1
|
Craig MJ, Cummings KJ, Aprea MS, Franklin-Guild RJ, Altier C. Serotype and anti-microbial resistance trends among bovine Salmonella isolates from samples submitted to a veterinary diagnostic laboratory in central New York, 2007-2021. Zoonoses Public Health 2024; 71:359-368. [PMID: 38158623 DOI: 10.1111/zph.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
AIMS Salmonella enterica is a leading cause of acute enteritis in people, and dairy cattle are an important reservoir of this pathogen. The objective of this study was to analyse serotype and anti-microbial resistance trends of Salmonella isolated from dairy cattle in the United States between 2007 and 2021. METHODS AND RESULTS We collected data for bovine Salmonella isolates obtained from samples submitted to Cornell University's Animal Health Diagnostic Center (AHDC). We analysed 5114 isolates for serotype trends, and a subset of 2521 isolates tested for anti-microbial susceptibility were analysed for resistance trends. The most frequently identified serotypes were Salmonella Cerro, Dublin, Typhimurium, Montevideo, 4,[5],12:i:-, and Newport. Among these serotypes, a Cochran-Armitage trend test determined there was a significant increase in the proportion of isolates serotyped as Salmonella Dublin (p < 0.0001) and Montevideo (p < 0.0001) over time. There was a significant decrease in the proportion of isolates serotyped as Salmonella Cerro (p < 0.0001), Typhimurium (p < 0.0001), and Newport (p < 0.0001). For the anti-microbial resistance (AMR) analysis, we found an overall increase in the proportion of multi-drug-resistant isolates over time (p = 0.009). There was a significant increase in the proportion of isolates resistant to ampicillin (p = 0.007), florfenicol (p = 0.0002), and ceftiofur (p < 0.0001) and a marginal increase in resistance to enrofloxacin (p = 0.05). There was a significant decrease in the proportion of isolates resistant to spectinomycin (p = 0.0002), trimethoprim/sulphamethoxazole (p = 0.01), sulphadimethoxine (p = 0.003), neomycin (p < 0.0001), and gentamicin (p = 0.0002). CONCLUSIONS Our results provide evidence of an increase in resistance to key anti-microbial agents, although the observed trends were driven by the sharp increase in the proportion of Salmonella Dublin isolates over time.
Collapse
Affiliation(s)
- Maya J Craig
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kevin J Cummings
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Melissa S Aprea
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Rebecca J Franklin-Guild
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Velasquez-Munoz A, Castro-Vargas R, Cullens-Nobis FM, Mani R, Abuelo A. Review: Salmonella Dublin in dairy cattle. Front Vet Sci 2024; 10:1331767. [PMID: 38264470 PMCID: PMC10803612 DOI: 10.3389/fvets.2023.1331767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Salmonella enterica serovar Dublin (S. Dublin) is a bacterium host-adapted to cattle with increasing prevalence in dairy facilities. It can severely affect cattle health, producing high morbidity and mortality in young calves and reducing the performance of mature animals. Salmonella Dublin is difficult to control and eradicate from herds, as it can be shed from clinically normal animals. In addition, S. Dublin is a zoonotic bacterium that can be lethal for humans and pose a risk for human and animal health due to its multi-drug resistant characteristics. This review provides an overview of S. Dublin as a pathogen in dairy facilities, the risk factors associated with infection, and current strategies for preventing and controlling this disease. Furthermore, current gaps in knowledge are also discussed.
