1
|
Takagi R, Saraya T, Yamada S, Nakajima K, Doi K, Akizawa T, Ishikawa N, Kurokawa N, Kobayashi F, Nunokawa H, Aso J, Nakamoto Y, Ishida M, Sada M, Honda K, Nakamoto K, Takata S, Ishii H. Clinical Evaluation of Acute Exacerbation of Interstitial Lung Disease in a Single Tertiary Center: Perspectives before and after the Coronavirus Disease 2019 Pandemic. J Clin Med 2024; 13:5733. [PMID: 39407792 PMCID: PMC11477405 DOI: 10.3390/jcm13195733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Acute exacerbation (AE) of interstitial lung disease (ILD) is a major challenge. This study aimed to retrospectively investigate occurrences of AEs in patients with ILDs, including idiopathic pulmonary fibrosis (IPF), non-IPF (iNSIP: idiopathic nonspecific interstitial pneumonia), and connective tissue disease (CTD)-associated ILDs (CTD-ILDs), at a single tertiary center before and after the coronavirus disease 2019 (COVID-19) pandemic. The study aimed to clarify the seasonal and regional trends of AEs of ILDs, assess the roles of viral and bacterial infections, and identify key prognostic factors for patient outcomes. Methods: We conducted a retrospective review of hospitalized adult patients with AEs of ILDs from January 2019 to February 2024. Results: A total of 93 patients were enrolled: IPF (n = 42), iNSIP (n = 37), and CTD-ILDs (n = 14). The median age was 80 years (interquartile range: 74.0-86.0 years), with males comprising 64.5% (n = 60). AEs of ILDs predominantly occurred in winter and were particularly notable after summer 2023, coinciding with the lifting of COVID-19-related travel restrictions in Japan. Patient referrals from different areas (Northern Tama, East and/or Southern Tama, and other Tokyo metropolitan areas) were evenly distributed throughout the study period. Viral infections were detected in only two patients (SARS-CoV-2), and bacterial infections included methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. The Cox regression analysis identified serum lactate dehydrogenase levels ≥350 IU/L and tachypnea (respiratory rate ≥ 30 breaths per min) on admission as prognostic factors for mortality, with a hazard ratio [HR] of 2.783 (95% confidence interval [CI]: 1.480-5.235, p = 0.001) and an HR of 3.332 (95% CI: 1.710-6.492, p < 0.001), respectively. Conclusions: AEs of ILDs predominantly occur in winter, and viral and bacterial infections are infrequently detected. Elevated serum LDH levels and tachypnea are crucial prognostic markers for mortality. This study highlights the seasonal trend in the AE of ILD and emphasizes the importance of specific prognostic indicators in clinical practice.
Collapse
|
2
|
Niu X, Zhao Y, Zhang T, Sun Y, Wei Z, Fu K, Li J, Tang M, Wan W, Gao X, Chen H, Qi R, Song B. Comprehensive succinylome analyses reveal that hyperthermia upregulates lysine succinylation of annexin A2 by downregulating sirtuin7 in human keratinocytes. J Transl Int Med 2024; 12:424-436. [PMID: 39360157 PMCID: PMC11444469 DOI: 10.2478/jtim-2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Background and Objectives Local hyperthermia at 44°C can clear multiple human papillomavirus (HPV)-infected skin lesions (warts) by targeting a single lesion, which is considered as a success of inducing antiviral immunity in the human body. However, approximately 30% of the patients had a lower response to this intervention. To identify novel molecular targets for anti-HPV immunity induction to improve local hyperthermia efficacy, we conducted a lysine succinylome assay in HaCaT cells (subjected to 44°C and 37°C water baths for 30 min). Methods The succinylome analysis was conducted on HaCaT subjected to 44°C and 37°C water bath for 30 min using antibody affinity enrichment together with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results were validated by western blot (WB), immunoprecipitation (IP), and co-immunoprecipitation (Co-IP). Then, bioinformatic analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, motif characterization, secondary structure, and protein-protein interaction (PPI) was performed. Results A total of 119 proteins with 197 succinylated sites were upregulated in 44°C-treated HaCaT cells. GO annotation demonstrated that differential proteins were involved in the immune system process and viral transcription. Succinylation was significantly upregulated in annexin A2. We found that hyperthermia upregulated the succinylated level of global proteins in HaCaT cells by downregulating the desuccinylase sirtuin7 (SIRT7), which can interact with annexin A2. Conclusions Taken together, these data indicated that succinylation of annexin A2 may serve as a new drug target, which could be intervened in combination with local hyperthermia for better treatment of cutaneous warts.
