1
|
Fascetti AJ, Larsen JA, Min A, Nair M, Montano M, Giulivi C. Exploring the impact of age, and body condition score on erythrocytic B 1-Dependent transketolase activity in cats: A comprehensive analysis of thiamine status. Heliyon 2024; 10:e34188. [PMID: 39113982 PMCID: PMC11305241 DOI: 10.1016/j.heliyon.2024.e34188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
One of the key factors influencing aging and morbidity is the overall antioxidant status and regenerative capacity. In examining contributors to the antioxidant status, we analyzed the thiamine status in felines and the influence of age, gender, and body condition score. We measured erythrocytic B1-dependent specific transketolase (STKT) activity, an enzyme in the pentose phosphate pathway, in a group of 60 sexually intact, healthy, and specific pathogen-free felines (44 females, 16 males, aged 1-17 years) with thiamine diphosphate (TDP; 0.3 and 3 mM) and without it. Only two parameters (STKT activity with and without 0.3 mM TDP) decreased with age. After adjusting for age, statistical thresholds were established using these and other age-independent parameters, identifying 15 felines with subclinical thiamine deficiency. The red blood cell proteomics analysis revealed that the pentose phosphate shunt, glycolysis, and oxidative stress response were the most affected pathways in deficient felines, confirming the above diagnosis. Age emerged as the primary factor associated with thiamine deficiency, supported by the enrichment of neurodegenerative diseases with a proteotoxicity component; five young-adult felines showed marginal or acute B1 deficiency, and six were adult-mature with a more chronic deficiency, possibly linked to cognitive decline, all with an underweight to ideal body condition scores. Only three senior-adult felines were deficient and overweight-obese. Detecting thiamine deficiency emphasizes the need for more accurate reference values, the establishment of advanced preventive or therapeutic measures to enhance the well-being of aging companion animals, and potential extensions to human health, particularly concerning cognitive function.
Collapse
Affiliation(s)
- Andrea J. Fascetti
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Jennifer A. Larsen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Angela Min
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Maya Nair
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Maria Montano
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
2
|
Jackson C, Furnes M, Rød‐Eriksen L, Yap KN, Davey M, Fossøy F, Flagstad Ø, Eide NE, Mjøen T, Ulvund K. Subclinical thiamine deficiency results in failed reproduction in Arctic foxes. Vet Med Sci 2024; 10:e1358. [PMID: 38356320 PMCID: PMC10867461 DOI: 10.1002/vms3.1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 01/07/2024] [Indexed: 02/16/2024] Open
Abstract
Thiamine deficiency can result in life-threatening physiological and neurological complications. While a thiamine-deficient diet may result in the onset of such symptoms, the presence of thiaminase - an enzyme that breaks down thiamine - is very often the cause. In such instances, thiaminase counteracts the bioavailability and uptake of thiamine, even when food-thiamine levels are adequate. Here, we report on a case of failed reproduction in seven Arctic fox (Vulpes lagopus) breeding pairs kept at a captive breeding facility, including the presentation of severe thiamine deficiency symptoms in two male foxes. Symptoms included ataxia, obtundation, truncal sway, star-gazing and visual impairment. Blood tests were inconclusive, yet symptoms resolved following treatment with a series of thiamine hydrochloride injections, thereby verifying the diagnosis. A fish-dominated feed, which for the first time had been frozen for a prolonged period, was identified as the likely source of thiaminase and subsequent deterioration in the animals' health. Symptoms in the two males arose during the annual mating period. All seven breeding pairs at the captive breeding station failed to reproduce - a phenomenon never recorded during the captive breeding facility's preceding 17-year operation. Relating our findings to peer-reviewed literature, the second part of this case report assesses how thiamine deficiency (due to thiaminase activity) likely resulted in subclinical effects that impaired the production of reproduction hormones, and thereby led to a complete breeding failure. While previous work has highlighted the potentially lethal effects of thiamine deficiency in farmed foxes, this is, to our knowledge the first study showing how subclinical effects in both males and females may inhibit reproduction in foxes in general, but specifically Arctic foxes. The findings from our case report are not only relevant for captive breeding facilities, but for the welfare and management of captive carnivorous animals in general.
