1
|
Ashiq J, Hussain A, Gilani MA, Riaz S, Nawaz MH. Ultrasensitive detection of histamine in spoiled meat employing silver nanoparticles decorated Perylene: An experimental-computational conjugation. Food Chem 2025; 464:141673. [PMID: 39423538 DOI: 10.1016/j.foodchem.2024.141673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/06/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Meat spoilage has been acquiring increasing attention recently and is directly associated with food safety and human health. Biogenic amines are the spying organic compounds fostered from the microorganism-mediated decarboxylation of amino acids during meat spoilage. Histamine, a biogenic amine acts as a model analyte and is toxic if consumed substantially. It is crucial to monitor histamine levels in meat due to its adverse effects. In this study, a simple and quick fluorescent sensor was fabricated for sensitive and selective detection of histamine. Citrate-capped silver nanoparticles (AgNP) were loaded onto Perylene (PER) to develop a sensing probe that was characterized using UV-visible, FTIR, XRD, and FESEM, and its optical behavior toward histamine was investigated. Moreover, the binding affinity between histamine and PER@AgNP was assessed using a DFT-based computer simulation. Under optimal conditions, the sensor showed linear relationships for histamine concentrations from 25 μM to 3200 μM with LOD 13.52 μM.
Collapse
Affiliation(s)
- Javaria Ashiq
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus (54000), Pakistan; Department of Chemistry, COMSATS University Islamabad, Lahore Campus (54000), Pakistan
| | - Ali Hussain
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus (54000), Pakistan
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus (54000), Pakistan.
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus (54000), Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus (54000), Pakistan.
| |
Collapse
|
2
|
Bhowmik D, Rickard JJS, Jelinek R, Goldberg Oppenheimer P. Resilient sustainable current and emerging technologies for foodborne pathogen detection. SUSTAINABLE FOOD TECHNOLOGY 2025; 3:10-31. [PMID: 39359621 PMCID: PMC11443698 DOI: 10.1039/d4fb00192c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Foodborne pathogens such as Salmonella, Escherichia coli and Listeria pose significant risks to human health. The World Health Organization estimates that 2.2 million deaths per year are directly caused by foodborne and waterborne bacterial diseases worldwide. Accordingly, detecting pathogens in food is essential to ensure that our food is safe. This review explores the critical role of novel technologies in enhancing food safety practices whilst delving into adopting and integrating innovative, resilient and sustainable approaches in the food supply chain. Further, applying novel, emerging advanced analytical techniques such as Raman spectroscopy and nanotechnology based biosensors in food contamination detection is discussed. These advanced technologies show the promise of real-time monitoring, traceability, and predictive analytics to identify and mitigate potential hazards before they reach consumers. They can provide rapid and accurate results and ensure the integrity of food products. Furthermore, the herein-highlighted synergistic integration of these technologies offers a promising path toward a safer and more transparent food system, thereby addressing the challenges of today's globalised food market and laying the platform for developing multimodal technologies for affordable, sensitive and rapid pathogen detection along the different stages of the food chain, from "farm to fork".
Collapse
Affiliation(s)
- Debarati Bhowmik
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
| | - Jonathan James Stanely Rickard
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
- Department of Physics, Cavendish Laboratory, University of Cambridge Cambridge UK
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev 84105 Beer Sheva Israel
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
- Healthcare Technologies Institute Mindelsohn Way Birmingham B15 2TH UK
| |
Collapse
|
3
|
Bhatt A, Jain S, Navani NK. Rapid, Sensitive, and Specific Microbial Whole-Cell Biosensor for the Detection of Histamine: A Potential Food Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27466-27478. [PMID: 39441673 DOI: 10.1021/acs.jafc.4c06315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Histamine is a biogenic amine; its level indicates food quality, as elevated levels cause food poisoning. Therefore, monitoring food at each step during processing until it reaches the consumer is crucial, but current techniques are complicated and time-consuming. Here, we designed a Pseudomonas putida whole-cell biosensor using a histamine-responsive genetic element expressing a fluorescent protein in the presence of the cognate target. We improved the performance of the proposed biosensor by optimizing the chassis, genetic regulatory element, and reporter gene. A sensitive and rapid biosensor variant was obtained with a limit of detection (LOD) of 0.39 ppm, manifesting a linear response (R2 = 0.98) from 0.28 to 18 ppm in 90 min. The biosensor showed minimal cross-reactivity with other biogenic amines and amino acids prevalent in food, making it highly specific. The biosensor effectively quantified histamine in spiked fish, prawn, and wine samples with a satisfactory recovery. Additionally, a colorimetric sensor variant PAlacZ was developed enabling histamine quantification in seafood via a smartphone application, with an LODgray of 0.23 ppm, exhibiting a linear response from 0 to 2.24 ppm. Overall, this study reports an efficient, specific, and highly sensitive biosensor with strong potential for the on-site detection of histamine, ensuring food safety.
