1
|
Al Kafaji T, Tocco F, Okonji S, Gallucci A. Clinical features and outcome of 10 dogs with suspected idiopathic vestibular epilepsy. J Vet Intern Med 2024; 38:1591-1597. [PMID: 38514172 PMCID: PMC11099704 DOI: 10.1111/jvim.17046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND In humans, vestibular epilepsy (VE) is described as focal seizures with transient signs of vestibular disease. In dogs, 2 cases of vestibular episodes, called vestibular paroxysmia, are reported. HYPOTHESIS/OBJECTIVES The objective of this study was to define the clinical features, phenotypical manifestation, and outcome of suspected VE in dogs. ANIMALS Ten dogs with recurrent vestibular episodes. METHODS Retrospective study. Medical records between 2009 and 2023 were reviewed, and dogs with a normal neurological examination, a history of transient signs of vestibular disease, absence of abnormalities detected on blood exams and brain magnetic resonance imaging (MRI) or computed tomography (CT), besides a minimum 10-month follow-up were included. Clinical improvement was defined as a ≥50% reduction in frequency or the cessation of clinical signs after the onset of antiseizure medications (ASMs). RESULTS Pugs were the most prevalent breed (5/10; 50%). In 2 cases, additional generalized tonic-clonic (GTC) seizures were reported. MRI exam was performed in most cases (9/10; 90%), whereas 1 dog underwent a CT scan (1/10; 10%). Electroencephalography (EEG) was carried out in 3 dogs that showed interictal spikes in the fronto-temporal and fronto-parietal areas. All cases received ASMs, with clinical improvement in 10/10 dogs (100%). CONCLUSION AND CLINICAL IMPORTANCE The presence of GTC seizures, EEG interictal spikes, and responsiveness to ASMs supported the hypothesis of an epileptic origin of vestibular episodes and thus the existence of VE in these dogs, with a presumed idiopathic cause and apparent favorable outcome.
Collapse
Affiliation(s)
| | - Fabio Tocco
- Veterinary Neurological Center “La Fenice”SelargiusItaly
| | - Samuel Okonji
- Department of Veterinary Medical SciencesUniversity of BolognaBolognaEmilia‐RomagnaItaly
| | | |
Collapse
|
2
|
Potschka H, Fischer A, Löscher W, Volk HA. Pathophysiology of drug-resistant canine epilepsy. Vet J 2023; 296-297:105990. [PMID: 37150317 DOI: 10.1016/j.tvjl.2023.105990] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Drug resistance continues to be a major clinical problem in the therapeutic management of canine epilepsies with substantial implications for quality of life and survival times. Experimental and clinical data from human medicine provided evidence for relevant contributions of intrinsic severity of the disease as well as alterations in pharmacokinetics and -dynamics to failure to respond to antiseizure medications. In addition, several modulatory factors have been identified that can be associated with the level of therapeutic responses. Among others, the list of potential modulatory factors comprises genetic and epigenetic factors, inflammatory mediators, and metabolites. Regarding data from dogs, there are obvious gaps in knowledge when it comes to our understanding of the clinical patterns and the mechanisms of drug-resistant canine epilepsy. So far, seizure density and the occurrence of cluster seizures have been linked with a poor response to antiseizure medications. Moreover, evidence exists that the genetic background and alterations in epigenetic mechanisms might influence the efficacy of antiseizure medications in dogs with epilepsy. Further molecular, cellular, and network alterations that may affect intrinsic severity, pharmacokinetics, and -dynamics have been reported. However, the association with drug responsiveness has not yet been studied in detail. In summary, there is an urgent need to strengthen clinical and experimental research efforts exploring the mechanisms of resistance as well as their association with different etiologies, epilepsy types, and clinical courses.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| | - Andrea Fischer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
3
|
Kriechbaumer SRP, Jurina K, Wielaender F, Schenk HC, Steinberg TA, Reese S, Buhmann G, Doerfelt S, Potschka H, Fischer A. Pregabalin Add-On vs. Dose Increase in Levetiracetam Add-On Treatment: A Real-Life Trial in Dogs With Drug-Resistant Epilepsy. Front Vet Sci 2022; 9:910038. [PMID: 35873699 PMCID: PMC9298511 DOI: 10.3389/fvets.2022.910038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a common neurological disorder affecting 0.6–0.75% of dogs in veterinary practice. Treatment is frequently complicated by the occurrence of drug-resistant epilepsy and cluster seizures in dogs with idiopathic epilepsy. Only few studies are available to guide treatment choices beyond licensed veterinary drugs. The aim of the study was to compare antiseizure efficacy and tolerability of two add-on treatment strategies in dogs with drug-resistant idiopathic epilepsy. The study design was a prospective, open-label, non-blinded, comparative treatment trial. Treatment success was defined as a 3-fold extension of the longest baseline interseizure interval and to a minimum of 3 months. To avoid prolonged adherence to a presumably ineffective treatment strategy, dog owners could leave the study after the third day with generalized seizures if the interseizure interval failed to show a relevant increase. Twenty-six dogs (mean age 5.5 years, mean seizure frequency 4/month) with drug-resistant idiopathic epilepsy and a history of cluster seizures were included. Dogs received either add-on treatment with pregabalin (PGB) 4 mg/kg twice daily (14 dogs) or a dose increase in levetiracetam (LEV) add-on treatment (12 dogs). Thirteen dogs in the PGB group had drug levels within the therapeutic range for humans. Two dogs in the PGB group (14.3%; 2/14) and one dog in the LEV group (8.3%; 1/12) achieved treatment success with long seizure-free intervals from 122 to 219 days but then relapsed to their early seizure frequency 10 months after the study inclusion. The overall low success rates with both treatment strategies likely reflect a real-life situation in canine drug-resistant idiopathic epilepsy in everyday veterinary practice. These results delineate the need for research on better pharmacologic and non-pharmacologic treatment strategies in dogs with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Sandra R. P. Kriechbaumer
