1
|
Hasbal NB, Bakir CN, Incir S, Siriopol D, Sanchez-Lozada LG, Lanaspa MA, Johnson RJ, Kanbay M. A study on the early metabolic effects of salt and fructose consumption: the protective role of water. Hypertens Res 2024; 47:1797-1810. [PMID: 38750219 PMCID: PMC11224018 DOI: 10.1038/s41440-024-01686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 07/06/2024]
Abstract
Increasing serum osmolality has recently been linked with acute stress responses, which over time can lead to increased risk for obesity, hypertension, and other chronic diseases. Salt and fructose are two major stimuli that can induce acute changes in serum osmolality. Here we investigate the early metabolic effects of sodium and fructose consumption and determine whether the effects of sodium or fructose loading can be mitigated by blocking the change in osmolality with hydration. Forty-four healthy subjects without disease and medication were recruited into four groups. After overnight fasting, subjects in Group 1 drank 500 mL of salty soup, while those in Group 2 drank 500 mL of soup without salt for 15 min. Subjects in Group 3 drank 500 mL of 100% apple juice in 5 min, while subjects in Group 4 drank 500 mL of 100% apple juice and 500 mL of water in 5 min. Blood pressure (BP), plasma sodium, and glucose levels were measured every 15 min in the first 2 h. Serum and urine osmolarity, serum uric acid, cortisol, fibroblast growth factor 21 (FGF21), aldosterone, adrenocorticotropic hormone (ACTH) level, and plasma renin activity (PRA) were measured at the baseline and 2 h. Both acute intake of salt or fructose increased serum osmolality (maximum ∼4 mOsm/L peaking at 75 min) associated with a rise in systolic and diastolic BP, PRA, aldosterone, ACTH, cortisol, plasma glucose, uric acid, and FGF21. Salt tended to cause greater activation of the renin-angiotensin-system (RAS), while fructose caused a greater rise in glucose and FGF21. In both cases, hydration could prevent the osmolality and largely block the acute stress response. Acute changes in serum osmolality can induce remarkable activation of the ACTH-cortisol, RAS, glucose metabolism, and uric acid axis that is responsive to hydration. In addition to classic dehydration, salt, and fructose-containing sugars can activate these responses. Staying well hydrated may provide benefits despite exposure to sugar and salt. More studies are needed to investigate whether hydration can block the chronic effects of sugar and salt on disease.
Collapse
Affiliation(s)
- Nuri Baris Hasbal
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, İstanbul, Turkey.
| | | | - Said Incir
- Department of Biochemistry, Koc University School of Medicine, Istanbul, Turkey
| | - Dimitrie Siriopol
- Department of Nephrology, "Saint John the New" County Hospital, Stefan cel Mare University, Suceava, Romania
| | - Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chavez", Mexico City, Mexico
| | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, İstanbul, Turkey
| |
Collapse
|
2
|
Henrik SZŐKE, István BÓKKON, David M, Jan V, Ágnes K, Zoltán K, Ferenc F, Tibor K, László SL, Ádám D, Odilia M, Andrea K. The innate immune system and fever under redox control: A Narrative Review. Curr Med Chem 2022; 29:4324-4362. [DOI: 10.2174/0929867329666220203122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT:
In living cells, redox potential is vitally important for normal physiological processes that are closely regulated by antioxidants, free amino acids and proteins that either have reactive oxygen and nitrogen species capture capability or can be compartmentalized. Although hundreds of experiments support the regulatory role of free radicals and their derivatives, several authors continue to claim that these perform only harmful and non-regulatory functions. In this paper we show that countless intracellular and extracellular signal pathways are directly or indirectly linked to regulated redox processes. We also briefly discuss how artificial oxidative stress can have important therapeutic potential and the possible negative effects of popular antioxidant supplements.
Next, we present the argument supported by a large number of studies that several major components of innate immunity, as well as fever, is also essentially associated with regulated redox processes. Our goal is to point out that the production of excess or unregulated free radicals and reactive species can be secondary processes due to the perturbed cellular signal pathways. However, researchers on pharmacology should consider the important role of redox mechanisms in the innate immune system and fever.