Collapse
Affiliation(s)
- Ankita Bhatt
- Chemical Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shubham Jain
- Chemical Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Naveen K Navani
- Chemical Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
4
|
Morello S, Lupi S, Barcucci E, Fragassi S, Torres E, Dosio D, Marchese C, Bezzo Llufrio T, Gili M, Bianchi DM. Histamine in Fishery: A Five-Year Survey in Northern Italy. Toxins (Basel) 2024; 16:456. [PMID: 39591211 PMCID: PMC11598046 DOI: 10.3390/toxins16110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Histamine is a biogenic amine and an indicator of fishery product freshness and hygienic quality. The European Regulation EC 2073/2005 sets the standards for fish sample collection and establishes quantitative levels of histamine in fishery products to ensure consumer health and safety. This retrospective study presents data on histamine monitoring in fish and fishery products collected in northern Italy between 2018 and 2022. A total of 138 samples were analysed via enzyme-linked immunosorbent assay (ELISA) and then confirmed by high-performance liquid chromatography with diode-array detection (HPLC-DAD). Four samples found positive contained histamine levels above the legal limit. Monitoring via ELISA and HPLC-DAD can efficiently detect histamine in fish and fishery products and protect consumers' health.
Collapse
Affiliation(s)
- Sara Morello
- Centro di Referenza Nazionale per la Rilevazione negli Alimenti di Sostanze e Prodotti che Provocano Allergie e Intolleranze—CReNaRiA, Via Bologna 148, 10154 Turin, Italy; (S.L.); (E.B.); (S.F.); (D.M.B.)
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (E.T.); (D.D.); (C.M.); (T.B.L.); (M.G.)
| | - Samantha Lupi
- Centro di Referenza Nazionale per la Rilevazione negli Alimenti di Sostanze e Prodotti che Provocano Allergie e Intolleranze—CReNaRiA, Via Bologna 148, 10154 Turin, Italy; (S.L.); (E.B.); (S.F.); (D.M.B.)
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (E.T.); (D.D.); (C.M.); (T.B.L.); (M.G.)
| | - Elisa Barcucci
- Centro di Referenza Nazionale per la Rilevazione negli Alimenti di Sostanze e Prodotti che Provocano Allergie e Intolleranze—CReNaRiA, Via Bologna 148, 10154 Turin, Italy; (S.L.); (E.B.); (S.F.); (D.M.B.)
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (E.T.); (D.D.); (C.M.); (T.B.L.); (M.G.)
| | - Sandra Fragassi
- Centro di Referenza Nazionale per la Rilevazione negli Alimenti di Sostanze e Prodotti che Provocano Allergie e Intolleranze—CReNaRiA, Via Bologna 148, 10154 Turin, Italy; (S.L.); (E.B.); (S.F.); (D.M.B.)
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (E.T.); (D.D.); (C.M.); (T.B.L.); (M.G.)
| | - Elena Torres
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (E.T.); (D.D.); (C.M.); (T.B.L.); (M.G.)
| | - Davide Dosio
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (E.T.); (D.D.); (C.M.); (T.B.L.); (M.G.)
| | - Chiara Marchese
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (E.T.); (D.D.); (C.M.); (T.B.L.); (M.G.)
| | - Tabata Bezzo Llufrio
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (E.T.); (D.D.); (C.M.); (T.B.L.); (M.G.)
| | - Marilena Gili
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (E.T.); (D.D.); (C.M.); (T.B.L.); (M.G.)
| | - Daniela Manila Bianchi
- Centro di Referenza Nazionale per la Rilevazione negli Alimenti di Sostanze e Prodotti che Provocano Allergie e Intolleranze—CReNaRiA, Via Bologna 148, 10154 Turin, Italy; (S.L.); (E.B.); (S.F.); (D.M.B.)