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- AniCura Small Animal Clinic Haar, Haar, Germany
| | | | - Franziska Wielaender
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Henning C. Schenk
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Small Animal Clinic Lüneburg, Lüneburg, Germany
| | | | - Sven Reese
- Department of Veterinary Sciences, Institute of Anatomy, Histology and Embryology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gesine Buhmann
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefanie Doerfelt
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- AniCura Small Animal Clinic Haar, Haar, Germany
| | - Heidrun Potschka
- Department of Veterinary Sciences, Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- *Correspondence: Andrea Fischer
| |
Collapse
|
4
|
Lamminen T, Doedée A, Hyttilä‐Hopponen M, Kaskinoro J. Pharmacokinetics of single and repeated oral doses of pregabalin oral solution formulation in cats. J Vet Pharmacol Ther 2022; 45:385-391. [PMID: 35466408 PMCID: PMC9545034 DOI: 10.1111/jvp.13061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | - Anne Doedée
- Charles River Laboratories Den Bosch B.V. ‘s‐Hertogenbosch The Netherlands
| | | | | |
Collapse
|
5
|
Thoefner MS, Skovgaard LT, McEvoy FJ, Berendt M, Bjerrum OJ. Pregabalin alleviates clinical signs of syringomyelia-related central neuropathic pain in Cavalier King Charles Spaniel dogs: a randomized controlled trial. Vet Anaesth Analg 2019; 47:238-248. [PMID: 32005620 DOI: 10.1016/j.vaa.2019.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE We aimed to assess the efficacy and benefit-risk profile of pregabalin (PGN) to reduce the clinical signs of central neuropathic pain (CNeP) as reflected by scratching episodes in dogs with symptomatic syringomyelia (SM). STUDY DESIGN Randomized, double-blind, placebo-controlled crossover study. ANIMALS A total of 12 client-owned Cavalier King Charles Spaniels (age, 1.1-7.4 years, bodyweight, 8.2-10.8 kg) with magnetic resonance imaging-confirmed SM and clinical signs of CNeP. METHODS Dogs were randomized to either PGN 150 mg or placebo for 25 days, followed by 48 hour washout period before crossover to the alternate phase of 25 days. The primary outcome was defined as number of scratching events during 10 minutes of video-recorded physical activity. Treatment effect was estimated using a generalized estimation equation model. Benefit-risk and quality of life assessments were obtained through owner interviews focusing on potential adverse events. RESULTS The treatment effect estimate was an 84% (95% confidence interval = 75-89%) reduction in mean number of scratching events relative to baseline compared with placebo (p < 0.0001). Owner-assessed satisfactory quality of life was status quo and rated as 'good' or 'could not be better' in six/11 dogs and improved in four/11 dogs. The most prevalent adverse events were increased appetite in nine/12 dogs and transient ataxia in nine/12 dogs. There was one dog withdrawn by the owner 7 days after crossover to PGN owing to persistent ataxia. No dogs needed rescue analgesia during the trial. CONCLUSIONS AND CLINICAL RELEVANCE PGN is superior to placebo in the reduction of clinical signs of SM-related CNeP in dogs. At a dose range of 13-19 mg kg-1 orally twice daily, the encountered adverse events were acceptable to all but one owner.
Collapse
Affiliation(s)
- Maria S Thoefner
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lene T Skovgaard
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fintan J McEvoy
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Berendt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole J Bjerrum
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Pregabalin for the treatment of syringomyelia-associated neuropathic pain in dogs: A randomised, placebo-controlled, double-masked clinical trial. Vet J 2019; 250:55-62. [PMID: 31383420 DOI: 10.1016/j.tvjl.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 11/22/2022]
Abstract
Pregabalin is the first-line treatment for neuropathic pain (NeP) in humans. Dogs with Chiari-like malformation and syringomyelia (CM/SM) associated with NeP could benefit from pregabalin. The aim of this study was to evaluate the efficacy of pregabalin for NeP in dogs with CM/SM. Eight dogs with symptomatic CM/SM were included in a double-masked, randomised, crossover placebo-controlled clinical trial. All dogs received anti-inflammatory drugs as base-line treatment during placebo or pregabalin phase of 14±4 days each. Analgesic efficacy was assessed with a daily numerical rating scale (NRS) recorded by dog owners (0-10, 10=worst pain) and quantitative sensory testing at baseline, placebo and pregabalin phases. Blood samples were collected to report pregabalin exposure and to assess renal function. Daily NRS scores recorded by dog owners in the pregabalin group were lower than in the placebo group (P=0.006). Mechanical thresholds were higher with pregabalin compared to baseline or placebo (P=0.037, P<0.001). Cold latency at 15°C was prolonged on the neck and humeri with pregabalin compared to baseline (P<0.001 for both) or placebo (P=0.02, P=0.0001). Cold latency at 0°C was longer on pregabalin compared to baseline and placebo (P=0.001, P=0.004). There was no pregabalin accumulation between first and last dose. This study demonstrates the efficacy of pregabalin for the treatment of NeP due to CM/SM on daily pain scores recorded by dog owners. Pregabalin significantly reduced mechanical hyperalgesia, cold hyperalgesia (0°C) and allodynia (15°C) compared to placebo. Pregabalin was non-cumulative and well tolerated with occasional mild sedation.