Collapse
Affiliation(s)
- Xueli Niu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Yiping Zhao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang110122, Liaoning Province, China
| | - Yuzhe Sun
- Department of Dermatology, Dermatological Hospital of Southern Medical University, Guangzhou510091, Guangdong Province, China
| | - Zhendong Wei
- Department of Dermatology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian116027, Liaoning Province, China
| | - Kangle Fu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Jingyi Li
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
| | - Mingsui Tang
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Xinghua Gao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Hongduo Chen
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Ruiqun Qi
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Bing Song
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, Guangdong Province, China
| |
Collapse
|
3
|
D’Agnano V, Mariniello DF, Ruotolo M, Quarcio G, Moriello A, Conte S, Sorrentino A, Sanduzzi Zamparelli S, Bianco A, Perrotta F. Targeting Progression in Pulmonary Fibrosis: An Overview of Underlying Mechanisms, Molecular Biomarkers, and Therapeutic Intervention. Life (Basel) 2024; 14:229. [PMID: 38398739 PMCID: PMC10890660 DOI: 10.3390/life14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Interstitial lung diseases comprise a heterogenous range of diffuse lung disorders, potentially resulting in pulmonary fibrosis. While idiopathic pulmonary fibrosis has been recognized as the paradigm of a progressive fibrosing interstitial lung disease, other conditions with a progressive fibrosing phenotype characterized by a significant deterioration of the lung function may lead to a burden of significant symptoms, a reduced quality of life, and increased mortality, despite treatment. There is now evidence indicating that some common underlying biological mechanisms can be shared among different chronic fibrosing disorders; therefore, different biomarkers for disease-activity monitoring and prognostic assessment are under evaluation. Thus, understanding the common pathways that induce the progression of pulmonary fibrosis, comprehending the diversity of these diseases, and identifying new molecular markers and potential therapeutic targets remain highly crucial assignments. The purpose of this review is to examine the main pathological mechanisms regulating the progression of fibrosis in interstitial lung diseases and to provide an overview of potential biomarker and therapeutic options for patients with progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Michela Ruotolo
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Alessandro Moriello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Stefano Conte
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Antonio Sorrentino
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | | | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| |
Collapse
|
4
|
Wekking D, Porcu M, Pellegrino B, Lai E, Mura G, Denaro N, Saba L, Musolino A, Scartozzi M, Solinas C. Multidisciplinary clinical guidelines in proactive monitoring, early diagnosis, and effective management of trastuzumab deruxtecan (T-DXd)-induced interstitial lung disease (ILD) in breast cancer patients. ESMO Open 2023; 8:102043. [PMID: 37951130 PMCID: PMC10679891 DOI: 10.1016/j.esmoop.2023.102043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 11/13/2023] Open
Abstract
Trastuzumab deruxtecan (T-DXd), a human epidermal growth factor receptor 2 (HER2)-directed antibody-drug conjugate (ADC), has altered the treatment landscape in breast cancer (BC), irrespective of the HR-receptor status. The use of the agent is increasing, despite the finding that exposure to T-DXd increases the risk of interstitial lung disease (ILD), particularly in BC patients. Although T-DXd-related ILD can be potentially severe and life-threatening, most low-grade cases can be treated safely using a multidisciplinary approach comprising early and accurate diagnosis, effective management, close monitoring, and the prompt administration of steroids. Additionally, increasing patients' education on ILD symptoms ensures close attention and enables prompt reporting, enhancing patient outcomes. It is recommended that predictive biomarkers are assessed in patients with risk factors for developing ILD. Currently, diagnostic criteria comprise newly identified pulmonary opacities, the relation of symptom onset to medication initiation, and the exclusion of other causes of ILD. The general condition of patients is weakened during the management of ILD (BC progression and corticosteroid treatment). Consequently, BC chemotherapy might be attenuated. This highlights the importance of preventing (high-grade) ILD, especially since its use is expanded. Identifying high-risk patients, diagnosing, and customizing treatment is, however, challenging and additional information on patient selection is often not fully clarified. In this paper, we provide updated multidisciplinary clinical guidance for patient selection, proactive monitoring, early diagnosis, and effectively management of T-DXd-induced ILD in HER2-positive BC patients. We describe the risk factors for developing ILD, patients' characteristics of ILD, and the histopathological and radiographic characteristics of ILD, including real-world clinical practice reports. These recommendations provide a structured step-by-step approach for managing each suspected BC-related ILD grade.
