1
|
Cavalcante BRR, Freitas RD, Siquara da Rocha LO, Santos RSB, Souza BSDF, Ramos PIP, Rocha GV, Gurgel Rocha CA. In silico approaches for drug repurposing in oncology: a scoping review. Front Pharmacol 2024; 15:1400029. [PMID: 38919258 PMCID: PMC11196849 DOI: 10.3389/fphar.2024.1400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction: Cancer refers to a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. Due to its complexity, it has been hard to find an ideal medicine to treat all cancer types, although there is an urgent need for it. However, the cost of developing a new drug is high and time-consuming. In this sense, drug repurposing (DR) can hasten drug discovery by giving existing drugs new disease indications. Many computational methods have been applied to achieve DR, but just a few have succeeded. Therefore, this review aims to show in silico DR approaches and the gap between these strategies and their ultimate application in oncology. Methods: The scoping review was conducted according to the Arksey and O'Malley framework and the Joanna Briggs Institute recommendations. Relevant studies were identified through electronic searching of PubMed/MEDLINE, Embase, Scopus, and Web of Science databases, as well as the grey literature. We included peer-reviewed research articles involving in silico strategies applied to drug repurposing in oncology, published between 1 January 2003, and 31 December 2021. Results: We identified 238 studies for inclusion in the review. Most studies revealed that the United States, India, China, South Korea, and Italy are top publishers. Regarding cancer types, breast cancer, lymphomas and leukemias, lung, colorectal, and prostate cancer are the top investigated. Additionally, most studies solely used computational methods, and just a few assessed more complex scientific models. Lastly, molecular modeling, which includes molecular docking and molecular dynamics simulations, was the most frequently used method, followed by signature-, Machine Learning-, and network-based strategies. Discussion: DR is a trending opportunity but still demands extensive testing to ensure its safety and efficacy for the new indications. Finally, implementing DR can be challenging due to various factors, including lack of quality data, patient populations, cost, intellectual property issues, market considerations, and regulatory requirements. Despite all the hurdles, DR remains an exciting strategy for identifying new treatments for numerous diseases, including cancer types, and giving patients faster access to new medications.
Collapse
Affiliation(s)
- Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Raíza Dias Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Social and Pediatric Dentistry of the School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Center of Data and Knowledge Integration for Health (CIDACS), Salvador, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
2
|
Atanda H, Balogun TA, Alshehri MM, Olivos-Ramirez G, Vilca-Quispe J, Chenet-Zuta M, Cárdenas-Cárdenas R, Delgado Wong H, Ropón-Palacios G, Umar HI. In silico study revealed the inhibitory activity of selected phytomolecules of C. rotundus against VacA implicated in gastric ulcer. J Biomol Struct Dyn 2023; 41:10713-10724. [PMID: 36571437 DOI: 10.1080/07391102.2022.2160814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022]
Abstract
Gastric ulcer is associated with weakening of the mucous coating of the stomach and damages to the intestinal lining. It is caused by H. pylori assisted by enzymes including VacA, which necessitates the need for inhibitors of VacA. Bioactive compounds from Cyperus rotundus have been documented to have anti-inflammatory activities. However, the mechanism of action of the phytochemicals is not characterized. This research aimed to assess, in silico, the potential of selected bioactive compounds against VacA based on the binding to its active sites. VacA and bioactive compounds structures were obtained from protein database and PubChem webserver, respectively. All compounds, including 2 controls, omeprazole and cimetidine were docked against the protein using AutoDock Vina and screened based on the binding energy. The selected complexes were subjected to pharmacokinetics and toxicity screening. Finally, molecular dynamics simulation and MMPBSA were carried out on two best compounds. 17 compounds interacted with the active site of VacA with higher binding affinities, with 7 of them - aureusidine, catechin, chlorogenic acid, isorhamnetin, isovitexin, oreintin, and vitexin having the best behaviours based on ADMET and druglikeness screening. Molecular dynamics and MMPBSA experiments of two of the hits corroborated good stability and binding energy for Ellagic Acid and Scirpusin B (ΔG = -14.38 and -13.20 kcal mol-1, respectively). These phytochemicals showed good pharmacokinetic profiles with respect to the control drugs. This study revealed that the identified compounds of C. rotundus may serve as VacA inhibitors and may be potent candidates for novel drug formulations in gastric ulcer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Halimat Atanda