Collapse
|
7
|
Campos G, Fortuna A, Falcão A, Alves G. In vitro and in vivo experimental models employed in the discovery and development of antiepileptic drugs for pharmacoresistant epilepsy. Epilepsy Res 2018; 146:63-86. [PMID: 30086482 DOI: 10.1016/j.eplepsyres.2018.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/16/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Epilepsy is one of the most common chronic, recurrent and progressive neurological diseases. In spite of the large number of antiepileptic drugs currently available for the suppression of seizures, about one-third of patients develop drug-resistant epilepsy, even when they are administered the most appropriate treatment available. Thus, nonclinical models can be valuable tools for the elucidation of the mechanisms underlying the development of pharmacoresistance and also for the development of new therapeutic agents that may be promising therapeutic approaches for this unmet medical need. Up today, several epilepsy and seizure models have been developed, exhibiting similar physiopathological features of human drug-resistant epilepsy; moreover, pharmacological response to antiepileptic drugs clinically available tends to be similar in animal models and humans. Therefore, they should be more intensively used in the preclinical discovery and development of new candidates to antiepileptic drugs. Although useful, in vitro models cannot completely replicate the complexity of a living being and their potential for a systematic use in antiepileptic drug screening is limited. The whole-animal models are the most commonly employed and they can be classified as per se drug-resistant due to an inherent poor drug response or be based on the selection of subgroups of epileptic animals that respond or not to a specific antiepileptic drug. Although more expensive and time-consuming, the latter are chronic models of epilepsy that better exhibit the disease-associated alterations found in human epilepsy. Several antiepileptic drugs in development or already marketed have been already tested and shown to be effective in these models of drug-resistant epilepsy, constituting a new hope for the treatment of drug-resistant epilepsy. This review will provide epilepsy researchers with detailed information on the in vitro and in vivo nonclinical models of interest in drug-resistant epilepsy, which may enable a refined selection of most relevant models for understanding the mechanisms of the disease and developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Gonçalo Campos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Fortuna
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
8
|
Esteban MA, Dewey CW, Schwark WS, Rishniw M, Boothe DM. Pharmacokinetics of Single-Dose Oral Pregabalin Administration in Normal Cats. Front Vet Sci 2018; 5:136. [PMID: 30079339 PMCID: PMC6062633 DOI: 10.3389/fvets.2018.00136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/04/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: To describe the pharmacokinetic parameters of oral pregabalin in normal cats after single oral dosing. Animals: Six healthy adult research cats. Procedures: Following sedation and indwelling catheter placement, one oral (4 mg/kg) dose of pregabalin was administered. Blood samples were collected at 0, 15 and 30 min and 1, 1.5, 2, 3, 4, 6, 8, 12, 24, and 36 h after administration. Plasma pregabalin concentrations were measured by high-performance liquid chromatography and subjected to pharmacokinetic analysis using commercial software. Results: Four of six cats developed moderate sedation after pregabalin administration. The peak pregabalin concentration was 8.3 ± 1.6 μg/ml which occurred at 2.9 ± 1.2 h. Elimination half-life was 10.4 ± 2.6 h and area under the curve was 133.9 ± 71.5 μg-h/ml. Time above the minimum therapeutic concentration for seizure control in dogs and people (2.8 μg/ml) was 17.6 ± 6.2 h. Using these data, predicted minimum, maximum and average steady state concentrations were calculated for 12 and 24 h dosing intervals. Conclusions and Clinical Relevance: Pregabalin (4 mg/kg) administered orally to cats results in plasma concentrations within the range considered to be efficacious for seizure control in dogs and humans between 1.5 and at least 12 h. Because of moderate sedative side effects in the majority of cats at this dose and high calculated maximum steady state concentrations, a lower dose, given more frequently (1-2 mg/kg q 12 h), should be evaluated in prospective clinical studies.