Collapse
Affiliation(s)
- Ana Velasquez-Munoz
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Departamento de Ciencias Veterinarias y Salud Pública, Universidad Católica de Temuco, Temuco, Chile
| | - Rafael Castro-Vargas
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Faith M. Cullens-Nobis
- Agriculture and Agribusiness Institute, Michigan State University Extension, Michigan State University, East Lansing, MI, United States
| | - Rinosh Mani
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Agriculture and Agribusiness Institute, Michigan State University Extension, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Maier GU, Breitenbuecher J, Gomez JP, Samah F, Fausak E, Van Noord M. Vaccination for the Prevention of Neonatal Calf Diarrhea in Cow-Calf Operations: A Scoping Review. Vet Anim Sci 2022; 15:100238. [PMID: 35243126 PMCID: PMC8866090 DOI: 10.1016/j.vas.2022.100238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
Since 1950, 113 articles on vaccines for the prevention of neonatal calf diarrhea have been published in the English literature Results for field trials using commercial vaccines for E. coli, bovine rotavirus, and bovine coronavirus infections are variable No field trials for commercial Salmonella vaccines have shown efficacy Vaccines for protozoal pathogens causing calf scours as well as the importance of several emerging enteric viruses of cattle need further research
Neonatal calf diarrhea (NCD), also known as scours, is an important disease of preweaned calves that affects the production and welfare of beef herds. While hygiene and nutrition are important in reducing the incidence of NCD, vaccination of dams or calves is often employed for the prevention of NCD. The present scoping review summarizes the available peer-reviewed scientific English literature on vaccination of dams or calves for the prevention of NCD over the past decades. The online databases Medline, CAB Abstracts, and Biosis were searched for articles on the topic published between 1950 and 2020. Online software was used to systematically evaluate 2807 citations for inclusion through pre-determined criteria in a 2-step process. In the 113 articles included in the review, vaccines tested targeted the pathogens E. coli (n = 43), bovine rotavirus (BRV, n = 38), Salmonella (n = 29), bovine coronavirus (BCV, n = 14), bovine viral diarrhea virus (n= 7), and other pathogens (n = 8). Field trials for commercial vaccines have been published for the most important pathogens, and results on efficacy are variable for such vaccines targeting BRV, BCV, and E. coli. Meta-analyses exploring efficacy of these vaccines would be helpful to practitioners and producers. No field studies on commercial products have shown efficacy for Salmonella vaccines so that a meta-analysis would unlikely come to a different conclusion. Further research is needed on vaccines for protozoal pathogens like Cryptosporidium parvum as well as on the importance of several emerging enteric viruses in calves.
Collapse
Affiliation(s)
- Gabriele Ute Maier
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA
- Corresponding author
| | - Jefferson Breitenbuecher
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Jose Pablo Gomez
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Festus Samah
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Erik Fausak
- University Library, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Megan Van Noord
- University Library, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Delling C, Daugschies A. Literature Review: Coinfection in Young Ruminant Livestock- Cryptosporidium spp. and Its Companions. Pathogens 2022; 11:103. [PMID: 35056051 PMCID: PMC8777864 DOI: 10.3390/pathogens11010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The protozoan Cryptosporidium parvum is one of the major causative pathogens of diarrhoea in young ruminants; therefore, it causes economic losses and impairs animal welfare. Besides C. parvum, there are many other non-infectious and infectious factors, such as rotavirus, Escherichia coli, and Giardia duodenalis, which may lead to diarrhoeic disease in young livestock. Often, more than one infectious agent is detected in affected animals. Little is known about the interactions bet-ween simultaneously occurring pathogens and their potential effects on the course of disease. In this review, a brief overview about pathogens associated with diarrhoea in young ruminants is presented. Furthermore, information about coinfections involving Cryptosporidium is provided.