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (E.T.); (D.D.); (C.M.); (T.B.L.); (M.G.)
| |
Collapse
|
5
|
Liao S, Lu Y, He Q, Chi Y. Insights into Genomic Characteristics and Biogenic Amine Degradation Potential and Mechanisms: A Strain of Pediococcus acidilactici Sourced from Doubanjiang. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20622-20632. [PMID: 39225480 DOI: 10.1021/acs.jafc.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The control of excess biogenic amines (BAs) is crucial for the sustainable development of fermented foods. This study aimed to screen endogenous functional strains in Doubanjiang with the capacity to degrade BAs and to elucidate their application potential. Pediococcus acidilactici L-9 (PA), which was confirmed as a safe strain by phenotypic and genotypic analyses, exhibited an efficient degradation ability on BAs, particularly regarding tyramine. Notably, the degradation of tyramine was maintained at 24.03-50.60% at different temperatures (20-40 °C), pH values (4.0-9.0), and NaCl concentrations (3-18%, w/v). Additionally, genomic data revealed the presence of the laccase-coding gene, which was demonstrated to play a pivotal role in BA degradation by heterologous expression. Further, molecular docking results indicated that the degradation of BA by laccase is closely linked to the electron transfer pathway formed by the substrate and key amino acid residues. Finally, the degradation of tyramine by PA remained within the range of 8.19-64.19% under the simulated system with 6-12% salinity. This study provided valuable insights into the safety of PA and its potential degradation capacity on BAs, particularly in mitigating tyramine accumulation, which could improve the quality of Doubanjiang and other fermented foods.
Collapse
Affiliation(s)
- Shenglan Liao
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yunhao Lu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qiang He
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
6
|
Buczkowska M, Szczyrba A, Szajnoga D, Górski M, Malinowska-Borowska J, Domagalska J, Rozentryt P. The Factors Influencing the Concentration of Histamine in Jarred Baby Foods Containing Fish, Considering Evaluation of Daily Histamine Intake. J Food Prot 2024; 87:100328. [PMID: 39009284 DOI: 10.1016/j.jfp.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Histamine is one of the biogenic amines produced naturally in the human body, but also in foods, especially those rich in protein. Exogenous and endogenous histamine is subject to degradation in vivo, but in the case of sensitive groups, including children, these degradation processes may be less intense, resulting in adverse health effects from histamine excess. The aim of the study was to determine the histamine content in jarred baby foods containing fish, taking into account the selected product characteristics and storage conditions. The study included 140 meals with added fish, intended for infants and young children, from 5 leading manufacturers available in Poland. The infant meals were analyzed on the day of opening, after 24 h and 48 h of storage in the refrigerator and at room temperature. Histamine concentration was determined by ELISA. The THQ was calculated from the EDI values for histamine. Histamine was present in all analyzed baby foods. On the day of opening, the products had a lower content of this monoamine (Me = 2.59 mg/kg), which increased systematically during storage. Samples taken at 2 °C after 48 h showed an average histamine content of 4.4 mg/kg, while products stored at 22 °C at the same time showed a 1.8-fold higher concentration of this monoamine (Me = 7.9 mg/kg). Dishes containing tuna and sea fish had higher histamine levels on average than those containing pollock. The storage conditions of the children's food had a significant effect on histamine concentration. The level of histamine in baby foods was related to the amount and type of fish in certain products. The results indicate the need for increased awareness of the risks associated with histamine, especially in a group of people with increased sensitivity to this amine, which may include infants and young children.
Collapse
Affiliation(s)
- Marta Buczkowska
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland.
| | - Anna Szczyrba
- Doctoral School of the Medical University of Silesia in Katowice, Faculty of Public Health in Bytom Medical University of Silesia, Poland, Poland
| | - Dominika Szajnoga
- Second Scientific Association of Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Michał Górski
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Jolanta Malinowska-Borowska
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Joanna Domagalska
- Department of Environmental Health, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Piotr Rozentryt
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| |
Collapse
|
7
|
Pang Z, Lee JW, Lee Y, Moon B. Changes in quality characteristics and biogenic amine contents in beef by cooking methods. Food Sci Biotechnol 2024; 33:2313-2321. [PMID: 39145133 PMCID: PMC11319698 DOI: 10.1007/s10068-024-01650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 08/16/2024] Open
Abstract
This study aimed to evaluate the changes in imported beef loin before and after cooking, depending on cooking methods, through quality characteristics, biogenic amine (BA) content analysis, and electronic tongue system. Sous-vide (SV), characterized by the least cooking loss, exhibited the highest water content at 64.11%. Pan-grilling (PG), air-frying (AF), and IR-grilling (IR) methods showed a range of water content from 46.90 to 54.19%. In the taste results by the electronic tongue, umami and saltiness were higher in the high cooking temperature methods (PG, AF, IR, and combined sous-vide + pan-grilling [SVP]) than SV (p < 0.05). Compared to the control, total BAs concentrations decreased by 67.32% (SV), 64.90% (AF), 62.46% (IR), and 50.64% (PG), and SVP showed the largest decrease of 68.64% (p < 0.05). Therefore, SVP was considered the most effective cooking method for reducing BAs and maintaining the quality characteristics of beef loin. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01650-9.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseong, Gyeonggi 17546 Republic of Korea
| | - Jo-Won Lee
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseong, Gyeonggi 17546 Republic of Korea
| | - Yoona Lee
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseong, Gyeonggi 17546 Republic of Korea
