1
|
Zhang C, Liu Z, Yang Y, Ma Q, Zheng Y, Xu C, Gao X, Gao W, Huang Z, Liu X. Characterization of Fusarium species causing soybean root rot in Heilongjiang, China, and mechanism underlying the differences in sensitivity to DMI fungicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105828. [PMID: 38582592 DOI: 10.1016/j.pestbp.2024.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 04/08/2024]
Abstract
Soybean root rot is a worldwide soil-borne disease threatening soybean production, causing large losses in soybean yield and quality. Fusarium species are the most detrimental pathogens of soybean root rot worldwide, causing large production losses. Fusarium root rot has been frequently reported in Heilongjiang Province of China, but the predominant Fusarium species and the sensitivity of these pathogens to different fungicides remain unclear. In this study, diseased soybean roots were collected from 14 regions of Heilongjiang province in 2021 and 2022. A total of 144 isolates of Fusarium spp. were isolated and identified as seven distinct species: F. scirpi, F. oxysporum, F. graminearum, F. clavum, F. acuminatum, F. avenaceum, and F. sporotrichioide. F. scirpi and F. oxysporum had high separation frequency and strong pathogenicity. The sensitivity of Fusarium spp. to five different fungicides was determined. Mefentrifluconazole and fludioxonil showed good inhibitory effects, and the sensitivity to pydiflumetofen and phenamacril varied between Fusarium species. In particular, the activity of DMI fungicide prothioconazole was lower than that of mefentrifluconazole. Molecular docking showed that mefentrifluconazole mainly bound to CYP51C, but prothioconazole mainly bound to CYP51B. Furthermore, the sensitivity to prothioconazole only significantly decreased in ΔFgCYP51B mutant, and the sensitivity to mefentrifluconazole changed in ΔFgCYP51C and ΔFgCYP51A mutants. The results demonstrated that the predominant Fusarium species causing soybean root rot in Heilongjiang province were F. scirpi and F. oxysporum and DMI fungicides had differences in binding cavity due to the diversity of CYP51 proteins in Fusarium.
Collapse
Affiliation(s)
- Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhanyun Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yige Yang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Quanhe Ma
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yuxin Zheng
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Chenxi Xu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xuheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| | - Wenna Gao
- Science and Technology Researeh Center of China Customs, Beijing 100026, China
| | - Zhongqiao Huang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Duvnjak T, Vrandecic K, Sudaric A, Cosic J, Siber T, Matosa Kocar M. First Report of Hemp Fusarium Wilt Caused by Fusarium oxysporum in Croatia. PLANTS (BASEL, SWITZERLAND) 2023; 12:3305. [PMID: 37765469 PMCID: PMC10537888 DOI: 10.3390/plants12183305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Wilted hemp (Cannabis sativa L.) plants were observed in August 2019 in commercial fields around Osijek, Croatia. Plants and roots with disease symptoms were collected. The single-spored isolates produced septate cottony white to light pink aerial mycelium and purple undersurface on potato dextrose agar (PDA). Smooth and hyaline hyphae were branched and septate. Macroconidia were fusiform to sickle-shaped with foot-shaped basal cells, elongated apical cells and three to five septa. Sequencing of the internal transcribed spacer and the partial elongation factor 1-α gene identified the species as Fusarium oxysporum. Artificial infection fulfills Koch's postulates, producing plants which show stunted growth and wilt symptoms similar to those observed in the commercial fields. Control seedlings remained symptomless and healthy. To the best of our knowledge, this is the first report of hemp Fusarium wilt causing F. oxysporum in Croatia. Considering that F. oxysporum has been reported in main field crops in Croatia, the presence of this pathogen could cause economically significant hemp production decreases, especially in humid and cold springs and susceptible varieties.