Collapse
Affiliation(s)
- D Wekking
- Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - M Porcu
- Radiology Department, AOU Cagliari, Cagliari University, Policlinico di Monserrato, Monserrato (CA)
| | - B Pellegrino
- Department of Medicine and Surgery, University of Parma, Parma; Medical Oncology and Breast Unit, University Hospital of Parma, Parma; Gruppo Oncologico Italiano di Ricerca Clinica(GOIRC), Parma
| | - E Lai
- Medical Oncology, AOU Cagliari, Policlinico di Monserrato, Monserrato
| | - G Mura
- Anatomical Pathology, Valdes Laboratory, Cagliari
| | - N Denaro
- IRCCS Fondazone Ca' Granda Policlinico Milano, SC Oncologia, Milan, Italy
| | - L Saba
- Radiology Department, AOU Cagliari, Cagliari University, Policlinico di Monserrato, Monserrato (CA)
| | - A Musolino
- Department of Medicine and Surgery, University of Parma, Parma; Medical Oncology and Breast Unit, University Hospital of Parma, Parma; Gruppo Oncologico Italiano di Ricerca Clinica(GOIRC), Parma
| | - M Scartozzi
- Medical Oncology, AOU Cagliari, Policlinico di Monserrato, Monserrato
| | - C Solinas
- Medical Oncology, AOU Cagliari, Policlinico di Monserrato, Monserrato
| |
Collapse
|
5
|
Zamfir AS, Zabara ML, Arcana RI, Cernomaz TA, Zabara-Antal A, Marcu MTD, Trofor A, Zamfir CL, Crișan-Dabija R. Exploring the Role of Biomarkers Associated with Alveolar Damage and Dysfunction in Idiopathic Pulmonary Fibrosis-A Systematic Review. J Pers Med 2023; 13:1607. [PMID: 38003922 PMCID: PMC10672103 DOI: 10.3390/jpm13111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of interstitial lung diseases (ILDs), marked by an ongoing, chronic fibrotic process within the lung tissue. IPF leads to an irreversible deterioration of lung function, ultimately resulting in an increased mortality rate. Therefore, the focus has shifted towards the biomarkers that might contribute to the early diagnosis, risk assessment, prognosis, and tracking of the treatment progress, including those associated with epithelial injury. METHODS We conducted this review through a systematic search of the relevant literature using established databases such as PubMed, Scopus, and Web of Science. Selected articles were assessed, with data extracted and synthesized to provide an overview of the current understanding of the existing biomarkers for IPF. RESULTS Signs of epithelial cell damage hold promise as relevant biomarkers for IPF, consequently offering valuable support in its clinical care. Their global and standardized utilization remains limited due to a lack of comprehensive information of their implications in IPF. CONCLUSIONS Recognizing the aggressive nature of IPF among interstitial lung diseases and its profound impact on lung function and mortality, the exploration of biomarkers becomes pivotal for early diagnosis, risk assessment, prognostic evaluation, and therapy monitoring.
Collapse
Affiliation(s)
- Alexandra-Simona Zamfir
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Mihai Lucian Zabara
- Department of Surgery, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Clinic of Surgery (II), St. Spiridon Emergency Hospital, 700111 Iasi, Romania
| | - Raluca Ioana Arcana
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Doctoral School of the Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Tudor Andrei Cernomaz
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Andreea Zabara-Antal
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Doctoral School of the Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Marius Traian Dragoș Marcu
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Antigona Trofor
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Carmen Lăcrămioara Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Radu Crișan-Dabija
- Clinical Hospital of Pulmonary Diseases, 700115 Iasi, Romania; (A.-S.Z.); (R.I.A.); (A.T.); (R.C.-D.)