Collapse
Affiliation(s)
- Cora Delling
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany;
| | | |
Collapse
|
5
|
Foster D, Jacob M, Stowe D, Smith G. Exploratory cohort study to determine if dry cow vaccination with a Salmonella Newport bacterin can protect dairy calves against oral Salmonella challenge. J Vet Intern Med 2019; 33:1796-1806. [PMID: 31134697 PMCID: PMC6639490 DOI: 10.1111/jvim.15529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/09/2019] [Indexed: 12/04/2022] Open
Abstract
Background Salmonellosis is a major cause of morbidity and mortality in neonatal calves, often occurring before preventative vaccines can be administered. Hypothesis/Objective To evaluate the protective effect on calves of colostrum from cows vaccinated with a commercially available Salmonella Newport bacterin against a Salmonella Typhimurium challenge. Animals Twenty Holstein bull calves from a university dairy farm. Methods Nonrandomized placebo‐controlled trial in which colostrum was harvested from 30 cows that received 2 doses of either Salmonella bacterin or saline before calving. Colostrum collected from each group was pooled and fed to 2 groups of 10 calves at birth. At approximately 2 weeks of age, calves were challenged with Salmonella Typhimurium. Clinical, hematologic, microbiological, and postmortem findings were compared between the 2 groups. Results No differences in mortality, clinical findings, hematology results, blood and fecal cultures, or necropsy findings between the 2 groups were observed. Vaccinated cows had higher colostral titers, and calves fed this colostrum had higher serum titers (mean difference, 0.429; mean [SE], 0.852 [0.02] for vaccinated versus 0.423 [0.02] for control calves). Conclusions and Clinical Importance Transfer of colostral immunoglobulins from Salmonella enterica serotype Newport bacterin to neonatal calves was not sufficient to decrease mortality, clinical signs, sepsis, intestinal damage, or fecal shedding when exposed to a highly pathogenic Salmonella isolate. A large‐scale randomized controlled clinical trial is needed to evaluate the efficacy of this bacterin when administered in the dry period for prevention of salmonellosis in neonatal calves.
Collapse
Affiliation(s)
- Derek Foster
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Megan Jacob
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Devorah Stowe
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Geof Smith
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| |
Collapse
|
6
|
Cummings KJ, Rodriguez-Rivera LD, Capel MB, Rankin SC, Nydam DV. Short communication: Oral and intranasal administration of a modified-live Salmonella Dublin vaccine in dairy calves: Clinical efficacy and serologic response. J Dairy Sci 2019; 102:3474-3479. [PMID: 30738680 DOI: 10.3168/jds.2018-14892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/07/2018] [Indexed: 11/19/2022]
Abstract
Our objectives were to evaluate the clinical efficacy of oral and intranasal administration of a commercial modified-live Salmonella Dublin vaccine in dairy calves and to determine the serologic response associated with these extralabel routes of administration. We conducted a randomized field trial with calves from a New York dairy farm following an outbreak of Salmonella Dublin. A total of 399 Holstein calves were allocated by pen to 3 treatment groups: oral vaccination, intranasal vaccination, and an unvaccinated control group. Administration of the vaccine through oral and intranasal routes did not have a significant effect on pneumonia incidence risk or weight gain; however, calves vaccinated orally and intranasally had lower mortality risk as compared with control calves. Among calves tested using a Salmonella Dublin ELISA, vaccination did not induce an increase in antibody production relative to control calves, indicating that oral and intranasal administration will not hinder diagnosis based on this assay.
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station 77843.
| | - Lorraine D Rodriguez-Rivera
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station 77843
| | | | - Shelley C Rankin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104
| | - Daryl V Nydam
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
7
|
Affiliation(s)
- Christopher C L Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, PO Box 2175, SAR Room 125, North Campus Drive, Brookings, SD 57007, USA.
| |
Collapse
|
8
|
Harvey RR, Friedman CR, Crim SM, Judd M, Barrett KA, Tolar B, Folster JP, Griffin PM, Brown AC. Epidemiology of Salmonella enterica Serotype Dublin Infections among Humans, United States, 1968-2013. Emerg Infect Dis 2018; 23. [PMID: 28820133 PMCID: PMC5572876 DOI: 10.3201/eid2309.170136] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Infection incidence and antimicrobial drug resistance are increasing. Salmonella enterica serotype Dublin is a cattle-adapted bacterium that typically causes bloodstream infections in humans. To summarize demographic, clinical, and antimicrobial drug resistance characteristics of human infections with this organism in the United States, we analyzed data for 1968–2013 from 5 US surveillance systems. During this period, the incidence rate for infection with Salmonella Dublin increased more than that for infection with other Salmonella. Data from 1 system (FoodNet) showed that a higher percentage of persons with Salmonella Dublin infection were hospitalized and died during 2005−2013 (78% hospitalized, 4.2% died) than during 1996–2004 (68% hospitalized, 2.7% died). Susceptibility data showed that a higher percentage of isolates were resistant to >7 classes of antimicrobial drugs during 2005–2013 (50.8%) than during 1996–2004 (2.4%).
