1
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
2
|
Lu F, Wu Q, Lei J, Zhou Y, Liu Y, Zhu N, Yu Y, Lin L, Hu M. Zeaxanthin impairs angiogenesis and tumor growth of glioblastoma: An in vitro and in vivo study. Arch Biochem Biophys 2024; 754:109957. [PMID: 38467357 DOI: 10.1016/j.abb.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES To investigate the therapeutic effects of Zeaxanthin (Zea), one of the oxidized xanthophyll carotenoids belonging to the isoprenoids, on inhibiting the angiogenesis and tumor growth of glioblastoma (GBM) via an in vitro and in vivo study. METHODS The effects of Zea on the proliferation, adhesion, migration and invasion of human GBM cell lines were detected by cell proliferation assay, cell adhesion assay and Transwell assay. The effect of Zea on angiogenesis was detected by rat aortic ring assay and human umbilical vein endothelial cells (HUVEC) in vitro tube formation assay. The effects of Zea on PARP, Caspase 3 and VEGFR2 phosphorylation as well as VEGFR2's downstream signaling pathway were detected by Western blot. The in vivo human GBM xenograft mouse model was employed to study the therapeutic efficacy of Zea. RESULTS Zea impaired the proliferation, adhesion, migration and invasion of U87 and U251 cells as well as HUVECs. Rat aortic ring experiments displayed Zea significantly inhibited angiogenesis during VEGF-induced microvascular germination. In vitro and in vivo vascular experiments verified that Zea inhibited VEGF-induced HUVEC proliferation and capillary-like tube formation. Additionally, Zea induced GBM cells apoptosis via increasing the expression of cleaved PARP and Caspase 3. In HUVECs and U251 GBM cells, Zea down-regulated VEGF-induced activation of the VEGFR2 kinase pathway. Meanwhile the expression of p-AKT, p-ERK, p-STAT3 and FAK were all attenuated in U251 cells. Moreover, the effects of Zea on GBM cells proliferation could be blocked by VEGFR2 kinase inhibitor SU5408. These results suggest that Zea may hinder GBM angiogenesis and tumor growth through down-regulating a cascade of oncogenic signaling pathways, both through the inhibition of angiogenesis and the anti-tumor mechanism of a direct cytotoxic effect. Besides, Zea inhibits GBM angiogenesis and tumor growth exemplified through a xenograft mouse model in vivo. CONCLUSION Zea impairs angiogenesis and tumor growth of GBM both in vitro and in vivo. It can be declared that Zea is a potential valuable anticancer candidate for the future treatment strategy of GBM.
Collapse
Affiliation(s)
- Feifei Lu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China; Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Qing Wu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China; Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Jiaming Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China; Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - You Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| |
Collapse
|