- Department of Biotechnology, Federal University of Technology, Akure, Ondo State, Nigeria
- Computer-Aided Therapeutic Discovery and Design Group, FUTA, Akure, Ondo State, Nigeria
| | - Toheeb Adewale Balogun
- Computer-Aided Therapeutic Discovery and Design Group, FUTA, Akure, Ondo State, Nigeria
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Mohammed M Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Gustavo Olivos-Ramirez
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Brasil
| | - Julissa Vilca-Quispe
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Brasil
| | - Manuel Chenet-Zuta
- Universidad Nacional Tecnológica de Lima Sur UNTELS, Villa el Salvador, Perú
| | - Reyna Cárdenas-Cárdenas
- Facultad de Farmacia y Bioquímica, Universidad Nacional de la Amazonía Peruana, Iquitos, Peru
| | - Henry Delgado Wong
- Laboratorio de Farmacología y Toxicología de la Facultad de Farmacia y Bioquímica de la Universidad Nacional de la Amazonia Peruana, Villa el Salvador, Perú
| | - Georcki Ropón-Palacios
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Brasil
| | - Haruna Isiyaku Umar
- Computer-Aided Therapeutic Discovery and Design Group, FUTA, Akure, Ondo State, Nigeria
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| |
Collapse
|
3
|
Li J, Liao R, Zhang S, Weng H, Liu Y, Tao T, Yu F, Li G, Wu J. Promising remedies for cardiovascular disease: Natural polyphenol ellagic acid and its metabolite urolithins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154867. [PMID: 37257327 DOI: 10.1016/j.phymed.2023.154867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a significant worldwide factor contributing to human fatality and morbidity. With the increase of incidence rates, it is of concern that there is a lack of current therapeutic alternatives because of multiple side effects. Ellagic acid (EA), the natural polyphenol (C14H6O8), is abundant in pomegranates, berries, and nuts. EA and its intestinal microflora metabolite, urolithins, have recently attracted much attention as a potential novel "medicine" because of their wide pharmacological properties. PURPOSE This study aimed to critically analyze available literature to summarize the beneficial effects of EA and urolithins, and highlights their druggability and therapeutic potential in various CVDs. METHODS We systematically studied research and review articles between 1984 and 2022 available on various databases to obtain the data on EA and urolithins with no language restriction. Their cardiovascular protective activities, underlying mechanism, and druggability were highlighted and discussed comprehensively. RESULTS We found that EA and urolithins may exert preventive and curative effects on CVD with negligible side effects and possibly regulate lipid metabolism imbalance, pro-inflammatory factor production, vascular smooth muscle cell proliferation, cardiomyocyte apoptosis, endothelial cell dysfunction, and Ca2+ intake and release. Potentially, this may lead to the prevention and amelioration of atherosclerosis, hypertension, myocardial infarction, cardiac fibrosis, cardiomyopathy, cardiac arrhythmias, and cardiotoxicities in vivo. Several molecules and signaling pathways are associated with their therapeutic actions, including phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, NF-κB, nuclear factor erythroid-2 related factor 2, sirtuin1, miRNA, and extracellular signal-regulated kinase 1/2. CONCLUSION In vitro and in vivo studies shows that EA and urolithins could be used as valid candidates for early prevention and effective therapeutic strategies for various CVDs.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijia Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanzhi Liu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyi Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Antitubercular, Cytotoxicity, and Computational Target Validation of Dihydroquinazolinone Derivatives. Antibiotics (Basel) 2022; 11:antibiotics11070831. [PMID: 35884084 PMCID: PMC9311641 DOI: 10.3390/antibiotics11070831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a–3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the 2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The computational results revealed the mycobacterial pyridoxal-5′-phosphate (PLP)-dependent aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated the safety and tolerability of the test compounds 3k–3m. Thus, compounds 3k–3m warrant further optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-resistant MTB.