Collapse
Affiliation(s)
- Craig Jackson
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Marianne Furnes
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Lars Rød‐Eriksen
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Kang Nian Yap
- Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Marie Davey
- Department of Terrestrial BiodiversityNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Frode Fossøy
- Department of Aquatic BiodiversityNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Øystein Flagstad
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Nina E. Eide
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Toralf Mjøen
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Kristine Ulvund
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| |
Collapse
|
3
|
Felhi R, Sfaihi L, Charif M, Frikha F, Aoiadni N, Kamoun T, Lenaers G, Fakhfakh F. Vitamin B1 deficiency leads to high oxidative stress and mtDNA depletion caused by SLC19A3 mutation in consanguineous family with Leigh syndrome. Metab Brain Dis 2023; 38:2489-2497. [PMID: 37642897 DOI: 10.1007/s11011-023-01280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Leigh syndrome (LS) and Leigh-like spectrum are the most common infantile mitochondrial disorders characterized by heterogeneous neurologic and metabolic manifestations. Pathogenic variants in SLC carriers are frequently reported in LS given their important role in transporting various solutes across the blood-brain barrier. SLC19A3 (THTR2) is one of these carriers transporting vitamin-B1 (vitB1, thiamine) into the cell. Targeted NGS of nuclear genes involved in mitochondrial diseases was performed in a patient belonging to a consanguineous Tunisian family with LS and revealed a homozygous c.1264 A > G (p.T422A) variant in SLC19A3. Molecular docking revealed that the p.T422A aa change is located at a key position interacting with vitB1 and causes conformational changes compromising vitB1 import. We further disclosed decreased plasma antioxidant activities of CAT, SOD and GSH enzymes, and a 42% decrease of the mtDNA copy number in patient blood.Altogether, our results disclose that the c.1264 A > G (p.T422A) variant in SLC19A3 affects vitB1 transport, induces a mtDNA depletion and reduces the expression level of oxidative stress enzymes, altogether contributing to the LS phenotype of the patient.
Collapse
Affiliation(s)
- Rahma Felhi
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra. Km 3., Sfax, Tunisia.
| | - Lamia Sfaihi
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Majida Charif
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Nissaf Aoiadni
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Thouraya Kamoun
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Guy Lenaers
- Université d'Angers, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR- ICAT, Equipe MitoLab, 49933, Angers, France
- Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Faiza Fakhfakh
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra. Km 3., Sfax, Tunisia
| |
Collapse
|
4
|
Alrubaye HS, Kohl KD. Abundance and Compositions of B-Vitamin-Producing Microbes in the Mammalian Gut Vary Based on Feeding Strategies. mSystems 2021; 6:e0031321. [PMID: 34463576 DOI: 10.1128/msystems.00313-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Mammals maintain close associations with gut microbes that provide numerous nutritional benefits, including vitamin synthesis. While most mammals obtain sufficient vitamins from their diets, deficiencies in various B vitamins (biotin, cobalamin, riboflavin, thiamine, etc.) are reported in captive animals. Biomedical and agricultural research has shown that gut microbes are capable of synthesizing B vitamins and assisting with host vitamin homeostasis. However, we have a poor understanding of distribution and abundance of B-vitamin synthesis across mammalian hosts. Here, we leveraged a publicly available metagenomic data set from 39 mammalian species and used MG-RAST to compare the abundance and composition of B-vitamin-synthesizing microbes across mammalian feeding strategies. We predicted that herbivores would have the highest abundance of genes associated with vitamin synthesis, as plant material is often