Collapse
Affiliation(s)
- SZŐKE Henrik
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - BÓKKON István
- Neuroscience and Consciousness Research Department, Vision Research Institute,
Lowell, MA, USA
| | - martin David
- Department of Human Medicine, University Witten/Herdecke, Witten, Germany
| | - Vagedes Jan
- University Children’s Hospital, Tuebingen University, Tuebingen, Germany
| | - kiss Ágnes
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - kovács Zoltán
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - fekete Ferenc
- Department of Nyerges Gábor Pediatric Infectology, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - kocsis Tibor
- Department of Clinical Governance, Hungarian National Ambulance Service, Budapest, Hungary
| | | | | | | | - kisbenedek Andrea
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Naganawa S, Ito R, Kawamura M, Taoka T, Yoshida T, Sone M. Peripheral Retinal Leakage after Intravenous Administration of a Gadolinium-based Contrast Agent: Age Dependence, Temporal and Inferior Predominance and Potential Implications for Eye Homeostasis. Magn Reson Med Sci 2021; 22:45-55. [PMID: 34657903 PMCID: PMC9849422 DOI: 10.2463/mrms.mp.2021-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Peripheral retinal leakage (PRL) of contrast medium from the ora serrata (i.e., the peripheral part of the retina) was recently reported in normal eyes using ultra-widefield fluorescein angiography. We occasionally see PRL of gadolinium-based contrast agents (GBCAs) in the vitreous from the temporal and inferior sides of the ora serrata on MR images of subjects without ophthalmic disease. In this study, we retrospectively evaluated these MR images to determine if PRL was associated with aging. We also evaluated whether the initial leakage appeared in the temporal and inferior sides, and whether there was uniform distribution within the vitreous after 24 hours. METHODS In 127 subjects (9 volunteers, 85 patients with sudden deafness, and 33 patients with a suspicion of endolymphatic hydrops), pre- and post-contrast-enhanced heavily T2-weighted 3D-fluid attenuated inversion recovery (FLAIR) images were obtained. The presence or absence of PRL was subjectively evaluated. For patients with a suspicion of endolymphatic hydrops, 3D-real inversion recovery (IR) images were also obtained at pre-, 10 mins, 4 hours, and 24 hours after intravenous administration (IV) of GBCA. Four circular ROIs were placed in the vitreous humor and the signal intensity was measured. RESULTS In the cases with PRL (n = 88) and without PRL (n = 47), the median age was 59 and 47 years, respectively (P = 0.001). At 4 hours after IV-GBCA, the mean signal increase in the inferior temporal ROI was greater than all the other ROIs. At 24 hours after IV-GBCA, no significant difference in signal intensity was observed for the four ROIs. CONCLUSION PRL of GBCA is age-dependent and occurs mainly from the inferior temporal side of the ora serrata. The contrast effect was uniformly distributed at 24 hours after IV-GBCA. Future observations in a variety of diseases will determine the clinical significance of these findings.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan,Corresponding author: Department of Radiology, Nagoya University Graduate School of Medicine, 65, Tsurumaicho, Shouwa-ku, Nagoya, Aichi 466-8550, Japan. Phone: +81-52-744-2327, Fax: +81-52-744-2335, E-mail:
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tadao Yoshida
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Ohashi T, Naganawa S, Iwata S, Kuno K. Distribution of Gadolinium-based Contrast Agent after Leaking into the Cerebrospinal Fluid: Comparison between the Cerebral Cisterns and the Lateral Ventricles. Magn Reson Med Sci 2021; 20:175-181. [PMID: 32641590 PMCID: PMC8203476 DOI: 10.2463/mrms.mp.2020-0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose: Leakage of a small amount of intravenously administered gadolinium-based contrast agents (GBCAs) into the cerebrospinal fluid (CSF) space has been reported, even in healthy subjects without blood–brain barrier disruption. Several candidates including the choroid plexus and cortical veins have been proposed as the source of the leakage. The purpose of this study was to evaluate the distribution of intravenously administered GBCA leakage into the CSF by comparing the contrast enhancement of the cerebral cisterns to the lateral ventricles (LVs). Methods: In 26 patients with a suspicion of endolymphatic hydrops (21–80 years old), a three-dimensional real inversion recovery (3D-real IR) image was obtained at pre-, and at 5 min, and 4 h post-intravenous administration of a single dose of GBCA (IV-SD-GBCA). In the 3D-real IR image, the signal intensities (SIs) in the anterior horn of the LV (LVante), the trigone of the LV (LVtri), the Sylvian fissure (SyF), the ambient cistern (Amb), the prepontine cistern (PPC), the cerebellopontine angle cistern (CPA), and the vitreous (Vit) were measured. The differences in the SI at pre-, and at 5 min and 4 h post-IV-SD-GBCA were evaluated for each region. The change in the SI pre- to post-IV-SD-GBCA (SIchange) were calculated for each region. The differences in the SIchange in each region were evaluated at 5 min and 4 h post-IV-SD-GBCA. A Steel-Dwass’s test was applied to correct for multiple comparisons. Results: The SIs of all regions at 4 h post-IV-SD-GBCA were significantly higher compared with pre-IV-SD-GBCA (P < 0.05). The SIchange in the SyF, Amb, PPC, and the CPA were significantly higher compared with those of the LVante, LVtri, and the Vit at 4 h post-IV-SD-GBCA (P < 0.05). Conclusion: The contrast enhancement in the cerebral cisterns was greater than that in the LVs.