Collapse
Affiliation(s)
- Michaela A Esteban
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Curtis W Dewey
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Wayne S Schwark
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Mark Rishniw
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Dawn M Boothe
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
9
|
Gallucci A, Gagliardo T, Menchetti M, Bianchi E, Bucci D, Gandini G. Long-term efficacy of imepitoin in the treatment of naive dogs affected by idiopathic epilepsy. Vet Rec 2017; 181:144. [DOI: 10.1136/vr.104187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2017] [Indexed: 01/21/2023]
Affiliation(s)
- A. Gallucci
- Department of Veterinary Medical Sciences; University of Bologna; Ozzano Emilia Italy
| | - T. Gagliardo
- Department of Veterinary Medical Sciences; University of Bologna; Ozzano Emilia Italy
| | - M. Menchetti
- Department of Veterinary Medical Sciences; University of Bologna; Ozzano Emilia Italy
| | - E. Bianchi
- Department of Veterinary Medical Sciences; University of Parma; Parma Italy
| | - D. Bucci
- Department of Veterinary Medical Sciences; University of Bologna; Ozzano Emilia Italy
| | - G. Gandini
- Department of Veterinary Medical Sciences; University of Bologna; Ozzano Emilia Italy
| |
Collapse
|
10
|
Uriarte A, Maestro Saiz I. Canine versus human epilepsy: are we up to date? J Small Anim Pract 2016; 57:115-21. [PMID: 26931499 DOI: 10.1111/jsap.12437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/21/2015] [Accepted: 08/13/2015] [Indexed: 02/04/2023]
Abstract
In this paper we analyse and compare features of canine and human epilepsy and we suggest new tools for better future understanding of canine epilepsy. The prevalence of epileptic seizures in dogs ranges between 0.5% and 5.7% and between 1% and 3% in the human population. Studies on human epilepsy provide a ready-made format for classification, diagnosis and treatment in veterinary epilepsy. Human studies highlight the value of a thorough seizure classification. Nevertheless, a matter of concern in canine epilepsy is the limited information regarding seizure description and classification because of the lack of EEG-video recording. Establishment of a consensus protocol for ambulatory home video-recording in dogs who suffer from epilepsy, mainly considering indications, duration of monitoring, the sufficient essential training for an optimal interpretation of ictal semiology and the methodology of recordings is needed. The ultimate goal is that the information gathered by these videos will be analysed to describe the epileptic seizures thoroughly, recognize patterns and move towards a better understanding and therefore classification of canine epileptic seizures.
Collapse
Affiliation(s)
- A Uriarte
- North Down Specialist Referrals, Surrey, RH1 4QP
| | - I Maestro Saiz
- Clinical Neurophysiology Department, Cruces University Hospital, Barakaldo, Biscay, 48903, Spain
| |
Collapse
|
11
|
Charalambous M, Shivapour SK, Brodbelt DC, Volk HA. Antiepileptic drugs' tolerability and safety--a systematic review and meta-analysis of adverse effects in dogs. BMC Vet Res 2016; 12:79. [PMID: 27206489 PMCID: PMC4875685 DOI: 10.1186/s12917-016-0703-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/12/2016] [Indexed: 01/16/2023] Open
Abstract
Background The safety profile of anti-epileptic drugs (AEDs) is an important consideration for the regulatory bodies, owners and prescribing clinicians. Information on their adverse effects still remains limited. A systematic review including a meta-analytic approach was designed to evaluate existing evidence for the safety profile of AEDs in canine patients. Electronic searches of PubMed, CAB Direct and Google scholar were carried out without date or language restrictions. Conference proceedings were also searched. Peer-reviewed full-length studies reporting adverse effects of AEDs in epileptic and healthy non-epileptic dogs were included. Studies were allocated to three groups based on their design. Individual studies were evaluated based on the quality of evidence (study design, study group sizes, subject enrolment quality and overall risk of bias) and the outcome measures reported (proportion of specific adverse effects for each AED, prevalence and 95 % confidence interval of the affected population in each study and comparative odds ratio of adverse effects for AEDs). Results Ninety studies, including six conference proceedings, reporting clinical outcomes of AEDs’ adverse effects were identified. Few studies were designed as blinded randomised controlled clinical trials. Many studies included low canine populations with unclear criteria of subject enrolment and short treatment periods. Direct comparisons suggested that imepitoin and levetiracetam might have a better safety profile than phenobarbital, whilst the latter might have a better safety profile than potassium bromide. However, none of these comparisons showed a statistically significant difference. Comparisons between other AEDs were not possible as a considerable amount of studies lacked power calculations or adequate data to allow further statistical analysis. Individual AED assessments indicated that levetiracetam might be one of the safest AEDs, followed by imepitoin and then phenobarbital and potassium bromide; these findings were all supported by a strong level of evidence. The safety profile in other AEDs was variable, but weak evidence was found to permit firm conclusions or to compare their safety to other AEDs. Conclusions This systematic review provides objective evaluation of the most commonly used AEDs’ adverse effects. Adverse effects usually appeared mild in all AEDs and subsided once doses and/or serum levels were monitored or after the AED was withdrawn. Although phenobarbital might be less safe than imepitoin and levetiracetam, there was insufficient evidence to classify it as an AED with a high risk of major adverse effects. It is important for clinicians to evaluate both AEDs’ effectiveness and safety on an individual basis before the selection of the appropriate monotherapy or adjunctive AED therapy.