Collapse
Affiliation(s)
- Tomislav Duvnjak
- Department of Industrial Plants Breeding and Genetics, Agricultural Institute Osijek, 31000 Osijek, Croatia
| | - Karolina Vrandecic
- Department of Phytomedicine, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Aleksandra Sudaric
- Department of Industrial Plants Breeding and Genetics, Agricultural Institute Osijek, 31000 Osijek, Croatia
- Center of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Svetosimunska Cesta 25, 10000 Zagreb, Croatia
| | - Jasenka Cosic
- Department of Phytomedicine, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tamara Siber
- Department of Phytomedicine, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Maja Matosa Kocar
- Department of Industrial Plants Breeding and Genetics, Agricultural Institute Osijek, 31000 Osijek, Croatia
| |
Collapse
|
3
|
Determination of Fumonisins in Grains and Poultry Feedstuffs in Croatia: A 16-Year Study. Toxins (Basel) 2022; 14:toxins14070444. [PMID: 35878182 PMCID: PMC9318733 DOI: 10.3390/toxins14070444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Fumonisins are a group of closely related mycotoxins produced by Fusarium, Alternaria alternata and Aspergillus species. Their occurrence is correlated with various factors during growth, processing and storage. Fumonisins occurrence data in the literature mainly include the B group of fumonisins (FB1 & FB2) in raw materials, showing high frequency of positive samples in a wide range of concentrations. In this study, a total of 933 grains (63.7%) and poultry feed (36.3%) samples, collected in the 16-year period (2006–2021), were analysed with commercial enzyme-linked-immunosorbent assay for detection of three fumonisins (FB1, FB2 & FB3). All positive and suspect samples were confirmed with high-performance-liquid-chromatography method with fluorescence detection. Overall, we have determined high occurrence of FBs in grains and poultry feed in all tested years, while the lowest occurrence was determined in 2019, followed by 2009 and 2008. Although, contamination levels varied from year-to-year, majority of analyzed samples in all tested years were around 1 mg/kg, while the maximum values varied from 3 mg/kg to 22.23 mg/kg. This study highlights the importance of regular monitoring of raw materials and understanding of the fate of FBs in the food chain in order to avoid undesirable health effects in animals and accompanied economic losses.
Collapse
|
4
|
Żelechowski M, Molcan T, Bilska K, Myszczyński K, Olszewski J, Karpiesiuk K, Wyrębek J, Kulik T. Patterns of Diversity of Fusarium Fungi Contaminating Soybean Grains. Toxins (Basel) 2021; 13:884. [PMID: 34941721 PMCID: PMC8706617 DOI: 10.3390/toxins13120884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Soybean is an important, high protein source of food and feed. However, like other agricultural grains, soybean may pose a risk to human and animal health due to contamination of the grains with toxigenic Fusaria and associated mycotoxins. In this study, we investigated the diversity of Fusaria on a panel of 104 field isolates obtained from soybean grains during the growing seasons in 2017-2020. The results of species-specific PCR analyses showed that Fusarium avenaceum was the most common (n = 40) species associated with soybean grains in Poland, followed by F. equiseti (n = 22) and F. sporotrichioides (11 isolates). A set of isolates, which was not determined based on PCR analyses, was whole genome sequenced. Multiple sequence analyses using tef-1α, top1, rpb1, rpb2, tub2, pgk, cam and lsu genes showed that most of them belonged to Equiseti clade. Three cryptic species from this clade: F. clavum, F. flagelliforme and FIESC 31 (lacking Latin binomial) were found on soybean for the first time. This is the first report demonstrating the prevalence of Fusaria on soybean grains in Poland.
Collapse
Affiliation(s)
- Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warsaw, Poland;
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Jacek Olszewski
- Experimental Education Unit, Oczapowskiego 8, 10-719 Olsztyn, Poland;
| | - Krzysztof Karpiesiuk
- Department of Pig Breeding, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Joanna Wyrębek
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland; (K.B.); (J.W.)
| |
Collapse
|
5
|
Křížová L, Dadáková K, Dvořáčková M, Kašparovský T. Feedborne Mycotoxins Beauvericin and Enniatins and Livestock Animals. Toxins (Basel) 2021; 13:32. [PMID: 33466409 PMCID: PMC7824875 DOI: 10.3390/toxins13010032] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by several species of fungi, including the Fusarium, Aspergillus, and Penicillium species. Currently, more than 300 structurally diverse mycotoxins are known, including a group called minor mycotoxins, namely enniatins, beauvericin, and fusaproliferin. Beauvericin and enniatins possess a variety of biological activities. Their antimicrobial, antibiotic, or ionoforic activities have been proven and according to various bioassays, they are believed to be toxic. They are mainly found in cereal grains and their products, but they have also been detected in forage feedstuff. Mycotoxins in feedstuffs of livestock animals are of dual concern. First one relates to the safety of animal-derived food. Based on the available data, the carry-over of minor mycotoxins from feed to edible animal tissues is possible. The second concern relates to detrimental effects of mycotoxins on animal health and performance. This review aims to summarize current knowledge on the relation of minor mycotoxins to livestock animals.
Collapse
Affiliation(s)
- Ludmila Křížová
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (K.D.); (M.D.)
| | - Michaela Dvořáčková
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (K.D.); (M.D.)
