1
|
Wang C, Feng H, Zhang X, Li K, Yang F, Cao W, Liu H, Gao L, Xue Z, Liu X, Zhu Z, Zheng H. Porcine Picornavirus 3C Protease Degrades PRDX6 to Impair PRDX6-mediated Antiviral Function. Virol Sin 2021; 36:948-957. [PMID: 33721217 PMCID: PMC7957437 DOI: 10.1007/s12250-021-00352-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Peroxiredoxin-6 (PRDX6) is an antioxidant enzyme with both the activities of peroxidase and phospholipase A2 (PLA2), which is involved in regulation of many cellular reactions. However, the function of PRDX6 during virus infection remains unknown. In this study, we found that the abundance of PRDX6 protein was dramatically decreased in foot-and-mouth disease virus (FMDV) infected cells. Overexpression of PRDX6 inhibited FMDV replication. In contrast, knockdown of PRDX6 expression promoted FMDV replication, suggesting an antiviral role of PRDX6. To explore whether the activity of peroxidase and PLA2 was associated with PRDX6-mediated antiviral function, a specific inhibitor of PLA2 (MJ33) and a specific inhibitor of peroxidase activity (mercaptosuccinate) were used to treat the cells before FMDV infection. The results showed that incubation of MJ33 but not mercaptosuccinate promoted FMDV replication. Meanwhile, overexpression of PRDX6 slightly enhanced type I interferon signaling. We further determined that the viral 3Cpro was responsible for degradation of PRDX6, and 3Cpro-induced reduction of PRDX6 was independent of the proteasome, lysosome, and caspase pathways. The protease activity of 3Cpro was required for induction of PRDX6 reduction. Besides, PRDX6 suppressed the replication of another porcine picornavirus Senecavirus A (SVA), and the 3Cpro of SVA induced the reduction of PRDX6 through its proteolytic activity as well. Together, our results suggested that PRDX6 plays an important antiviral role during porcine picornavirus infection, and the viral 3Cpro induces the degradation of PRDX6 to overcome PRDX6-mediated antiviral function.
Collapse
Affiliation(s)
- Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Huanhuan Feng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Kangli Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Huisheng Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Lili Gao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhaoning Xue
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
2
|
Understanding the Determination of Meat Quality Using Biochemical Characteristics of the Muscle: Stress at Slaughter and Other Missing Keys. Foods 2021; 10:foods10010084. [PMID: 33406632 PMCID: PMC7823487 DOI: 10.3390/foods10010084] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Despite increasingly detailed knowledge of the biochemical processes involved in the determination of meat quality traits, robust models, using biochemical characteristics of the muscle to predict future meat quality, lack. The neglecting of various aspects of the model paradigm may explain this. First, preslaughter stress has a major impact on meat quality and varies according to slaughter context and individuals. Yet, it is rarely taken into account in meat quality models. Second, phenotypic similarity does not imply similarity in the underlying biological causes, and several models may be needed to explain a given phenotype. Finally, the implications of the complexity of biological systems are discussed: a homeostatic equilibrium can be reached in countless ways, involving thousands of interacting processes and molecules at different levels of the organism, changing over time and differing between animals. Consequently, even a robust model may explain a significant part, but not all of the variability between individuals.
Collapse
|
3
|
A Novel, Rapid, and Simple PMA-qPCR Method for Detection and Counting of Viable Brucella Organisms. J Vet Res 2020; 64:253-261. [PMID: 32587912 PMCID: PMC7305652 DOI: 10.2478/jvetres-2020-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction The plate counting method widely used at present to discern viable from non-viable Brucella in the host or cell is time-consuming and laborious. Therefore, it is necessary to establish a rapid, simple method for detecting and counting viable Brucella organisms. Material and Methods Using propidium monoazide (PMA) to inhibit amplification of DNA from dead Brucella, a novel, rapid PMA-quantitative PCR (PMA-qPCR) detection method for counting viable Brucella was established. The standard recombinant plasmid with the target BCSP31 gene fragment inserted was constructed for drawing a standard curve. The reaction conditions were optimised, and the sensitivity, specificity, and repeatability were analysed. Results The optimal exposure time and working concentration of PMA were 10 min and 15 μg/mL, respectively. The correlation coefficient (R2) of the standard curve was 0.999. The sensitivity of the method was 103 CFU/mL, moreover, its specificity and repeatability also met the requirements. The concentration of B. suis measured by the PMA-qPCR did not differ significantly from that measured by the plate counting method, and the concentrations of viable bacteria in infected cells determined by the two methods were of the same order of magnitude. Conclusion In this study, a rapid and simple PMA-qPCR counting method for viable Brucella was established, which will facilitate related research.
Collapse
|
4
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
5
|
Wang LL, Chen XF, Hu P, Lu SY, Fu BQ, Li YS, Zhai FF, Ju DD, Zhang SJ, Shui YM, Chang J, Ma XL, Su B, Zhou Y, Liu ZS, Ren HL. Host Prdx6 contributing to the intracellular survival of Brucella suis S2 strain. BMC Vet Res 2019; 15:304. [PMID: 31438945 PMCID: PMC6704487 DOI: 10.1186/s12917-019-2049-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/12/2019] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Brucellosis is a worldwide zoonotic infectious disease that is transmitted in various ways and causes great harm to humans and animals. The brucellosis pathogen is Brucella, which mainly resides in macrophage cells and survives and replicates in host cells. However, the mechanisms underlying Brucella survival in macrophage cells have not been thoroughly elucidated to date. Peroxiredoxin 6 (Prdx6) is a bifunctional protein that shows not only GSH peroxidase activity but also phospholipase A2 activity and plays important roles in combating oxidative damage and regulating apoptosis. RESULTS Recombinant mouse (Mus musculus) Prdx6 (MmPrdx6) was expressed and purified, and monoclonal antibodies against MmPrdx6 were prepared. Using the Brucella suis S2 strain to infect RAW264.7 murine macrophages, the level of intracellular Prdx6 expression first decreased and later increased following infection. Overexpressing Prdx6 in macrophages resulted in an increase in B. suis S2 strain levels in RAW264.7 cells, while knocking down Prdx6 reduced the S2 levels in cells. CONCLUSIONS Host Prdx6 can increase the intracellular survival of B. suis S2 strain and plays a role in Brucella infection.
Collapse
Affiliation(s)
- Lu-Lu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Xiao-Feng Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Bao-Quan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Fei-Fei Zhai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Dan-Di Ju
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Shi-Jun Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Yi-Ming Shui
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Jiang Chang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Xiao-Long Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China.,Shaheyan Animal Husbandry and Veterinary Medicine Station of Dunhua City, Dunhua, 133700, China
| | - Bing Su
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis / College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun, 130062, China.
| |
Collapse
|