Collapse
Affiliation(s)
- Marios Charalambous
- Faculty of Brain Sciences, UCL Institute of Neurology, University College London, London, WC1E 6BT, UK.
| | - Sara K Shivapour
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | - David C Brodbelt
- Department of Production and Population Health, Royal Veterinary College, Hawkshead Lane, Hatfield, Herts, AL9 7TA, UK
| | - Holger A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, Herts, AL9 7TA, UK
| |
Collapse
|
12
|
Packer RMA, Volk HA. Epilepsy beyond seizures: a review of the impact of epilepsy and its comorbidities on health-related quality of life in dogs. Vet Rec 2015; 177:306-15. [DOI: 10.1136/vr.103360] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rowena M. A. Packer
- Department of Clinical Science and Services; Royal Veterinary College, Hawkshead Lane Hatfield Hertfordshire AL9 7TA UK
| | - Holger A. Volk
- Department of Clinical Science and Services; Royal Veterinary College, Hawkshead Lane Hatfield Hertfordshire AL9 7TA UK
| |
Collapse
|
13
|
Potschka H, Fischer A, Löscher W, Patterson N, Bhatti S, Berendt M, De Risio L, Farquhar R, Long S, Mandigers P, Matiasek K, Muñana K, Pakozdy A, Penderis J, Platt S, Podell M, Rusbridge C, Stein V, Tipold A, Volk HA. International veterinary epilepsy task force consensus proposal: outcome of therapeutic interventions in canine and feline epilepsy. BMC Vet Res 2015; 11:177. [PMID: 26314300 PMCID: PMC4552098 DOI: 10.1186/s12917-015-0465-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/29/2015] [Indexed: 12/13/2022] Open
Abstract
Common criteria for the diagnosis of drug resistance and the assessment of outcome are needed urgently as a prerequisite for standardized evaluation and reporting of individual therapeutic responses in canine epilepsy. Thus, we provide a proposal for the definition of drug resistance and partial therapeutic success in canine patients with epilepsy. This consensus statement also suggests a list of factors and aspects of outcome, which should be considered in addition to the impact on seizures. Moreover, these expert recommendations discuss criteria which determine the validity and informative value of a therapeutic trial in an individual patient and also suggest the application of individual outcome criteria. Agreement on common guidelines does not only render a basis for future optimization of individual patient management, but is also a presupposition for the design and implementation of clinical studies with highly standardized inclusion and exclusion criteria. Respective standardization will improve the comparability of findings from different studies and renders an improved basis for multicenter studies. Therefore, this proposal provides an in-depth discussion of the implications of outcome criteria for clinical studies. In particular ethical aspects and the different options for study design and application of individual patient-centered outcome criteria are considered.
Collapse
Affiliation(s)
- Heidrun Potschka
- Department of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximillians-University, Königinstr. 16, 80539, Munich, Germany.
| | - Andrea Fischer
- Service Neurology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| | - Ned Patterson
- University of Minnesota College of Veterinary Medicine, D426 Veterinary Medical Center, 1352 Boyd Avenue, St. Paul, MN, 55108, USA.
| | - Sofie Bhatti
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| | - Mette Berendt
- Department of Veterinary and Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Luisa De Risio
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU, Suffolk, UK.
| | - Robyn Farquhar
- Fernside Veterinary Centre, 205 Shenley Road, Borehamwood, SG9 0TH, Hertfordshire, UK.
| | - Sam Long
- University of Melbourne, 250 Princes Highway, Weibee, 3015, VIC, Australia.
| | - Paul Mandigers
- Department of Clinical Sciences of Companion Animals, Utrecht University, Yalelaan 108, 3583 CM, Utrecht, The Netherlands.
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Karen Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1052 William Moore Drive, Raleigh, NC, 27607, USA.
| | - Akos Pakozdy
- Clinical Unit of Internal Medicine Small Animals, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Jacques Penderis
- Vet Extra Neurology, Broadleys Veterinary Hospital, Craig Leith Road, Stirling, FK7 7LE, Stirlingshire, UK.
| | - Simon Platt
- College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA.
| | - Michael Podell
- Chicago Veterinary Neurology and Neurosurgery, 3123 N. Clybourn Avenue, Chicago, IL, 60618, USA.
| | - Clare Rusbridge
- Fitzpatrick Referrals, Halfway Lane, Eashing, Godalming, GU7 2QQ, Surrey, UK. .,School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, GU2 7TE, Surrey, UK.
| | - Veronika Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Holger A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL9 7TA, Hertfordshire, UK.
| |
Collapse
|
14
|
Bhatti SFM, De Risio L, Muñana K, Penderis J, Stein VM, Tipold A, Berendt M, Farquhar RG, Fischer A, Long S, Löscher W, Mandigers PJJ, Matiasek K, Pakozdy A, Patterson EE, Platt S, Podell M, Potschka H, Rusbridge C, Volk HA. International Veterinary Epilepsy Task Force consensus proposal: medical treatment of canine epilepsy in Europe. BMC Vet Res 2015; 11:176. [PMID: 26316233 PMCID: PMC4552371 DOI: 10.1186/s12917-015-0464-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors' experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible.
Collapse
Affiliation(s)
- Sofie F M Bhatti
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| | - Luisa De Risio
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU, Suffolk, United Kingdom.
| | - Karen Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1052 William Moore Drive, Raleigh, NC, 27607, USA.
| | - Jacques Penderis
- Vet Extra Neurology, Broadleys Veterinary Hospital, Craig Leith Road, Stirling, FK7 7LE, Stirlingshire, United Kingdom.
| | - Veronika M Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Mette Berendt
- Department of Veterinary and Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Robyn G Farquhar
- Fernside Veterinary Centre, 205 Shenley Road, Borehamwood, SG9 0TH, Hertfordshire, United Kingdom.
| | - Andrea Fischer
- Clinical Veterinary Medicine, Ludwig-Maximillians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Sam Long
- University of Melbourne, 250 Princes Highway, Weibee, 3015, VIC, Australia.
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| | - Paul J J Mandigers
- Department of Clinical Sciences of Companion Animals, Utrecht University, Yalelaan 108, 3583 CM, Utrecht, The Netherlands.