Collapse
|
5
|
Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, Islam A, Hassan MI, Snoussi M, De Feo V. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomed Pharmacother 2022; 147:112658. [PMID: 35066300 PMCID: PMC8769927 DOI: 10.1016/j.biopha.2022.112658] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The unexpected emergence of the new Coronavirus disease (COVID-19) has affected more than three hundred million individuals and resulted in more than five million deaths worldwide. The ongoing pandemic has underscored the urgent need for effective preventive and therapeutic measures to develop anti-viral therapy. The natural compounds possess various pharmaceutical properties and are reported as effective anti-virals. The interest to develop an anti-viral drug against the novel severe acute respiratory syndrome Coronavirus (SARS-CoV-2) from natural compounds has increased globally. Here, we investigated the anti-viral potential of selected promising natural products. Sources of data for this paper are current literature published in the context of therapeutic uses of phytoconstituents and their mechanism of action published in various reputed peer-reviewed journals. An extensive literature survey was done and data were critically analyzed to get deeper insights into the mechanism of action of a few important phytoconstituents. The consumption of natural products such as thymoquinone, quercetin, caffeic acid, ursolic acid, ellagic acid, vanillin, thymol, and rosmarinic acid could improve our immune response and thus possesses excellent therapeutic potential. This review focuses on the anti-viral functions of various phytoconstituent and alkaloids and their potential therapeutic implications against SARS-CoV-2. Our comprehensive analysis provides mechanistic insights into phytoconstituents to restrain viral infection and provide a better solution through natural, therapeutically active agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh 201303, India
| | - Urooj Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, Italy.
| |
Collapse
|
6
|
Lead Optimization and Biological Evaluation of Diazenylbenzenesulfonamides Inhibitors Against Glyoxalase-I Enzyme as Potential Anticancer Agents. Bioorg Chem 2022; 120:105657. [DOI: 10.1016/j.bioorg.2022.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/25/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022]
|
7
|
Deb PK, Al-Shar’i NA, Venugopala KN, Pillay M, Borah P. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 2021; 36:869-884. [PMID: 34060396 PMCID: PMC8172222 DOI: 10.1080/14756366.2021.1900162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming increase in multi- and extensively drug-resistant (MDR and XDR) strains of Mycobacterium tuberculosis (MTB) has triggered the scientific community to search for novel, effective, and safer therapeutics. To this end, a series of 3,5-disubstituted-1,2,4-oxadiazole derivatives (3a-3i) were tested against H37Rv, MDR and XDR strains of MTB. Of which, compound 3a with para-trifluorophenyl substituted oxadiazole showed excellent activity against the susceptible H37Rv and MDR-MTB strain with a MIC values of 8 and 16 µg/ml, respectively.To understand the mechanism of action of these compounds (3a-3i) and identify their putative drug target, molecular docking and dynamics studies were employed against a panel of 20 mycobacterial enzymes reported to be essential for mycobacterial growth and survival. These computational studies revealed polyketide synthase (Pks13) enzyme as the putative target. Moreover, in silico ADMET predictions showed satisfactory properties for these compounds, collectively, making them, particularly compound 3a, promising leads worthy of further optimisation.