- Department of Medical Sciences III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| |
Collapse
|
6
|
Rai M, Parthasarathi A, Beeraka NM, Kaleem Ullah M, Malamardi S, Padukudru S, Siddaiah JB, Uthaiah CA, Vishwanath P, Chaya SK, Ramaswamy S, Upadhyay S, Ganguly K, Mahesh PA. Circulatory Serum Krebs von Den Lungen-6 and Surfactant Protein-D Concentrations Predict Interstitial Lung Disease Progression and Mortality. Cells 2023; 12:cells12091281. [PMID: 37174681 PMCID: PMC10177381 DOI: 10.3390/cells12091281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
There is a need for biomarkers to predict outcomes, including mortality, in interstitial lung disease (ILD). Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D) are associated with lung damage and fibrosis in all ILDs and are related to important clinical outcomes. Though these two biomarkers have been associated with ILD outcomes, there are no studies that have evaluated their predictive potential in combination. This study aims to determine whether KL-6 and SP-D are linked to poor disease outcomes and mortality. Additionally, we plan to examine whether changes in KL-6 and SP-D concentrations correspond with changes in lung function and whether serial measurements improve their predictive potential to identify disease progression and mortality. Forty-four patients with ILD participated in a prospective 6-month longitudinal observational study. ILD patients who succumbed had the highest KL-6 levels (3990.4 U/mL (3490.0-4467.6)) and highest SP-D levels (256.1 ng/mL (217.9-260.0)), followed by those who deteriorated: KL-6 levels 1357.0 U/mL (822.6-1543.4) and SP-D levels 191.2 ng/mL (152.8-210.5). The generalized linear model (GLM) analysis demonstrated that changes in forced vital capacity (FVC), diffusing capacity of lungs for carbon monoxide (DLCO), forced expiratory volume in 1 s (FEV1), and partial pressure of arterial oxygen (PaO2) were correlated to changes in KL6 (p = 0.016, 0.014, 0.027, 0.047) and SP-D (p = 0.008, 0.012, 0.046, 0.020), respectively. KL-6 (odds ratio (OR): 2.87 (1.06-7.79)) and SPD (OR: 1.76 (1.05-2.97)) were independent predictors of disease progression, and KL-6 (hazard ratio (HR): 3.70 (1.46-9.41)) and SPD (HR: 2.58 (1.01-6.59)) were independent predictors of death by Cox regression analysis. Combined biomarkers (KL6 + SPD + CT + FVC) had the strongest ability to predict disease progression (AUC: 0.797) and death (AUC: 0.961), on ROC analysis. Elevated KL-6 and SPD levels are vital biomarkers for predicting the severity, progression, and outcomes of ILD. High baseline levels or an increase in levels over a six-month follow-up despite treatment indicate a poor prognosis. Combining KL6 and SPD with conventional measures yields a more potent prognostic indicator. Clinical studies are needed to test additional interventions, and future research will determine if this combined biomarker benefits different ethnicities globally.
Collapse
Affiliation(s)
- Meghna Rai
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Ashwaghosha Parthasarathi
- Allergy, Asthma, and Chest Centre, Krishnamurthypuram, Mysuru 570004, India
- Rutgers Centre for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901-1293, USA
| | - Narasimha M Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu 515721, Andhra Pradesh, India
| | - Mohammed Kaleem Ullah
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Sowmya Malamardi
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
- School of Psychology & Public Health, College of Science Health and Engineering, La Trobe University, Melbourne 3086, Australia
| | - Sunag Padukudru
- Yenepoya Medical College, Yenepoya University, Mangalore 575018, Karnataka, India
| | - Jayaraj Biligere Siddaiah
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Chinnappa A Uthaiah
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Prashant Vishwanath
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Sindaghatta Krishnarao Chaya
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Subramanian Ramaswamy
- Department of Clinical Immunology & Rheumatology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
7
|
Predictors of progression in idiopathic inflammatory myopathies with interstitial lung disease. J Transl Int Med 2022. [PMID: 37533847 PMCID: PMC10393057 DOI: 10.2478/jtim-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
The idiopathic inflammatory myopathies (IIMs) are a group of connective tissue diseases that afect multiple organ systems, including the lungs. Interstitial lung disease (ILD) is the most common and heterogeneous complication of IIMs, with its degree ranging from mild to fatal. Thus, it is critical to identify clinical features and validated biomarkers for predicting disease progression and prognosis, which could be beneficial for therapy adjustment. In this review, we discuss predictors for rapid progression of IIM-ILD and propose guidance for disease monitoring and implications of therapy. Systematic screening of myositis-specific antibodies, measuring serum biomarker levels, pulmonary function tests, and chest high-resolution computer tomography will be beneficial for the evaluation of disease progression and prognosis.
Collapse
|