Collapse
Affiliation(s)
- Toshio Ohashi
- Department of Radiology, Kamiiida Daiichi General Hospital
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Saeko Iwata
- Department of Radiology, Kamiiida Daiichi General Hospital
| | - Kayao Kuno
- Department of Otorhinolaryngology, Kamiiida Daiichi General Hospital
| |
Collapse
|
5
|
Osawa I, Kozawa E, Yamamoto Y, Tanaka S, Shiratori T, Kaizu A, Inoue K, Niitsu M. Contrast Enhancement of the Normal Infundibular Recess Using Heavily T2-weighted 3D FLAIR. Magn Reson Med Sci 2021; 21:469-476. [PMID: 33980787 PMCID: PMC9316133 DOI: 10.2463/mrms.mp.2021-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose: The purpose of the present study was to evaluate contrast enhancement of the infundibular recess in the normal state using heavily T2-weighted 3D fluid-attenuated inversion recovery (FLAIR) (HT2-FLAIR). Methods: Twenty-six patients were retrospectively recruited. We subjectively assessed overall contrast enhancement of the infundibular recess between postcontrast, 4-hour (4-h) delayed postcontrast, and precontrast HT2-FLAIR images. We also objectively conducted chronological and spatial comparisons by measuring the signal intensity (SI) ratio (SIR). Chronological comparisons were performed by comparing SI of the infundibular recess/SI of the midbrain (SIRIR-MB). Spatial comparisons were conducted by comparing SI on postcontrast HT2-FLAIR/SI on precontrast HT2-FLAIR (SIRPost-Pre) of the infundibular recess with that of other cerebrospinal fluid (CSF) spaces, including the superior part of the third ventricle, lateral ventricles, fourth ventricle, and interpeduncular cistern. Results: In the subjective analysis, all cases showed contrast enhancement of the infundibular recess on both postcontrast and 4-h delayed postcontrast HT2-FLAIR, and showed weaker contrast enhancement of the infundibular recess on 4-h delayed postcontrast HT2-FLAIR than on postcontrast HT2-FLAIR. In the objective analysis, SIRIR-MB was the highest on postcontrast images, followed by 4-h delayed postcontrast images. SIRPost-Pre was significantly higher in the infundibular recess than in the other CSF spaces. Conclusion: The present results demonstrated that the infundibular recess was enhanced on HT2-FLAIR after an intravenous gadolinium injection. The infundibular recess may be a potential source of the leakage of intravenously administered gadolinium into the CSF.