| | - BoKyung Moon
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseong, Gyeonggi 17546 Republic of Korea
| |
Collapse
|
8
|
Guruprasath N, Sankarganesh P, Adeyeye SAO, Babu AS, Parthasarathy V. Review on emerging applications of nanobiosensor in food safety. J Food Sci 2024; 89:3950-3972. [PMID: 38847752 DOI: 10.1111/1750-3841.17149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
Nanosensors have become an indispensable tool in the food sector due to their specificity and sensitivity. The biosensor consists of a transducer coupled with a biorecognition component to transform biological signal into digital signal. Nanobiosensors have been widely used for sensing toxic chemicals such as pesticide residues and pathogenic microbes owing to their accurate sensitivity in an affordable manner, which gives more hope to the food industry on their applications. It employs nanocarriers to bind to impurities and pollutants, as well as food-borne microorganisms and their resulting toxins, such as mycotoxins. This modern technology ensures food safety in food processing industries. Nowadays, nanoparticle-immobilized sensors act as spot indicators to improve smart food packing technology. Certain types of nanobiosensors are deployed to monitor food product manufacture till packaging and to check the freshness of the product till spoilage identification. They are mainly using enzyme catalysts, which are highly sensitive to extreme environmental conditions. As a result, there is a greater evaluation requirement in nanosensor technology to adopt any temperature, pH, or other difficult parameters. Its stability, while in contact with food substrates, is another criterion that needs to be regularized. Within this framework, this review delves into the latest developments in nanobiosensors and the obstacles encountered during their use across different food industries.
Collapse
Affiliation(s)
- N Guruprasath
- Department of Food Technology, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India
| | - P Sankarganesh
- Department of Food Technology, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India
| | - S A O Adeyeye
- Department of Food Technology, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India
| | - A Surendra Babu
- Department of Food Science and Technology, School of Agricultural Sciences, Malla Reddy University, Hyderabad, India
| | - V Parthasarathy
- Department of Physics, Rajalakshmi Institute of Technology, Chennai, India
| |
Collapse
|
9
|
La Torre GL, Vadalà R, Cicero N, Lo Cascio G, Cicero A, Calabrese V, Ferrantelli V, Ingallina C, Salvo A. Evaluating the inhibition effect of a novel bio-packaging on histamine content in mackerel ( Scomber scombrus): a new strategy with environment respect. Nat Prod Res 2024; 38:2123-2128. [PMID: 37436920 DOI: 10.1080/14786419.2023.2235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
This is the first study in which the impact of a new bio-packaging on histamine formation in mackerel was investigated. To monitor the preservation of fresh fish samples a treatment with innovative polymeric film and a soaking procedure in liquid new biomaterial was adopted. Ultra HPLC diode array detection (UHPLC-DAD) analyses for histamine monitoring were performed on fresh, packaged, and soaked mackerel samples at different time. The histamine content threshold value was up to 7 days, and after this period the results showed that histamine levels were affected by application of biomaterial. Significant increase was detected in sample that was not treated with biofilm. The new biofilm extended the shelf-life and reveals a promising packaging system to prevent histamine biosynthesis.
Collapse
Affiliation(s)
- Giovanna Loredana La Torre
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Messina, Italy
| | - Rossella Vadalà
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Messina, Italy
- Science4Life, Academic Spin Off, c/o BIOMORF Department of University of Messina, Messina
| | | | - Antonello Cicero
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Vittorio Calabrese
- Department of biotechnolgy and biomedical sciences, Università Degli Studi di Catania, Catania, Italy
| | | | - Cinzia Ingallina
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, Roma, Italy
| | - Andrea Salvo
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, Roma, Italy
| |
Collapse
|
10
|
Aladhadh M, Nasser Binjawhar D, Abd El-Kader Ebrahim HNED, Radhi KS, Almatrafi M, Fayad E, Al-Saman MA, Elsanhoty RM. Investigation of Biogenic Amine Levels and Microbiological Activity as Quality Markers in Some Dairy and Fish Products in Food Markets in the Kingdom of Saudi Arabia. ACS OMEGA 2024; 9:19193-19202. [PMID: 38708229 PMCID: PMC11064202 DOI: 10.1021/acsomega.3c10347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
This study aimed to verify the presence of biogenic amines (BAs) and evaluate the microbiological activity of some food samples collected from retail stores in the Kingdom of Saudi Arabia. A total of thirty-five dairy and fish products were collected and analyzed for BAs, including putrescine (PUT), cadaverine (CAD), spermidine (SPE), histamine (HIS), spermine (SPR), and tyramine (TYR), as well as for total colony count (TCC), lactic acid bacteria (LAB), Enterobacteriaceae, yeast and mold (Y and M), coliforms, and aerobic sporulation count (ASF). The thin layer chromatography (TLC) method was used in the analytical methodology to identify the BAs. The results showed the presence of BAs in all dairy products, but their concentration did not exceed the maximum permissible limit, which in contrast was established by the Food and Drug Administration (FDA) at 10 mg/100 g. The amounts of BAs in fish products varied significantly. All fish product samples contained levels of BAs below the permissible limit. Results of an independent study also indicated potential toxicity at levels of BAs (>10 mg/100 g) in Egyptian herring. Enterobacteriaceae and the coli group were present in higher concentrations in the Egyptian herring samples, whereas other samples (particularly frozen shrimp) showed increased TCC levels with a higher concentration of histamine-producing bacteria. From a consumer safety perspective, this study also indicated that food samples generally contained acceptable levels of BAs. In conclusion, there is a need to improve and standardize food quality and hygiene practices during production and storage to ensure human safety and prevent HIS formation.