Collapse
|
9
|
Quantifying the Survival of Multiple Salmonella enterica Serovars In Vivo via Massively Parallel Whole-Genome Sequencing To Predict Zoonotic Risk. Appl Environ Microbiol 2018; 84:AEM.02262-17. [PMID: 29180370 PMCID: PMC5795071 DOI: 10.1128/aem.02262-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/14/2017] [Indexed: 01/24/2023] Open
Abstract
Salmonella enterica is an animal and zoonotic pathogen of worldwide importance. Salmonella serovars that differ in their host and tissue tropisms exist. Cattle are an important reservoir of human nontyphoidal salmonellosis, and contaminated bovine peripheral lymph nodes enter the food chain via ground beef. The relative abilities of different serovars to survive within the bovine lymphatic system are poorly understood and constrain the development of control strategies. This problem was addressed by developing a massively parallel whole-genome sequencing method to study mixed-serovar infections in vivo. Salmonella serovars differ genetically by naturally occurring single nucleotide polymorphisms (SNPs) in certain genes. It was hypothesized that these SNPs could be used as markers to simultaneously identify serovars in mixed populations and quantify the abundance of each member in a population. The performance of the method was validated in vitro using simulated pools containing up to 11 serovars in various proportions. It was then applied to study serovar survival in vivo in cattle challenged orally with the same 11 serovars. All the serovars successfully colonized the bovine lymphatic system, including the peripheral lymph nodes, and thus pose similar risks of zoonosis. This method enables the fates of multiple genetically unmodified strains to be evaluated simultaneously in a single animal. It could be useful in reducing the number of animals required to study mixed-strain infections and in testing the cross-protective efficacy of vaccines and treatments. It also has the potential to be applied to diverse bacterial species which possess shared but polymorphic alleles. IMPORTANCE While some Salmonella serovars are more frequently isolated from lymph nodes rather than the feces and environment of cattle, the relative abilities of serovars to survive within the lymphatic system of cattle remain ill defined. A sequencing-based method which used available information from sequenced Salmonella genomes to study the dynamics of mixed-serovar infections in vivo was developed. The main advantages of the method include the simultaneous identification and quantification of multiple strains without any genetic modification and minimal animal use. This approach could be used in vaccination trials or in epidemiological surveys where an understanding of the dynamics of closely related strains of a pathogen in mixed populations could inform the prediction of zoonotic risk and the development of intervention strategies.
Collapse
|
10
|
Smith GW, Smith F, Zuidhof S, Foster DM. Short communication: Characterization of the serologic response induced by vaccination of late-gestation cows with a Salmonella Dublin vaccine. J Dairy Sci 2015; 98:2529-32. [PMID: 25648810 PMCID: PMC7094398 DOI: 10.3168/jds.2014-8972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022]
Abstract
Diarrhea due to Salmonella infection is an important cause of neonatal calf diarrhea. The acquisition of passive immunity in the calf by vaccinating the dam has shown some success in previous studies; however, no data exists on the use of currently licensed vaccines in the United States. Therefore, the purpose of this study was to determine whether vaccinating cows in late gestation with a commercially available Salmonella Dublin vaccine would stimulate Salmonella-specific antibodies in the colostrum of cows at calving and whether these antibodies would be transferred to the calf. Thirty Holstein cows were vaccinated 3 wk before the end of lactation with a Salmonella enterica serovar Dublin vaccine, with a second dose given at dry-off. An additional 30 cows received only saline. Calves had a blood sample collected immediately after birth and were then fed fresh colostrum from their dam within 2 h of calving. A postcolostrum blood sample was collected 24 to 48 h later. Salmonella Dublin antibodies in colostrum as well as serum from the cows and calves were measured using an ELISA technique. Results of this study showed that vaccinated cattle had elevated Salmonella Dublin antibody titers at the time of calving (40.3 ± 9.1) as compared with control cows (−9.4 ± 1.1). Calves that received colostrum from vaccinated cattle also had a significant increase in Salmonella Dublin antibodies (88.5 ± 8.9) as compared with calves born to unvaccinated cows (−3.2 ± 1.2). This study demonstrated that the use of a commercially available Salmonella Dublin vaccine can stimulate antibodies that are passed on to the calf via colostral transfer. Further studies need to be done to determine whether these antibodies will offer protection against Salmonella challenge.