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Akos Pakozdy
- Clinical Unit of Internal Medicine Small Animals, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Edward E Patterson
- University of Minnesota College of Veterinary Medicine, D426 Veterinary Medical Center, 1352 Boyd Avenue, St. Paul, MN, 55108, USA.
| | - Simon Platt
- College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA.
| | - Michael Podell
- Chicago Veterinary Neurology and Neurosurgery, 3123 N. Clybourn Avenue, Chicago, IL, 60618, USA.
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximillians-University, Königinstr. 16, 80539, Munich, Germany.
| | - Clare Rusbridge
- Fitzpatrick Referrals, Halfway Lane, Eashing, Godalming, GU7 2QQ, Surrey, United Kingdom.
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, GU2 7TE, Surrey, United Kingdom.
| | - Holger A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL9 7TA, Hertfordshire, UK.
| |
Collapse
|
15
|
Packer RMA, Nye G, Porter SE, Volk HA. Assessment into the usage of levetiracetam in a canine epilepsy clinic. BMC Vet Res 2015; 11:25. [PMID: 25889090 PMCID: PMC4328478 DOI: 10.1186/s12917-015-0340-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/22/2015] [Indexed: 11/23/2022] Open
Abstract
Background Retrospective studies can complement information derived from double-blinded randomized trials. There are multiple retrospective studies reporting good efficacy and tolerability of the anti-epileptic drug levetiracetam (LEV) in human patients with epilepsy; however, reports of LEV's tolerability and efficacy in dogs with epilepsy remain limited. The purpose of this retrospective study was to describe the use of LEV in a canine epilepsy clinic and determine the long-term efficacy and tolerability of LEV in veterinary clinical practice. The electronic database of a UK based referral hospital was searched for LEV usage in dogs with seizures. Information and data necessary for the evaluation were obtained from a combination of electronic and written hospital records, the referring veterinary surgeons’ records and telephone interviews with dog owners. Only dogs that were reportedly diagnosed with idiopathic epilepsy were included in the study. Results Fifty-two dogs were included in this retrospective study. Two treatment protocols were recognised; 29 dogs were treated continuously with LEV and 23 dogs received interval or pulse treatment for cluster seizures. LEV treatment resulted in 69% of dogs having a 50% or greater reduction of seizure frequency whilst 15% of all the dogs were completely free from seizures. Seizure frequency reduced significantly in the whole population. No dog was reported to experience life-threatening side effects. Mild side effects were experienced by 46% of dogs and a significantly higher number of these dogs were in the pulse treatment group. The most common side-effects reported were sedation and ataxia. Conclusions LEV appears to be effective and well tolerated for reduction of seizures.
Collapse
Affiliation(s)
- Rowena M A Packer
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL97TA, UK.
| | - George Nye
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL97TA, UK.
| | - Sian Elizabeth Porter
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL97TA, UK.
| | - Holger A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL97TA, UK.
| |
Collapse
|
16
|
Charalambous M, Brodbelt D, Volk HA. Treatment in canine epilepsy--a systematic review. BMC Vet Res 2014; 10:257. [PMID: 25338624 PMCID: PMC4209066 DOI: 10.1186/s12917-014-0257-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/15/2014] [Indexed: 12/17/2022] Open
Abstract
Background Various antiepileptic drugs (AEDs) are used for the management of canine idiopathic epilepsy (IE). Information on their clinical efficacy remains limited. A systematic review was designed to evaluate existing evidence for the effectiveness of AEDs for presumptive canine IE. Electronic searches of PubMed and CAB Direct were carried out without date or language restrictions. Conference proceedings were also searched. Peer-reviewed full-length studies describing objectively the efficacy of AEDs in dogs with IE were included. Studies were allocated in two groups, i.e. blinded randomized clinical trials (bRCTs), non-blinded randomized clinical trials (nbRCTs) and non-randomized clinical trials (NRCTs) (group A) and uncontrolled clinical trials (UCTs) and case series (group B). Individual studies were evaluated based on the quality of evidence (study design, study group sizes, subject enrolment quality and overall risk of bias) and the outcome measures reported (in particular the proportion of dogs with ≥50% reduction in seizure frequency). Results Twenty-six studies, including two conference proceedings, reporting clinical outcomes of AEDs used for management of IE were identified. Heterogeneity of study designs and outcome measures made meta-analysis inappropriate. Only four bRCTs were identified in group A and were considered to offer higher quality of evidence among the studies. A good level of evidence supported the efficacy of oral phenobarbital and imepitoin and fair level of evidence supported the efficacy of oral potassium bromide and levetiracetam. For the remaining AEDs, favorable results were reported regarding their efficacy, but there was insufficient evidence to support their use due to lack of bRCTs. Conclusions Oral phenobarbital and imepitoin in particular, as well as potassium bromide and levetiracetam are likely to be effective for the treatment of IE. However, variations in baseline characteristics of the dogs involved, significant differences between study designs and several potential sources of bias preclude definitive recommendations. There is a need for greater numbers of adequately sized bRCTs evaluating the efficacy of AEDs for IE.