Collapse
Affiliation(s)
- Mohammed Aladhadh
- Department
of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi
Arabia
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Sciences, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Khadija S. Radhi
- Department
of Science and Nutrition, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manal Almatrafi
- Department
of Science and Nutrition, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Fayad
- Department
of Biotechnology, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud A. Al-Saman
- Department
of Industrial Biotechnology, Genetic Engineering and Biotechnology
Research Institute, University of Sadat
City (USC), Sadat
City 32897, Egypt
| | - Rafaat M. Elsanhoty
- Department
of Industrial Biotechnology, Genetic Engineering and Biotechnology
Research Institute, University of Sadat
City (USC), Sadat
City 32897, Egypt
| |
Collapse
|
11
|
Saadati A, Farshchi F, Jafari M, Kholafazad H, Hasanzadeh M, Shadjou N. Optical dِِِِiscrimination of histamine and ethylenediamine in meat samples using a colorimetric affordable test strip (CATS): introducing a novel lab-on paper sensing strategy for low-cost ensuring food safety by rapid and accurate monitoring of biogenic amines. RSC Adv 2024; 14:8602-8614. [PMID: 38495985 PMCID: PMC10938298 DOI: 10.1039/d4ra00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Biogenic amines (BAs) are a group of organic compounds that are produced through the decarboxylation of amino acids by microorganisms. These compounds are commonly found in a variety of foods and are known to cause adverse health effects if consumed in high concentrations. Therefore, the development of sensitive and rapid detection methods for detection and determination of BAs is essential for ensuring food safety. In this study, a novel colorimetric affordable test strip (CATS) was developed for the colorimetric and naked-eye detection of two BAs of ethylenediamine (EDA) and histamine (HIS) in meat samples. Also, triangular silver nanoparticles (AgNPrs) were used as a diagnostic optical probe, and CATS used as a simple, environmentally friendly, inexpensive diagnostic substrate for on-site recognition of meat spoil. The AgNPrs-based optosensor demonstrated high sensitivity and selectivity towards EDA and HIS, allowing for the detection of low concentrations of the BAs in real food samples such as raw chicken and beef. The system presented a UV-vis technique for HIS and EDA analysis in the linear range of 0.1 μM to 0.01 mM, with an LLOQ of 0.1 μM, and 0.05 to 1 μM, with an LLOQ of 0.05 μM, respectively. Additionally, the performance of the designed CATS in the analysis of produced gases was evaluated, highlighting the potential of this simple and cost-effective strategy for the development of BAs diagnostic kits. This approach provides a simple and cost-effective method for detecting BAs in food, which could be beneficial for ensuring food safety and preventing the harmful effects associated with their consumption.
Collapse
Affiliation(s)
- Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Fatemeh Farshchi
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas Avenida Brasil No 4365-Manguinhos Rio de Janeiro 21040-900 RJ Brazil
| | - Mohsen Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Houman Kholafazad
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
12
|
Bita S, Sharifian S. Assessment of biogenic amines in commercial tuna fish: Influence of species, capture method, and processing on quality and safety. Food Chem 2024; 435:137576. [PMID: 37774619 DOI: 10.1016/j.foodchem.2023.137576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
This study investigated the influence of species, capture method, chilling, and freezing on the quality and variations in biogenic amines of Thunnus tonggol and Thunnus albacares. Samples were collected from different sources, including fisheries ports, cold rooms, and canning factories. The results indicated that canned fish had significantly higher levels of biogenic amines, especially histamine, compared to raw fish from ports and cold rooms. However, all canned samples complied with the FDA regulation of 50 mg/kg for histamine content. Canning led to a substantial increase in total amines, with histamine being the predominant amine in most groups. Putrescine was present in all samples, with the highest levels found in canned tuna made from frozen yellow-fin tuna captured using drift gillnetting. Canned samples also exhibited higher cadaverine levels compared to raw tuna. Storage conditions, capture method, and tuna species were found to significantly affect tuna quality and biogenic amines formation.