low in B vitamins. However, this hypothesis was not supported. Instead, we found that relative abundances of genes associated with cobalamin and thiamine synthesis were significantly enriched in carnivorous mammals. The taxonomic community structure of microbes predicted to be involved in B-vitamin synthesis also varied significantly based on host feeding strategy. For example, the genus Acinetobacter primarily contributed to predicted biotin synthesis in carnivores but was not predicted to contribute to biotin synthesis in herbivores or omnivores. Given that B vitamins cannot be stored within the body, we hypothesize that microbial synthesis of B vitamins could be important for wild carnivores that regularly experience periods of fasting. Overall, these results shed light on the distribution and abundance of microbial B-vitamin synthesis across mammalian groups, with potential implications for captive animals. IMPORTANCE Microbial communities offer numerous physiological services to their hosts, but we still have a poor understanding of how these functions are structured across mammalian species. Specifically, our understanding of processes of vitamin synthesis across animals is severely limited. Here, we compared the abundance of genes associated with the synthesis of B vitamins and the taxonomic composition of the microbes containing these genes. We found that herbivores, omnivores, and carnivores harbor distinct communities of microbes that putatively conduct vitamin synthesis. Additionally, carnivores exhibited the highest abundance of genes associated with synthesis of specific B vitamins, cobalamin and thiamine. These data uncover the potential importance of microbes in the vitamin homeostasis of various mammals, especially carnivorous mammals. These findings have implications for understanding the microbial interactions that contribute to the nutritional requirements of animals held in captivity.
Collapse
Affiliation(s)
- Hisham S Alrubaye
- Department of Biological Sciences, University of Pittsburghgrid.21925.3d, Pittsburgh, Pennsylvania, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburghgrid.21925.3d, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Cuvertoret-Sanz M, López-Figueroa C, O'Byrne A, Canturri A, Martí-Garcia B, Pintado E, Pérez L, Ganges L, Cobos A, Abarca ML, Raga JA, Van Bressem MF, Domingo M. Causes of cetacean stranding and death on the Catalonian coast (western Mediterranean Sea), 2012-2019. DISEASES OF AQUATIC ORGANISMS 2020; 142:239-253. [PMID: 33331291 DOI: 10.3354/dao03550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The causes of cetacean stranding and death along the Catalan coast between 2012 and 2019 were systematically investigated. Necropsies and detailed pathological investigations were performed on 89 well-preserved stranded cetaceans, including 72 striped dolphins Stenella coeruleoalba, 9 Risso's dolphins Grampus griseus, 5 bottlenose dolphins Tursiops truncatus, 1 common dolphin Delphinus delphis, 1 Cuvier's beaked whale Ziphius cavirostris and 1 fin whale Balaenoptera physalus. The cause of death was determined for 89.9% of the stranded cetaceans. Fisheries interaction was the most frequent cause of death in striped dolphins (27.8%) and bottlenose dolphins (60%). Cetacean morbillivirus (CeMV) was detected on the Catalan coast from 2016 to 2017, causing systemic disease and death in 8 of the 72 (11.1%) striped dolphins. Chronic CeMV infection of the central nervous system was observed from 2018-2019 in a further 5 striped dolphins. Thus, acute and chronic CeMV disease caused mortality in 18% of striped dolphins and 14.6% of all 89 cetaceans. Brucella ceti was isolated in 6 striped dolphins and 1 bottlenose dolphin with typical brucellosis lesions and in 1 striped dolphin with systemic CeMV. Sinusitis due to severe infestation by the nematode parasite Crassicauda grampicola caused the death of 4 out of 6 adult Risso's dolphins. Maternal separation, in some cases complicated with septicemia, was a frequent cause of death in 13 of 14 calves. Other less common causes of death were encephalomalacia of unknown origin, septicemia, peritonitis due to gastric perforation by parasites and hepatitis caused by Sarcocystis spp.