Collapse
Affiliation(s)
- Iichiro Osawa
- Department of Radiology, Saitama Medical University Hospital
| | - Eito Kozawa
- Department of Radiology, Saitama Medical University Hospital
| | - Yuya Yamamoto
- Department of Radiology, Saitama Medical University Hospital
| | - Sayuri Tanaka
- Department of Radiology, Saitama Medical University Hospital
| | - Taira Shiratori
- Department of Radiology, Saitama Medical University Hospital
| | - Akane Kaizu
- Department of Radiology, Saitama Medical University Hospital
| | - Kaiji Inoue
- Department of Radiology, Saitama Medical University Hospital
| | - Mamoru Niitsu
- Department of Radiology, Saitama Medical University Hospital
| |
Collapse
|
6
|
Taoka T, Naganawa S. Neurofluid Dynamics and the Glymphatic System: A Neuroimaging Perspective. Korean J Radiol 2020; 21:1199-1209. [PMID: 32783417 PMCID: PMC7462760 DOI: 10.3348/kjr.2020.0042] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
The glymphatic system hypothesis is a concept describing the clearance of waste products from the brain. The term “glymphatic system” combines the glial and lymphatic systems and is typically described as follows. The perivascular space functions as a conduit that drains cerebrospinal fluid (CSF) into the brain parenchyma. CSF guided to the perivascular space around the arteries enters the interstitium of brain tissue via aquaporin-4 water channels to clear waste proteins into the perivascular space around the veins before being drained from the brain. In this review, we introduce the glymphatic system hypothesis and its association with fluid dynamics, sleep, and disease. We also discuss imaging methods to evaluate the glymphatic system.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Naganawa S, Nakane T, Kawai H, Taoka T, Kawaguchi H, Maruyama K, Murata K, Körzdörfer G, Pfeuffer J, Nittka M, Sone M. Detection of IV-gadolinium Leakage from the Cortical Veins into the CSF Using MR Fingerprinting. Magn Reson Med Sci 2019; 19:141-146. [PMID: 31217367 PMCID: PMC7232034 DOI: 10.2463/mrms.mp.2019-0048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose: It has been reported that leakage of intravenously administered gadolinium-based contrast agents (IV-GBCAs) into the cerebrospinal fluid (CSF) from the cortical veins even in healthy subjects can be detected using a highly sensitive pulse sequence such as heavily T2-weighted 3D fluid-attenuated inversion recovery and 3D-real inversion recovery (IR). The purpose of this study was to evaluate the feasibility of MR fingerprinting to detect GBCA leakage from the cortical veins after IV-GBCA. Materials: Fourteen patients with suspected endolymphatic hydrops (EH) who received a single dose of IV-GBCA (39–79 years old) were included. The real IR images as well as MR fingerprinting images were obtained at 4 h after IV-GBCA. T1 and T2 values were obtained using MR fingerprinting and analyzed in ROIs covering intense GBCA leakage, and non-leakage areas of the CSF as determined on real IR images. The scan time for real IR imaging was 10 min and that for MR fingerprinting was 41 s. Results: The mean T1 value of the ROI in the area of GBCA leakage was 2422 ± 261 ms and that in the non-leakage area was 3851 ± 235 ms (P < 0.01). There was no overlap between the T1 values in the area of GBCA leakage and those in the non-leakage area. The mean T2 value in the area of GBCA leakage was 319 ± 90 ms and that in the non-leakage area was 670 ± 166 ms (P < 0.01). There was some overlap between the T2 values in the area of GBCA leakage and those in the non-leakage area. Conclusion: Leaked GBCA from the cortical veins into the surrounding CSF can be detected using MR fingerprinting obtained in <1 min.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Toshiki Nakane
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Hisashi Kawai
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine
| | | | | | | | - Gregor Körzdörfer
- Siemens Healthcare GmbH.,Friedrich-Alexander-Universität Erlangen-Nürnberg
| | | | | | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine
| |
Collapse
|
8
|