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (K.D.); (M.D.)
| |
Collapse
|
6
|
Pietsch C. Risk assessment for mycotoxin contamination in fish feeds in Europe. Mycotoxin Res 2020; 36:41-62. [PMID: 31346981 PMCID: PMC6971146 DOI: 10.1007/s12550-019-00368-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023]
Abstract
Mycotoxins are difficult to monitor continuously, and a tool to assess the risk would help to judge if there is a particular risk due to the inclusion of certain feed ingredients. For this, the toxin contents of 97 commercial fish feeds have been estimated, and the most prominent toxins in fish feed are calculated to be deoxynivalenol, zearalenone, fumonisins and enniatins. These pose a risk to fish well-being, as can be calculated by the Bayesian models for determining the critical concentrations 5% (CC5) for the different toxins. Besides fishmeal, wheat, soybean products and corn are regularly used as fish feed ingredients. The calculated scenarios show that fish are at high risk of toxin contamination if feed ingredients of low quality are chosen for feed production. Due to this, specific maximum allowable levels for several mycotoxins in fish feeds should be established.
Collapse
Affiliation(s)
- Constanze Pietsch
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüental, P.O. Box, 8820, Wädenswil, Switzerland.
| |
Collapse
|
7
|
Marijani E, Kigadye E, Okoth S. Occurrence of Fungi and Mycotoxins in Fish Feeds and Their Impact on Fish Health. Int J Microbiol 2019; 2019:6743065. [PMID: 31827520 PMCID: PMC6881585 DOI: 10.1155/2019/6743065] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/01/2019] [Indexed: 02/04/2023] Open
Abstract
The rapid population growth in developing countries has led to strong pressure on capture fisheries. However, capture fisheries have reached their maximal limits of fish production and are supplemented by farmed fish. The growth in aquaculture has led to high demand for fish feeds, which play a very important role in fish nutrition and health. Use of animal protein in fish feeds is expensive; hence, a majority of farmers from developing countries use local feed ingredients from plant origin as a source of dietary protein. However, these ingredients of plant origin provide the best natural substrates for fungi, which can be easily accompanied by mycotoxin development under suitable conditions. The locally made feed comprises ingredients such as soybeans, cottonseed cake, and wheat and maize bran which are mixed together and ground after which the compounded feed is pelleted and stored. Among the ingredients, maize and oilseeds are more susceptible for mycotoxigenic fungi compared to other ingredients. The outcomes of mycotoxin contamination in fish feeds are not different from other animal species intended for human consumption, and they are directly associated with production losses, particularly decreased weight gain and feed conversion, impaired immune system and reproductive performance, and increased fish mortality. Fish may also carry mycotoxin residues along the food chain, thus compromising human health. Hence, it is important to ensure the control of mycotoxin contamination in fish feeds, especially during the production and storage.
Collapse
Affiliation(s)
- Esther Marijani
- Open University of Tanzania, P.O. Box 23409, Dar es Salaam, Tanzania
| | - Emmanuel Kigadye
- Open University of Tanzania, P.O. Box 23409, Dar es Salaam, Tanzania
| | - Sheila Okoth
- University of Nairobi, School of Biological Science, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
8
|
Escamilla D, Rosso ML, Zhang B. Identification of fungi associated with soybeans and effective seed disinfection treatments. Food Sci Nutr 2019; 7:3194-3205. [PMID: 31660133 PMCID: PMC6804755 DOI: 10.1002/fsn3.1166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/01/2022] Open
Abstract
Sprouts can be a vehicle for the transmission of several pathogens capable of causing human illness, and the potential source of contamination is seed used for sprouting. The limited information about seed-borne pathogens as well as their incidence on soybean seeds for soybean sprout industry led the objectives of this study that were to identify seed-borne pathogens on commercial sprout soybean seeds and to evaluate different decontamination treatments on disinfection effectiveness and sprout quality. Seeds of "MFS-561," a sprout soybean cultivar, from three production regions were used in this study. The internal transcribed spacer (ITS1 and ITS2) DNA sequences of the isolated fungi from MFS-561 seeds were used for species identification. Seven disinfection treatments were evaluated on their effectiveness on reducing fungal incidence and impact on sprout characteristics. Out of 55 fungal isolates obtained from the soybean seeds, seven species and six genera were identified. The most frequent genera across regions were Alternaria, Diaphorte, and Fusarium. The treatment of soaking seeds in 2% calcium hypochlorite for 10 min and 5% acetic acid for 2 min before sprouting were promising seed disinfection treatments as they significantly reduced fungi incidence without any negative effects on sprout quality.