Collapse
Affiliation(s)
- Marios Charalambous
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, Herts, UK.
| | | | | |
Collapse
|
17
|
Clinical risk factors associated with anti-epileptic drug responsiveness in canine epilepsy. PLoS One 2014; 9:e106026. [PMID: 25153799 PMCID: PMC4143335 DOI: 10.1371/journal.pone.0106026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
The nature and occurrence of remission, and conversely, pharmacoresistance following epilepsy treatment is still not fully understood in human or veterinary medicine. As such, predicting which patients will have good or poor treatment outcomes is imprecise, impeding patient management. In the present study, we use a naturally occurring animal model of pharmacoresistant epilepsy to investigate clinical risk factors associated with treatment outcome. Dogs with idiopathic epilepsy, for which no underlying cause was identified, were treated at a canine epilepsy clinic and monitored following discharge from a small animal referral hospital. Clinical data was gained via standardised owner questionnaires and longitudinal follow up data was gained via telephone interview with the dogs’ owners. At follow up, 14% of treated dogs were in seizure-free remission. Dogs that did not achieve remission were more likely to be male, and to have previously experienced cluster seizures. Seizure frequency or the total number of seizures prior to treatment were not significant predictors of pharmacoresistance, demonstrating that seizure density, that is, the temporal pattern of seizure activity, is a more influential predictor of pharmacoresistance. These results are in line with clinical studies of human epilepsy, and experimental rodent models of epilepsy, that patients experiencing episodes of high seizure density (cluster seizures), not just a high seizure frequency pre-treatment, are at an increased risk of drug-refractoriness. These data provide further evidence that the dog could be a useful naturally occurring epilepsy model in the study of pharmacoresistant epilepsy.
Collapse
|
18
|
Podell M. Antiepileptic drug therapy and monitoring. Top Companion Anim Med 2014; 28:59-66. [PMID: 24070683 DOI: 10.1053/j.tcam.2013.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/20/2013] [Indexed: 11/11/2022]
Abstract
Over the past 2 decades, the number of antiepileptic drugs (AEDs) available to veterinarians has grown exponentially. Coupled with this increase is the ability to rapidly and accurately diagnose underlying brain disease with readily accessible magnetic resonance imaging. As a result, the veterinary community is attuned to the need for early treatment intervention. As more treatment choices become available, the unrelenting questions still arise are when should treatment begin, which initial drug therapy is best for our patients, when should treatment changes be considered, and finally, what are the advantages that newer drugs provide for our patients. The purpose of this chapter is to review decision-making strategies for AED therapy, provide an overview of the applicability of current AED available, and present information on the therapeutic advances in epilepsy.
Collapse
Affiliation(s)
- Michael Podell
- Chicago Veterinary Neurology and Neurosurgery, Chicago Veterinary Emergency and Specialty Center, Chicago, IL, USA.
| |
Collapse
|
19
|
Affiliation(s)
- James A Lavely
- Department of Neurology and Neurosurgery, VCA Animal Care Center of Sonoma, 6470 Redwood Drive, Rohnert Park, CA 94928, USA.
| |
Collapse
|
20
|
|
21
|
Kiviranta AM, Laitinen-Vapaavuori O, Hielm-Björkman A, Jokinen T. Topiramate as an add-on antiepileptic drug in treating refractory canine idiopathic epilepsy. J Small Anim Pract 2013; 54:512-20. [PMID: 24032479 DOI: 10.1111/jsap.12130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the efficacy and safety of topiramate as an add-on therapy in dogs with refractory idiopathic epilepsy. METHOD Prospective, open label, non-comparative clinical trial of topiramate in dogs with idiopathic epilepsy and poor seizure control despite therapeutic serum concentrations of phenobarbital and potassium bromide. The efficacy of topiramate was evaluated by comparing seizure and seizure day frequencies during a retrospective 2-month period with a prospective short-term follow-up of 6 months. An additional long-term follow-up period ranging from 3 to 9 months was conducted on dogs that responded to topiramate therapy during the short-term follow-up. RESULTS Ten dogs were included. Five (50%) responded to topiramate therapy during the short-term follow-up showing a significant (P=0·04) decrease of 66% in seizure frequency. Three of the five dogs remained responders during the long-term follow-up. Weight loss, sedation and ataxia were the most common adverse effects of topiramate therapy, but in dogs with moderate sedation or ataxia, signs subsided in a few weeks to few months to mild sedation or ataxia. CLINICAL SIGNIFICANCE Topiramate may be effective as an add-on medication in treating canine idiopathic epilepsy. Apart from sedation and ataxia reported in some of the dogs, topiramate was well-tolerated.