Collapse
Affiliation(s)
- Seraj Bita
- Fisheries Department, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
| | - Salim Sharifian
- Fisheries Department, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran.
| |
Collapse
|
13
|
Chen J, Chen Y, Liu J, Feng S, Huang W, Ling Y, Dong Y, Huang W. In Situ Optical Detection of Amines at a Parts-per-Quadrillion Level by Severing the Through-Space Conjugated Supramolecular Domino. J Am Chem Soc 2024; 146:2604-2614. [PMID: 38230966 DOI: 10.1021/jacs.3c11480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Conventional fluorophores suffer from low sensitivity and selectivity in amine detection due to the inherent limitations in their "one-to-one" stoichiometric sensing mechanism. Herein, we propose a "one-to-many" chain reaction-like sensing mechanism by creating a domino chain consisting of one fluorescent molecule (e.g., PTF1) and up to 40 nonemissive polymer chains (pPFPA) comprising over thousand repeating units (PFPA). PTF1 (the domino trigger) interacts with adjacent PFPA units (the following blocks) through polar-π interactions and initiates the domino effect, creating effective through-space conjugation along pPFPA chains and generating amplified yellow fluorescent signals through charge transfer between PTF1 and pPFPA. Amine exposure causes rapid dismantling of the fluorophore-pPFPA-based domino chain and significantly reduces the amplified emissions, thus providing an ultrasensitive method for detecting amines. Relying on the above merits, we achieve a limit of detection of 177 ppq (or 1.67 × 10-12 M) for triethylamine, which is nearly 4 orders lower than that of previous methods. Additionally, the distinct reactivity of pPFPA toward different amines allows for the discrimination of primary, secondary, and tertiary amines. This study presents a "domino effect" sensing mechanism that has not yet been reported and provides a general approach for chemical detection that is beyond the reach of conventional methods.
Collapse
Affiliation(s)
- Jiamao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350002, P. R. China
| | - Yuanyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350002, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350002, P. R. China
| | - Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Saha Turna N, Chung R, McIntyre L. A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon 2024; 10:e24501. [PMID: 38304783 PMCID: PMC10830535 DOI: 10.1016/j.heliyon.2024.e24501] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Biogenic amines (BAs) are low-molecular decarboxylation products of amino acids formed during microbial fermentation. Several fermented foods may contain BAs such as histamine, tyramine, and/or phenylethylamine, at levels above documented toxic doses. Dietary exposure to foods containing high levels of BAs is associated with many adverse health effects, such as migraines, elevated blood pressure, and tachycardia. BA-mediated toxicity may occur at levels a hundred times below regulatory and suggested toxic doses, depending on an individual's sensitivity and factors such as alcohol consumption and certain medications. Although BAs occur in a wide variety of fermented foods, food safety and public health professionals are not well informed about the potential health risks and control strategies in these foods. In this review, we highlight the health risks and symptoms linked to BA exposures, the BA levels found in different fermented foods, regulatory and suggested toxic doses, and risk mitigation strategies to inform food industry and public health professionals' practice.
Collapse
Affiliation(s)
- Nikita Saha Turna
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| | - Rena Chung
- Public Health Ontario (PHO), 480 University Avenue, Suite 300, Toronto, ON, M5G 1V2, Canada
| | - Lorraine McIntyre
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| |
Collapse
|
15
|
Pasta A, Formisano E, Calabrese F, Plaz Torres MC, Bodini G, Marabotto E, Pisciotta L, Giannini EG, Furnari M. Food Intolerances, Food Allergies and IBS: Lights and Shadows. Nutrients 2024; 16:265. [PMID: 38257158 PMCID: PMC10821155 DOI: 10.3390/nu16020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
This narrative review delves into the intricate relationship between irritable bowel syndrome (IBS) and food intolerances. IBS, a chronic functional gastrointestinal disorder, is characterized by symptoms like abdominal pain and altered bowel habits. The prevalence of IBS has increased globally, especially among young adults. Food and dietary habits play a crucial role in IBS management. About 85-90% of IBS patients report symptom exacerbation linked to specific food consumption, highlighting the strong connection between food intolerances and IBS. Food intolerances often exhibit a dose-dependent pattern, posing a challenge in identifying trigger foods. This issue is further complicated by the complex nature of gastrointestinal physiology and varying food compositions. This review discusses various dietary patterns and their impact on IBS, including the low-FODMAP diet, gluten-free diet, and Mediterranean diet. It highlights the importance of a personalized approach in dietary management, considering individual symptom variability and dietary history. In conclusion, this review emphasizes the need for accurate diagnosis and holistic management of IBS, considering the complex interplay between dietary factors and gastrointestinal pathophysiology. It underlines the importance of patient education and adherence to treatment plans, acknowledging the challenges posed by the variability in dietary triggers and the psychological impact of dietary restrictions.