Collapse
Affiliation(s)
| | - Maria Luciana Rosso
- School of Plant and Environmental SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Bo Zhang
- School of Plant and Environmental SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| |
Collapse
|
9
|
Braun MS, Wink M. Exposure, Occurrence, and Chemistry of Fumonisins and their Cryptic Derivatives. Compr Rev Food Sci Food Saf 2018; 17:769-791. [DOI: 10.1111/1541-4337.12334] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Markus Santhosh Braun
- Inst. of Pharmacy and Molecular Biotechnology; Heidelberg Univ.; INF 364 69120 Heidelberg Germany
| | - Michael Wink
- Inst. of Pharmacy and Molecular Biotechnology; Heidelberg Univ.; INF 364 69120 Heidelberg Germany
| |
Collapse
|
10
|
|
11
|
Okorski A, Polak-Śliwińska M, Karpiesiuk K, Pszczółkowska A, Kozera W. Real time PCR: a good tool to estimate mycotoxin contamination in pig diets. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cereals and soybean are the main components of pig diets. Unfortunately, feed materials are often contaminated with fungi and their metabolites, which pose a potential threat to human and animal health. Therefore, this study was undertaken to evaluate the effectiveness of cultural methods and quantitative PCR for detecting fungi and their metabolites in pig diets, and to determine which plant components are responsible for mycotoxin contamination of feed. The presence of mycotoxin-producing fungi of the genera Fusarium, Penicillium and Aspergillus and their metabolites was determined in pig diets with different inclusion levels of various cereals and transgenic soybean meal. Six farm-made complete diets containing locally produced feed materials and imported soybean meal were investigated. The presence of the following fungi in pig diets was determined by microscopic observations of fungal cultures and by qPCR: trichothecene-producing Fusarium spp. (Tri5 gene), Penicillium verrucosum (rRNA) and Aspergillus ochraceus (PKS gene). The concentrations of mycotoxins (ochratoxin A (OTA) and zearalenone (ZEA)), trichothecenes (deoxynivalenol (DON), 3-acetyl-deoxynivalenol and T-2 toxin (T-2)) were analysed by HPLC. The results of the qPCR analysis demonstrated that the presence of DNA of mycotoxin-producing fungi and mycotoxins in pig diets was correlated with the inclusion levels of transgenic soybean meal and various cereals. The above correlation was validated by an analysis of Spearman’s rank correlation between the content of transgenic soybean meal and various cereals vs mycotoxin concentrations and the amount of DNA of toxin-producing fungi in pig diets. A significant positive correlation was found between: the percentage content of soybeans vs the concentrations of DON (R=0.93), trichothecenes (R=0.76) and T-2 (R=0.64), the percentage content of barley vs the concentrations of DON (R=0.50) and T-2 (R=0.49), the percentage content of triticale vs OTA levels (R=0.47), the percentage content of oats vs ZEA levels (0.50). A correlation was also noted between the percentage content of soybeans and the amount of DNA of trichothecene-producing Fusarium spp. (R=0.96). The results of this study indicate that pig diets are significantly contaminated with toxin-producing fungi and their metabolites, and that the quantification of DNA of mycotoxin-producing fungi is a reliable indicator of mycotoxin contamination of feed. Our findings can contribute to reducing the costs of analyses that should be routinely performed to minimise the entry of mycotoxins into the food chain.
Collapse
Affiliation(s)
- A. Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland
| | - M. Polak-Śliwińska
- Department of Food Science, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726 Olsztyn, Poland
| | - K. Karpiesiuk
- Department of Pig Breeding, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - A. Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland
| | - W. Kozera
- Department of Pig Breeding, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
12
|
Cwalina-Ambroziak B, Kurowski TP, Waśkiewicz A, Goliński P, Stępień A, Głosek-Sobieraj M, Perczak A. The effect of fertiliser treatments on the severity of Fusarium head blight and mycotoxin biosynthesis in winter rye. Arh Hig Rada Toksikol 2017; 68:16-26. [PMID: 28365678 DOI: 10.1515/aiht-2017-68-2843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/01/2017] [Indexed: 11/15/2022] Open
Abstract
The fungi of the genus Fusarium cause Fusarium head blight (FHB), a devastating disease that reduces grain yield and quality. They also produce mycotoxins which may pose a serious threat to human and animal health. This study investigated the effects of NPK fertilisation, foliar application of Cu, Zn, and Mn, applied separately and in combination, and of the Nano-Gro® organic growth stimulator on the occurrence of FHB in cultivar Dańkowskie Diament rye based on the mycological analysis of kernels and on the concentrations of Fusarium mycotoxins in grain. The severity of FHB caused by seven species of the genus Fusarium was influenced by weather conditions in the analysed growing seasons. The applied fertilisation and the Nano-Gro® organic growth stimulator exerted varied effects on FHB development and the biosynthesis of Fusarium mycotoxins (deoxynivalenol, nivalenol, zearalenone and fumonisins) in grain. The greatest reduction in deoxynivalenol and nivalenol concentrations was noted in 2013, and the levels of moniliformin were lower in treated samples than in absolute control (untreated) samples in both years of the study. The severity of FHB positively correlated with the concentrations of zearalenone, deoxynivalenol, nivalenol, and moniliformin in the grain samples. Greater accumulation of ergosterol was noted in the rye grain harvested in 2013 than in 2012, and fertiliser treatment led to higher ergosterol concentrations than did control treatment.