Collapse
Affiliation(s)
- Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Nizar A. Al-Shar’i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| |
Collapse
|
8
|
The Separation and Purification of Ellagic Acid from Phyllanthus urinaria L. by a Combined Mechanochemical-Macroporous Resin Adsorption Method. SEPARATIONS 2021. [DOI: 10.3390/separations8100186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ellagic acid is a phenolic compound that exhibits both antimutagenic and anticarcinogenic activity in a wide range of assays in vitro and in vivo. It occurs naturally in some foods such as raspberries, strawberries, grapes, and black currants. In this study, a valid and reliable method based on mechanochemical-assisted extraction (MCAE) and macroporous adsorption resin was developed to extract and prepare ellagic acid from Phyllanthus urinaria L. (PUL). The MCAE parameters, acidolysis, and macroporous adsorption resin conditions were investigated. The key MCAE parameters were optimized as follows: the milling time was 5 min, the ball mill speed was 100 rpm, and the ball mill filling rate was 20.9%. Sulfuric acid with a concentration of 0.552 mol/L was applied for the acidolysis with the optimized acidolysis time of 30 min and acidolysis temperature of 40 °C. Additionally, the XDA-8D macroporous resin was chosen for the purification work. Both the static and dynamic adsorption tests were carried out. Under the optimized conditions, the yield of ellagic acid was 10.2 mg/g, and the content was over 97%. This research provided a rapid and efficient method for the preparation of ellagic acid from the cheaply and easily obtained PUL. Meanwhile, it is relatively low-cost work that can provide a technical basis for the comprehensive utilization of PUL.
Collapse
|
9
|
Al-Balas QA, Al-Sha'er MA, Hassan MA, Al Zu'bi E. Identification of the first "two digit nano-molar" inhibitors of the human glyoxalase-I enzyme as potential anticancer agents. Med Chem 2021; 18:473-483. [PMID: 34264188 DOI: 10.2174/1573406417666210714170403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/23/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glyoxalase-I (Glo-I) enzyme is recognized as an indispensable druggable target in cancer treatment. Its inhibition will lead to the accumulation of toxic aldehyde metabolites and cell death. Paramount efforts were spent to discover potential competitive inhibitors to eradicate cancer. OBJECTIVE Based on our previously work on this target for discovering potent inhibitors of this enzyme, herein, we address the discovery of the most potent Glo-I inhibitors reported in literature with two digits nano-molar activity. METHODS Molecular docking and in vitro assay were performed to discover these inhibitors and explore the active site's binding pattern. A detailed SAR scheme was generated, which identifies the significant functionalities responsible for the observed activity. RESULTS Compound 1 with an IC50 of 16.5 nM exhibited the highest activity, catechol moiety as an essential zinc chelating functionality. It has been shown by using molecular modeling techniques that the catechol moiety is responsible for the chelation zinc atom at the active site, an essential feature for enzyme inhibition. CONCLUSION Catechol derivatives are successful zinc chelators in the Glo-I enzyme while showing exceptional activity against the enzyme to the nanomolar level.
Collapse
Affiliation(s)
- Qosay A Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Mohammad A Hassan
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Esra'a Al Zu'bi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Al-Shar'i NA. Tackling COVID-19: identification of potential main protease inhibitors via structural analysis, virtual screening, molecular docking and MM-PBSA calculations. J Biomol Struct Dyn 2020; 39:6689-6704. [PMID: 32734828 DOI: 10.1080/07391102.2020.1800514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The widespread of the COVID-19 disease, caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), had severely affected the entire world. Unfortunately, no successful vaccines or antiviral drugs are currently available which leaves the scientific community under huge pressure to tackle this pandemic. Among the identified promising druggable targets, specific to this virus, is the main protease (Mpro) enzyme, which is vital for viral replication, transcription and packaging within the host cells. In this study, selective inhibition of the Mpro was sought via thorough analysis of its available structural data in the Protein Data Bank. To this end, COVID-19 Mpro crystal complexes were explored and the key interacting residues (KIRs) within its active site, that are expected to be vital for effective ligand binding, were identified. Based on these KIRs, 3D pharmacophore models were generated and used in virtual screening of different databases. Retrieved hits were docked into the active site of the enzyme and their MM-PBSA based free binding energies were calculated. Finally, ADMET descriptors were calculated to aid the selection of top scoring hits with best ADMET properties. Nine compounds with different chemotypes were identified as potential Mpro inhibitors. Further, MD simulations of a virtual complex of Mpro with one of the promising hits revealed stable binding which is indicative of good inhibitory potential. The identified compounds in this study are expected to support the global drug discovery efforts in fighting against this highly contagious virus by narrowing the searchable chemical space for potential effective therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nizar A Al-Shar'i
- Faculty of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|