Ohashi T, Naganawa S, Ogawa E, Katagiri T, Kuno K. Signal Intensity of the Cerebrospinal Fluid after Intravenous Administration of Gadolinium-based Contrast Agents: Strong Contrast Enhancement around the Vein of Labbe. Magn Reson Med Sci 2018; 18:194-199. [PMID: 30416181 PMCID: PMC6630048 DOI: 10.2463/mrms.mp.2018-0043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: Since the first report on the deposition of gadolinium in the brain parenchyma after repeated intravenous administrations of gadolinium-based contrast agent GBCA (IV-GBCA), the mechanisms of penetration and retention are still remaining a hot topic of discussion and a target of investigation. We routinely obtain endolymphatic hydrops (EH) images at 4 h after IV administration of a single dose (SD) of GBCA (IV-SD-GBCA) using heavily T2-weighted three-dimensional fluid-attenuated inversion recovery imaging (hT2W-3D-FLAIR). Occasionally, we have encountered cases, which indicate high-signal intensity (SI) in the cerebrospinal fluid (CSF) surrounding the vein of Labbe. The purpose of the present study was to investigate the degree of contrast enhancement of the CSF surrounding the vein of Labbe on hT2W-3D-FLAIR after IV-SD-GBCA in comparison with other CSF spaces. Materials and Methods: In 25 patients with a suspicion of EH, a magnetic resonance cisternography (MRC) and an hT2W-3D-FLAIR were obtained at 4 h after IV-SD-GBCA. The perivascular space (PVS) in the basal ganglia, CSF spaces in the ambient cistern (CSF-Amb), the CSF surrounding the superficial middle cerebral vein (CSF-SMCV), and the CSF surrounding the vein of Labbe (CSF-VL) were segmented on MRC. The PVS and CSF regions were co-registered onto the hT2W-3D-FLAIR and the SI of the PVS and CSF spaces were measured. The SI ratio (SIR) of the post-contrast hT2W-3D-FLAIR to the pre-contrast hT2W-3D-FLAIR was measured. Significant differences were evaluated using Steel-Dwass’s test for multiple comparisons. Results: The SIR of the CSF-VL was significantly higher than that of the PVS (P = 0.008), the CSF-Amb (P = 0.021), and the CSF-SMCV (P = 0.023). Conclusion: The strong contrast enhancement of CSF space around the vein of Labbe was confirmed on hT2W-3D-FLAIR at 4 h after IV-GBCA compared to the PVS and the other CSF spaces.
Collapse
Affiliation(s)
- Toshio Ohashi
- Department of Radiology, Kamiiida Daiichi General Hospital
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Eriko Ogawa
- Department of Radiology, Kamiiida Daiichi General Hospital
| | | | - Kayao Kuno
- Department of Otorhinolaryngology, Kamiiida Daiichi General Hospital
| |
Collapse
|
9
|
Naganawa S, Nakane T, Kawai H, Taoka T. Age Dependence of Gadolinium Leakage from the Cortical Veins into the Cerebrospinal Fluid Assessed with Whole Brain 3D-real Inversion Recovery MR Imaging. Magn Reson Med Sci 2018; 18:163-169. [PMID: 30393275 PMCID: PMC6460126 DOI: 10.2463/mrms.mp.2018-0053] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose: It has been reported that intravenously administered gadolinium-based contrast agents (IV-GBCAs) leak into the cerebrospinal fluid (CSF) even in healthy subjects. The purpose of this study was to evaluate GBCA leakage from the cortical veins in patients with delayed imaging after IV-GBCA. Materials and Methods: There are two parts of retrospective study. In the first part, we reviewed six patients with suspected endolymphatic hydrops (EH) who received a single dose of IV-GBCA (37–58 years old). The 3D-real inversion recovery images were obtained prior to the contrast administration as well as 5 min and 4 h after IV-GBCA. Leakage from the cortical veins to the CSF was graded as positive if enhancement around the cortical veins at 5 min was observed and had further spread into the CSF at 4 h after IV-GBCA. In the second part of this study, we reviewed 21 patients with suspected EH (17–69 years old). Images were obtained only at 4 h after IV-GBCA. The number of slices (NOS) with a positive GBCA leakage from the cortical veins was counted. The correlation of the NOS with age, gender, and degree of EH was evaluated by Spearman’s rank correlation coefficient. Results: In the first part of the study, the GBCA leakage from the cortical veins was positive in all patients. In the second part of the study, the GBCA leakage from the cortical veins was seen in all older patients (above 37 years old), but not in the five younger patients (younger than 37 years old). The NOS correlated significantly only with age (r = 0.755, P < 0.01), but not with gender or degree of EH. Conclusion: IV-GBCA leaks from the cortical veins into the surrounding CSF. The leakiness of the cortical veins significantly correlated with age, but not with gender or degree of EH.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Toshiki Nakane
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Hisashi Kawai
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine
| |
Collapse
|