Collapse
Affiliation(s)
- María Cuvertoret-Sanz
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
PLASMA CONCENTRATIONS OF VITAMIN A 1, B 1, D 3, AND E IN HUMBOLDT PENGUINS ( SPHENISCUS HUMBOLDTI) BEFORE AND AFTER DIETARY VITAMIN SUPPLEMENTATION OF THEIR FISH DIET. J Zoo Wildl Med 2019; 49:732-737. [PMID: 30212350 DOI: 10.1638/2017-0069.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In a practical feeding trial at Ouwehand Zoo, plasma concentrations of vitamin A1, calcidiol (D3), α-tocopherol (E), and B1 in 17 Humboldt penguins ( Spheniscus humboldti) were measured before and after supplementation to gain insight into the effect of supplementing these vitamins in animals being fed thawed frozen-fish diets. None of the penguins received vitamin supplements for at least 6 mo before the supplementation trial, which was conducted prior to their normal nesting and molting period. During the trial period, eight penguins received daily vitamin A1, D3, tocopheryl acetate, and B1 supplementation placed in their fish immediately prior to feeding and nine control penguins received no supplementation. Concentrations of vitamins A1, D3, α-tocopherol, and B1 were also measured in the thawed ready-to-feed fish. Concentrations of vitamins B1 and α-tocopherol were below the Association of Zoos and Aquariums (AZA) recommendations for penguin diets, while concentrations of vitamins A1 and D3 were far above AZA recommendations. At the start of the study and after 70 days of supplementation, plasma concentrations were determined for these vitamins. Vitamin B1 concentrations in plasma increased significantly ( P < 0.05) between Day 0 (mean 39.9 μg/L) and day 70 (mean 160.5 μg/L) in the supplemented group. Plasma vitamin D3 and α-tocopherol did not show a significant change. Vitamin A1 levels in the supplemented group decreased significantly from 1.65 mg/L on day 0 to 1.4 mg/L on day 70. In the control group no significant changes were observed. The results of the study support the necessity of supplementing vitamin B1 in penguins fed thawed frozen fish. Depletion of vitamin A and E concentrations in frozen food fish over time support recommendations to regularly measure vitamin concentrations in different batches of frozen fish.
Collapse
|
7
|
Dhir S, Tarasenko M, Napoli E, Giulivi C. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Front Psychiatry 2019; 10:207. [PMID: 31019473 PMCID: PMC6459027 DOI: 10.3389/fpsyt.2019.00207] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/22/2019] [Indexed: 01/19/2023] Open
Abstract
Thiamine (vitamin B1) is an essential nutrient that serves as a cofactor for a number of enzymes, mostly with mitochondrial localization. Some thiamine-dependent enzymes are involved in energy metabolism and biosynthesis of nucleic acids whereas others are part of the antioxidant machinery. The brain is highly vulnerable to thiamine deficiency due to its heavy reliance on mitochondrial ATP production. This is more evident during rapid growth (i.e., perinatal periods and children) in which thiamine deficiency is commonly associated with either malnutrition or genetic defects. Thiamine deficiency contributes to a number of conditions spanning from mild neurological and psychiatric symptoms (confusion, reduced memory, and sleep disturbances) to severe encephalopathy, ataxia, congestive heart failure, muscle atrophy, and even death. This review discusses the current knowledge on thiamine deficiency and associated morbidity of neurological and psychiatric disorders, with special emphasis on the pediatric population, as well as the putative beneficial effect of thiamine supplementation in autism spectrum disorder (ASD) and other neurological conditions.