Collapse
Affiliation(s)
- Andrea Pasta
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (M.C.P.T.); (G.B.); (E.M.); (E.G.G.)
| | - Elena Formisano
- Dietetics and Clinical Nutrition Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (E.F.); (L.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Calabrese
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (M.C.P.T.); (G.B.); (E.M.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Maria Corina Plaz Torres
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (M.C.P.T.); (G.B.); (E.M.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giorgia Bodini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (M.C.P.T.); (G.B.); (E.M.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Elisa Marabotto
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (M.C.P.T.); (G.B.); (E.M.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Livia Pisciotta
- Dietetics and Clinical Nutrition Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (E.F.); (L.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Edoardo Giovanni Giannini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (M.C.P.T.); (G.B.); (E.M.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Manuele Furnari
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (M.C.P.T.); (G.B.); (E.M.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
16
|
Bajrami D, Sarquis A, Ladero VM, Fernández M, Mizaikoff B. Rapid discrimination of Lentilactobacillus parabuchneri biofilms via in situ infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123391. [PMID: 37714102 DOI: 10.1016/j.saa.2023.123391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Microbial contamination in food industry is a source of foodborne illnesses and biofilm-related diseases. In particular, biogenic amines (BAs) accumulated in fermented foods via lactic acid bacterial activity exert toxic effects on human health. Among these, biofilms of histamine-producer Lentilactobacillus parabuchneri strains adherent at food processing equipment surfaces can cause food spoilage and poisoning. Understanding the chain of contamination is closely related to elucidating molecular mechanisms of biofilm formation. In the present study, an innovative approach using integrated chemical sensing technologies is demonstrated to fundamentally understand the temporal behavior of biofilms at the molecular level by combining mid-infrared (MIR) spectroscopy and fluorescence sensing strategies. Using these concepts, the biofilm forming capacity of six cheese-isolated L. parabuchneri strains (IPLA 11151, 11150, 11129, 11125, 11122 and 11117) was examined. The cut-off values for the biofilm production ability of each strain were quantified using crystal violet (CV) assays. Real-time infrared attenuated total reflection spectroscopy (IR-ATR) combined with fluorescence quenching oxygen sensing provides insight into distinct molecular mechanisms for each strain. IR spectra showed significant changes in characteristic bands of amides, lactate, nucleic acids, and extracellular polymeric substances (i.e., lipopolysaccharides, phospholipids, phosphodiester, peptidoglycan, etc.), which are major contributors to biofilm maturation involved in the initial adhesion processes. Chemometric methods including principal component analysis and partial least square-discriminant analysis facilitated the rapid determination and classification of cheese isolated L. parabuchneri strains unambiguously differentiating the IR signatures based on their ability to produce biofilm. All biofilms were morphologically characterized by confocal laser scanning microscopy on relevant industrial equipment surfaces. In summary, this innovative approach combining MIR spectroscopy with luminescence sensing enables real-time insight into the molecular composition and formation of L. parabuchneri biofilms.
Collapse
Affiliation(s)
- Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Agustina Sarquis
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain
| | - Victor M Ladero
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Fernández
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain.
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Hahn-Schickard, Sedanstrasse 14, 89077 Ulm, Germany.