Collapse
Affiliation(s)
- Bożena Cwalina-Ambroziak
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn
| | | | - Agnieszka Waśkiewicz
- University of Warmia and Mazury in Olsztyn, Olsztyn, Department of Chemistry, Poznań University of Life Sciences, Poznań
| | - Piotr Goliński
- University of Warmia and Mazury in Olsztyn, Olsztyn, Department of Chemistry, Poznań University of Life Sciences, Poznań
| | | | | | - Adam Perczak
- University of Warmia and Mazury in Olsztyn, Olsztyn, Department of Chemistry, Poznań University of Life Sciences, Poznań
| |
Collapse
|
13
|
Danilović B, Potić V, Stamenković S, Savić D. A review of the presence of some food contaminants on the territory of the Republic of Serbia. ACTA ACUST UNITED AC 2017. [DOI: 10.5937/savteh1702084d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Garcia LP, Savi GD, Santos K, Scussel VM. Fumonisins and fungi in dry soybeans (Glycine Max L.) for human consumption. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2016; 9:79-84. [PMID: 26727078 DOI: 10.1080/19393210.2015.1135484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This survey reports the occurrence of fumonisins (FBs) and fungi in dry soybeans sold for human consumption. The variation levels were 138-1495 µg kg(-1) and 178-552 µg kg(-1) for FB1 and FB2, respectively. In addition, potentially toxigenic fungi as Fusarium, Aspergillus and Penicillium genera were isolated in the samples. These can be considered as indicator-toxin and can produce considerable amounts of mycotoxins. Despite FB presence in the soybeans for human consumption, there is no legal regulation. Therefore, it is important to emphasise the need for frequent monitoring of these contaminants in soybeans.
Collapse
Affiliation(s)
- Laura P Garcia
- a Laboratory of Mycotoxicology and Food Contaminants, Food Science and Technology Department, Center of Agricultural Sciences , Federal University of Santa Catarina , Florianopolis , Brazil
| | - Geovana D Savi
- a Laboratory of Mycotoxicology and Food Contaminants, Food Science and Technology Department, Center of Agricultural Sciences , Federal University of Santa Catarina , Florianopolis , Brazil
| | - Karolina Santos
- a Laboratory of Mycotoxicology and Food Contaminants, Food Science and Technology Department, Center of Agricultural Sciences , Federal University of Santa Catarina , Florianopolis , Brazil
| | - Vildes M Scussel
- a Laboratory of Mycotoxicology and Food Contaminants, Food Science and Technology Department, Center of Agricultural Sciences , Federal University of Santa Catarina , Florianopolis , Brazil
| |
Collapse
|
15
|
Tolosa J, Font G, Mañes J, Ferrer E. Natural occurrence of emerging Fusarium mycotoxins in feed and fish from aquaculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12462-12470. [PMID: 25432004 DOI: 10.1021/jf5036838] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new analytical method for the simultaneous determination of enniatins (ENs) and beauvericin (BEA) in fish feed and fish tissues by liquid chromatography coupled to mass spectrometry with linear ion trap (LC-MS/MS-LIT) was developed. Results showed that the developed method is precise and sensitive. The presence of emerging Fusarium mycotoxins, ENs and BEA, was determined in samples of aquaculture fish and feed for farmed fish, showing that all feed samples analyzed were contaminated with mycotoxins, with 100% coexistence. In aquacultured fish samples, the highest incidence was found in edible muscle and liver. As for the exposure assessment calculated, it was found that average consumer intake was lower than tolerable daily intake (TDI) values for other Fusarium mycotoxins.
Collapse
Affiliation(s)
- Josefa Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia , Avenue Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | | | | | | |
Collapse
|
16
|
Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3802] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
17
|
Shala-Mayrhofer V, Varga E, Marjakaj R, Berthiller F, Musolli A, Berisha D, Kelmendi B, Lemmens M. Investigations onFusariumspp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2013; 6:237-43. [DOI: 10.1080/19393210.2013.804885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|