Collapse
Affiliation(s)
- Shibani Dhir
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maya Tarasenko
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Polegato BF, Pereira AG, Azevedo PS, Costa NA, Zornoff LAM, Paiva SAR, Minicucci MF. Role of Thiamin in Health and Disease. Nutr Clin Pract 2019; 34:558-564. [DOI: 10.1002/ncp.10234] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Bertha F. Polegato
- Internal Medicine Department; Medical School; São Paulo State University (Unesp); Botucatu São Paulo Brazil
| | - Amanda G. Pereira
- Internal Medicine Department; Medical School; São Paulo State University (Unesp); Botucatu São Paulo Brazil
| | - Paula S. Azevedo
- Internal Medicine Department; Medical School; São Paulo State University (Unesp); Botucatu São Paulo Brazil
| | - Nara A. Costa
- Internal Medicine Department; Medical School; São Paulo State University (Unesp); Botucatu São Paulo Brazil
| | - Leonardo A. M. Zornoff
- Internal Medicine Department; Medical School; São Paulo State University (Unesp); Botucatu São Paulo Brazil
| | - Sergio A. R. Paiva
- Internal Medicine Department; Medical School; São Paulo State University (Unesp); Botucatu São Paulo Brazil
| | - Marcos F. Minicucci
- Internal Medicine Department; Medical School; São Paulo State University (Unesp); Botucatu São Paulo Brazil
| |
Collapse
|
9
|
Kraft CE, Angert ER. Competition for vitamin B1 (thiamin) structures numerous ecological interactions. QUARTERLY REVIEW OF BIOLOGY 2018; 92:151-68. [PMID: 29562121 DOI: 10.1086/692168] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thiamin (vitamin B1) is a cofactor required for essential biochemical reactions in all living organisms, yet free thiamin is scarce in the environment. The diversity of biochemical pathways involved in the acquisition, degradation, and synthesis of thiamin indicates that organisms have evolved numerous ecological strategies for meeting this nutritional requirement. In this review we synthesize information from multiple disciplines to show how the complex biochemistry of thiamin influences ecological outcomes of interactions between organisms in environments ranging from the open ocean and the Australian outback to the gastrointestinal tract of animals. We highlight population and ecosystem responses to the availability or absence of thiamin. These include widespread mortality of fishes, birds, and mammals, as well as the thiamin-dependent regulation of ocean productivity. Overall, we portray thiamin biochemistry as the foundation for molecularly mediated ecological interactions that influence survival and abundance of a vast array of organisms.
Collapse
|
10
|
Abstract
Recent pet food recalls for insufficient dietary thiamine have highlighted the importance of adequate thiamine intake in dogs and cats, as thiamine is an essential dietary nutrient with a critical role in energy metabolism. Prolonged thiamine deficiency leads to clinical signs that can span several organ systems, and deficiency can be fatal if not reversed. In this review, the current knowledge of thiamine metabolism will be summarized. Dietary recommendations for dogs and cats will be discussed, and the risk factors and clinical signs associated with thiamine deficiency will be examined.
Collapse
|
11
|
Gimmel AER, Baumgartner K, Liesegang A. Vitamin blood concentration and vitamin supplementation in bottlenose dolphins (Tursiops truncatus) in European facilities. BMC Vet Res 2016; 12:180. [PMID: 27596136 PMCID: PMC5011994 DOI: 10.1186/s12917-016-0818-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As fish eaters bottlenose dolphins (Tursiops truncatus) in human care need to receive daily vitamin supplementation, because whole thawed fish lacks certain vitamins. However, the exact concentration of supplementation has not been established and is a matter of discussion. To ensure adequate vitamin supplementation in pets, vitamin blood concentrations are measured. This is not a common practice in dolphins. The objective of the present study was to collect information about vitamin supplementation in bottlenose dolphins and on vitamin blood concentrations of healthy animals in European facilities. In addition, these results were compared with blood levels of wild animals. Conclusions on how to provide bottlenose dolphins in human care with an effective vitamin supplementation will then be drawn. Initially, fish-handling techniques and vitamin supplementation were evaluated by questionnaire, which was sent to 25 European facilities that house bottlenose dolphins. Secondly, blood samples from 57 dolphins living in 10 facilities were taken and sent by mail to a reference laboratory. They were analysed for retinol, thiamine pyrophosphate, cobalamin, calcidiol and tocopherol. The blood concentrations were then correlated with vitamin supplementation, fish handling techniques and pre-existing blood concentrations of free-ranging dolphins. Finally, the data was subjected to a standard analysis of variance techniques (ANOVA) and a linear model analysis. RESULTS Fish was mainly thawed in a refrigerator. Further, the 95 % confidence interval for retinol blood concentrations was 0.048 to 0.059 mg/l and for tocopherol 17.95 to 20.76 mg/l. These concentrations were 27 and 53 %, respectively, higher than those found in free-ranging animals. In contrast, calcidiol concentrations (143.9-174.7 ng/ml) of the dolphins in human care were lower than in blood found for free-ranging animals. Regarding thiamine pyrophosphate and cobalamin, concentrations ranged between 0.42 and 0.55 mg/l and 175.55 and 275.22 pg/ml respectively. No reference concentrations for free-ranging Tursiops truncatus were found. CONCLUSIONS These findings suggest an over-supplementation of retinol (vitamin A) and tocopherol (vitamin E) in bottlenose dolphins (Tursiops truncatus) housed in human care. Therefore, vitamin A supplementation should not exceed 50,000 IU per animal per day and vitamin E supplementation should be around 100 IU per kg fed fish per day.
