-associated protein identified as VapA. CONCLUSIONS AND CLINICAL RELEVANCE Iron is required for the growth and survival of R equi. Sources of iron for R equi, and mechanisms by which R equi acquire iron in vivo, may represent important virulence factors and novel targets for the development of therapeutic and immunoprophylactic strategies to control R equi infection in foals. Expression of VapA is substantially upregulated when there is a limited amount of available iron.
Collapse
Affiliation(s)
- Misty C Jordan
- Department of Large Animal Medicine and Surgery, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Peshev R, Christova L. The efficacy of a bivalent vaccine against pasteurellosis and rabbit haemorrhagic disease virus. Vet Res Commun 2003; 27:433-44. [PMID: 14582742 DOI: 10.1023/a:1025733522884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rabbit haemorrhagic disease virus (RHDV) and Pasteurella multocida bacteria cause severe losses among rabbit populations. The efficacy of a recently developed bivalent vaccine against pasteurellosis and RHDV was investigated. Doses exceeding 2 haemagglutinating units (HU) of viral antigen were sufficient to protect rabbits against infection with RHDV. The bivalent vaccine appeared to be safe for use in all age groups of rabbits, including pregnant females, even after treatment with 20 times the normal vaccine dose. Rabbits injected with 8 or 4 HU of bivalent vaccine showed high antibody titres against both organisms for 9 months after inoculation. The antibody levels against RHDV in young rabbits at 30 days of age were elevated when they originated from mothers with high antibody titres. The most suitable period for vaccination of offspring appeared to be around 50 days of age. The bivalent vaccine against pasteurellosis and RHDV combined speed and longevity of the immune response. Immune protection against pasteurellosis and RHDV can thus be achieved with only one manipulation.
Collapse
Affiliation(s)
- R Peshev
- Central Veterinary Research Institute, Department of Virology, P. Slaveikov 15 A Blvd., 1606 Sofia, Bulgaria.
| | | |
Collapse
|
13
|
Chen L, Paulsen DB, Scruggs DW, Banes MM, Reeks BY, Lawrence ML. Alteration of DNA adenine methylase (Dam) activity in Pasteurella multocida causes increased spontaneous mutation frequency and attenuation in mice. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2283-2290. [PMID: 12904568 DOI: 10.1099/mic.0.26251-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pasteurella multocida is one of the primary bacterial pathogens associated with bovine respiratory disease (BRD) complex. Relatively few virulence factors of P. multocida have been characterized, and there is a need for improved vaccines for prevention of BRD. In other Gram-negative species, DNA adenine methylase (Dam) regulates the expression of virulence genes, and appropriate expression of Dam is required for virulence. In this study, the authors cloned and sequenced the P. multocida A1 dam gene and demonstrated that it is able to restore Dam function in an Escherichia coli dam mutant. When P. multocida dam was placed under the control of a constitutively expressed promoter on a plasmid, it caused an increased spontaneous mutation rate in P. multocida. In addition, the plasmid-mediated alteration of Dam production in P. multocida caused it to be highly attenuated in mice. These findings indicate that appropriate expression of Dam is required for virulence of P. multocida, which is believed to be the first report that Dam is required for virulence of a species in the Pasteurellaceae. Therefore, Dam may function as a virulence gene regulator in the Pasteurellaceae, similar to previously reported findings from other Gram-negative species.
Collapse
Affiliation(s)
- Liang Chen
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| | - Daniel B Paulsen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| | - Daniel W Scruggs
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| | - Michelle M Banes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| | - Brenda Y Reeks
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| |
Collapse
|