Collapse
Affiliation(s)
- A-M Kiviranta
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, FI-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
22
|
Mullen KR, Schwark W, Divers TJ. Pharmacokinetics of single-dose intragastric and intravenous pregabalin administration in clinically normal horses. Am J Vet Res 2013; 74:1043-8. [DOI: 10.2460/ajvr.74.7.1043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Muñana KR. Management of Refractory Epilepsy. Top Companion Anim Med 2013; 28:67-71. [DOI: 10.1053/j.tcam.2013.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/14/2013] [Indexed: 11/11/2022]
|
24
|
Rusbridge C. Choosing the right drug 2. Anticonvulsants used for second‐ line therapy, other anticonvulsants and alternative therapies. IN PRACTICE 2013. [DOI: 10.1136/inp.f2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Potschka H, Fischer A, von Rüden EL, Hülsmeyer V, Baumgärtner W. Canine epilepsy as a translational model? Epilepsia 2013; 54:571-9. [PMID: 23506100 DOI: 10.1111/epi.12138] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2013] [Indexed: 01/01/2023]
Abstract
Dogs with spontaneous diseases can exhibit a striking similarity in etiology, clinical manifestation, and disease course when compared to human patients. Therefore, dogs are intensely discussed as a translational model of human disease. In particular, genetic studies in selected dog breeds serve as an excellent tool to identify epilepsy disease genes. In addition, canine epilepsy is discussed as a translational platform for drug testing. On one hand, epileptic dogs might serve as an interesting model by allowing the evaluation of drug efficacy and potency under clinical conditions with a focus on chronic seizures resistant to standard medication, preventive strategies, or status epilepticus. On the other hand, several limitations need to be considered including owner-based seizure monitoring, species differences in pharmacokinetics and drug interactions, as well as cost-intensiveness. The review gives an overview on the current state of knowledge regarding the etiology, clinical manifestation, pathology, and drug response of canine epilepsy, also pointing out the urgent need for further research on specific aspects. Moreover, the putative advantages, the disadvantages, and limitations of antiepileptic drug testing in canine epilepsy are critically discussed.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | |
Collapse
|
26
|
Baird-Heinz HE, Van Schoick AL, Pelsor FR, Ranivand L, Hungerford LL. A systematic review of the safety of potassium bromide in dogs. J Am Vet Med Assoc 2012; 240:705-15. [PMID: 22380809 DOI: 10.2460/javma.240.6.705] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To critically evaluate and summarize available information on the safety of potassium bromide in dogs. DESIGN Systematic review. SAMPLE 111 references reporting safety information relevant to potassium bromide published between 1938 and 2011. PROCEDURES PubMed searches without date limitations were conducted with the terms "potassium bromide" and "sodium bromide" in December 2009 and October 2011. Additional articles were identified through examination of article reference lists and book chapters on seizures in dogs and pharmacology. RESULTS Reversible neurologic signs were the most consistently reported toxicoses and were generally associated with adjunctive potassium bromide treatment or high serum bromide concentrations. Dermatologic and respiratory abnormalities were rare in dogs. Insufficient information was available to assess the effects of potassium bromide on behavior or to determine the incidence of vomiting, weight gain, polyphagia, pancreatitis, polyuria, polydipsia, or reproductive abnormalities associated with potassium bromide administration. Evidence suggested that administration of potassium bromide with food may alleviate gastrointestinal irritation and that monitoring for polyphagia, thyroid hormone abnormalities, and high serum bromide concentrations may be beneficial. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that potassium bromide is not an appropriate choice for treatment of every dog with seizures and that practitioners should tailor therapeutic regimens and clinical monitoring to each dog. Abrupt dietary changes or fluid therapy may compromise seizure control or increase the likelihood of adverse events. Availability of an appropriately labeled, approved potassium bromide product could provide better assurance for veterinarians and their clients of the quality, safety, and effectiveness of the product for veterinary use.
Collapse
Affiliation(s)
- Hope E Baird-Heinz
- Center for Veterinary Medicine, US FDA, 7519 Standish Pl, Rockville, MD 20855, USA
| | | | | | | | | |
Collapse
|
27
|
Weissl J, Hülsmeyer V, Brauer C, Tipold A, Koskinen LL, Kyöstilä K, Lohi H, Sauter-Louis C, Wolf M, Fischer A. Disease progression and treatment response of idiopathic epilepsy in Australian Shepherd dogs. J Vet Intern Med 2011; 26:116-25. [PMID: 22182230 DOI: 10.1111/j.1939-1676.2011.00853.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/25/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Idiopathic epilepsy (IE) in Australian Shepherds (ASs) occurs worldwide but there is a lack of description of the epilepsy syndrome in this breed. The ABCB1-1Δ mutation is more prevalent in ASs than in many other dog breeds. HYPOTHESIS Australian Shepherds suffer from a poorly controlled IE syndrome with prevailing severe courses. Seizure control and ABCB1-1Δ mutation might be related in this breed. ANIMALS Fifty ASs diagnosed with IE and 50 unaffected ASs. METHODS Predominant study design is a longitudinal cohort study. Pedigrees, medical records, seizure, and treatment data of ASs with IE were analyzed descriptively. Sex, color, and the ABCB1-1Δ genotype were compared between case and control groups and ASs with poorly or well-controlled seizures. Differences in survival times were assessed by logrank tests and Cox regression analysis. RESULTS Idiopathic epilepsy in ASs is dominated by moderate and severe clinical courses with the occurrence of cluster seizures and status epilepticus and a high seizure frequency. Poor seizure control and a high initial seizure frequency (≥10 seizure days/first 6 months) are associated with shorter survival times (P < .05). Poor seizure control, unrelated to the ABCB1(MDR1) genotype, is evident in 56% of epileptic ASs. Pedigree analysis suggests a genetic basis. CONCLUSION AND CLINICAL IMPORTANCE Frequent severe clinical courses, poor seizure control unrelated to the ABCB1(MDR1) genotype, and a young age at death compromise animal welfare and warrant further genetic studies to unravel the underlaying molecular mechanisms of IE and seizure control in the breed.
Collapse
Affiliation(s)
- J Weissl
- Clinic of Small Animal Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|