Collapse
Affiliation(s)
- Angela Emilia Ricarda Gimmel
- Institute of Animal Nutrition, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, 8057, Zurich, Switzerland
| | | | - Annette Liesegang
- Institute of Animal Nutrition, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, 8057, Zurich, Switzerland.
| |
Collapse
|
12
|
Vernau K, Napoli E, Wong S, Ross-Inta C, Cameron J, Bannasch D, Bollen A, Dickinson P, Giulivi C. Thiamine Deficiency-Mediated Brain Mitochondrial Pathology in Alaskan Huskies with Mutation in SLC19A3.1. Brain Pathol 2014; 25:441-53. [PMID: 25117056 DOI: 10.1111/bpa.12188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/05/2014] [Indexed: 02/05/2023] Open
Abstract
Alaskan Husky encephalopathy (AHE(1) ) is a fatal brain disease associated with a mutation in SLC19A3.1 (c.624insTTGC, c.625C>A). This gene encodes for a thiamine transporter 2 with a predominately (CNS) central nervous system distribution. Considering that brain is particularly vulnerable to thiamine deficiency because of its reliance on thiamine pyrophosphate (TPP)-dependent metabolic pathways involved in energy metabolism and neurotransmitter synthesis, we characterized the impact of this mutation on thiamine status, brain bioenergetics and the contribution of oxidative stress to this phenotype. In silico modeling of the mutated transporter indicated a significant loss of alpha-helices resulting in a more open protein structure suggesting an impaired thiamine transport ability. The cerebral cortex and thalamus of affected dogs were severely deficient in TPP-dependent enzymes accompanied by decreases in mitochondrial mass and oxidative phosphorylation (OXPHOS) capacity, and increases in oxidative stress. These results along with the behavioral and pathological findings indicate that the phenotype associated with AHE is consistent with a brain-specific thiamine deficiency, leading to brain mitochondrial dysfunction and increased oxidative stress. While some of the biochemical deficits, neurobehavior and affected brain areas in AHE were shared by Wernicke's and Korsakoff's syndromes, several differences were noted likely arising from a tissue-specific vs. that from a whole-body thiamine deficiency.
Collapse
Affiliation(s)
- Karen Vernau
- Department of Surgical and Radiological Sciences, University of California Davis, Toronto, Ontario, Canada
| | - Eleonora Napoli
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada
| | - Sarah Wong
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada
| | - Catherine Ross-Inta
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada
| | - Jessie Cameron
- Department of Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Danika Bannasch
- Pathology, Microbiology and Immunology, University of California Davis, Sacramento, CA
| | - Andrew Bollen
- Department of Pathology and Laboratory Medicine, University of California San Francisco
| | - Peter Dickinson
- Department of Surgical and Radiological Sciences, University of California Davis, Toronto, Ontario, Canada
| | - Cecilia Giulivi
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada.,Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA
| |
Collapse
|