Collapse
Affiliation(s)
- Geof W Smith
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh 27607.
| | - Feli Smith
- Division of Laboratory Animal Resources, Duke University, Durham, NC 27708
| | - Sjoert Zuidhof
- Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO 64506
| | - Derek M Foster
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh 27607
| |
Collapse
|
11
|
Smith GW, Alley ML, Foster DM, Smith F, Wileman BW. Passive immunity stimulated by vaccination of dry cows with a Salmonella bacterial extract. J Vet Intern Med 2014; 28:1602-5. [PMID: 24986262 PMCID: PMC4895567 DOI: 10.1111/jvim.12396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/22/2014] [Accepted: 05/12/2014] [Indexed: 12/01/2022] Open
Abstract
Background Diarrhea because of Salmonella infection is a cause of neonatal calf diarrhea. The stimulation of passive immunity in the calf by vaccinating the dam for Salmonella has shown some success in previous studies; however, there are no data on the use of currently licensed vaccines in the United States. Objective To determine whether vaccinating cows at dry‐off with a commercially available Salmonella bacterial extract would stimulate Salmonella‐specific antibodies in the colostrum of cows at calving and whether these antibodies would be transferred to the calf. Animals Sixty Holstein cattle and 59 calves from a herd presumed to be naïve to Salmonella. Methods Prospective clinical trial. Thirty cows were vaccinated at dry‐off with a Salmonella enterica serovar Newport bacterial extract and again 4 weeks later. An additional 30 cows received only saline. Calves fed fresh colostrum from their dam within 4 hours of birth had blood collected 24 hours later. Results Vaccinated cattle had increased Salmonella Newport antibody titers at calving in blood (P = .01) and colostrum (P = .011). Calves that received colostrum from vaccinated cattle also had significant increase in Salmonella antibodies (1.04 ± 0.03) as compared to calves born to unvaccinated cows (0.30 ± 0.02). Conclusions and Clinical Importance The results indicate that the use of a commercially available Salmonella vaccine can stimulate antibodies that are passed on to the calf via colostral transfer. Further studies need to be done to determine whether these antibodies will offer protection against Salmonella challenge.
Collapse
Affiliation(s)
- G W Smith
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | | | | | | | | |
Collapse
|
12
|
Qiu L, Wang X, Hao H, Mu G, Dang R, Wang J, Zhang S, Du E, Yang Z. Oral administration of attenuated Salmonella typhimurium containing a DNA vaccine against rabbit haemorrhagic disease. J Virol Methods 2012; 188:108-13. [PMID: 23270916 DOI: 10.1016/j.jviromet.2012.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
The use of attenuated Salmonella typhimurium as a bactofection vehicle for the oral delivery of a DNA vaccine against rabbit haemorrhagic disease virus (RHDV) was investigated. The DNA vaccine plasmid pcDNA3.1-VP60, which encodes the viral capsid protein VP60, was transformed into the attenuated S. typhimurium strain SL7207. The resulting recombinant bacteria, named as SL/pcDNA3.1-VP60, were orally used to immunise rabbits. The successful delivery of the DNA plasmid was confirmed by the detected VP60 transcription in the rabbit intestines through the reverse transcription polymerase chain reaction. In addition, the RHDV-specific humoral and cell-mediated immune response that was induced by SL/pcDNA3.1-VP60 was detected by the enzyme-linked immunosorbent assay as well as the assays for T lymphocyte proliferation and cytokines secretion. The significant protection of immunised rabbits against the RHDV strain XA/China/2010 at 42 d post-immunisation was demonstrated. This study is the first report about the efficient usage of attenuated Salmonella as a live vector for the oral delivery of a DNA vaccine against RHDV.
Collapse
Affiliation(s)
- Li Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|