| |
Collapse
|
17
|
Brito BDNDC, Martins MG, Chisté RC, Lopes AS, Gloria MBA, Pena RDS. Total and Free Hydrogen Cyanide Content and Profile of Bioactive Amines in Commercial Tucupi, a Traditionally Derived Cassava Product Widely Consumed in Northern Brazil. Foods 2023; 12:4333. [PMID: 38231841 DOI: 10.3390/foods12234333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Tucupi is a broth derived from cassava roots which is produced after the spontaneous fermentation of manipueira (the liquid portion obtained by pressing cassava roots), followed by cooking. This product is widely consumed along with traditional dishes in the Brazilian Amazonia and is already used in different places worldwide. In this study, tucupi obtained from the markets of Belém (Pará, Brazil) and produced using agroindustrial (11 samples) and non-agroindustrial (11 samples) units were investigated to determine their physicochemical characteristics, total and free HCN contents, and free bioactive amine profiles. Most of the samples showed significant variations (p ≤ 0.05) in pH (2.82-4.67), total acidity (0.14-1.36 g lactic acid/100 mL), reducing sugars (up to 2.33 g/100 mL), and total sugars (up to 4.35 g/100 mL). Regarding the amines, four biogenic amines (0.5-4.2 mg/L tyramine, 1.0-23.1 mg/L putrescine, 0.5-66.8 mg/L histamine, and 0.6-2.9 mg/L tryptamine) and one polyamine (0.4-1.7 mg/L spermidine) were identified in the tucupi samples. Even in the tucupi produced using the agroindustrial units, which had quality seals provided by the local regulatory agency, high levels of biogenic amines (4.4-78.2 mg/L) were observed, as well as high dosages of total (8.87-114.66 mg/L) and free (0.80-38.38 mg/L) HCN. These facts highlight the need for better knowledge regarding the product manufacturing process to establish standardization and high-quality conditions for tucupi processing since high contents of biogenic amines and HCN are commonly associated with adverse health effects.
Collapse
Affiliation(s)
- Brenda de Nazaré do Carmo Brito
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Mayara Galvão Martins
- Innovation, Development and Adaptation of Sustainable Technologies Research Group (GPIDATS), Mamirauá Institute for Sustainable Development (IDSM), Tefé 69553-225, AM, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Alessandra Santos Lopes
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Maria Beatriz Abreu Gloria
- Laboratory of Food Biochemistry-LBqA & LCQ, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Rosinelson da Silva Pena
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| |
Collapse
|
18
|
Di Lauro M, Guerriero C, Cornali K, Albanese M, Costacurta M, Mercuri NB, Di Daniele N, Noce A. Linking Migraine to Gut Dysbiosis and Chronic Non-Communicable Diseases. Nutrients 2023; 15:4327. [PMID: 37892403 PMCID: PMC10609600 DOI: 10.3390/nu15204327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
In the world, migraine is one of the most common causes of disability in adults. To date, there is no a single cause for this disorder, but rather a set of physio-pathogenic triggers in combination with a genetic predisposition. Among the factors related to migraine onset, a crucial role seems to be played by gut dysbiosis. In fact, it has been demonstrated how the intestine is able to modulate the central nervous system activities, through the gut-brain axis, and how gut dysbiosis can influence neurological pathologies, including migraine attacks. In this context, in addition to conventional pharmacological treatments for migraine, attention has been paid to an adjuvant therapeutic strategy based on different nutritional approaches and lifestyle changes able to positively modulate the gut microbiota composition. In fact, the restoration of the balance between the different gut bacterial species, the reconstruction of the gut barrier integrity, and the control of the release of gut-derived inflammatory neuropeptides, obtained through specific nutritional patterns and lifestyle changes, represent a possible beneficial additive therapy for many migraine subtypes. Herein, this review explores the bi-directional correlation between migraine and the main chronic non-communicable diseases, such as diabetes mellitus, arterial hypertension, obesity, cancer, and chronic kidney diseases, whose link is represented by gut dysbiosis.
Collapse
Affiliation(s)
- Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
| | - Cristina Guerriero
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
| | - Kevin Cornali
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
| | - Maria Albanese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- Neurology Unit, Headache Center, Tor Vergata University Hospital, 00133 Rome, RM, Italy
| | - Micaela Costacurta
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, RM, Italy;
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- Neurology Unit, Headache Center, Tor Vergata University Hospital, 00133 Rome, RM, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- Fondazione Leonardo per le Scienze Mediche Onlus, Policlinico Abano, 35031 Abano Terme, PD, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, RM, Italy
| |
Collapse
|
19
|
Arih K, Đorđević N, Košnik M, Rijavec M. Evaluation of Serum Diamine Oxidase as a Diagnostic Test for Histamine Intolerance. Nutrients 2023; 15:4246. [PMID: 37836530 PMCID: PMC10574399 DOI: 10.3390/nu15194246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Histamine intolerance (HIT) is a clinical condition caused by decreased intestinal degradation of ingested histamine, primarily due to reduced enzyme diamine oxidase (DAO) activity, leading to histamine accumulation and causing various clinical manifestations. The measurement of serum DAO is commonly used as the main diagnostic test for HIT, although its diagnostic use is still uncertain. In this retrospective study, we aimed to assess the validity of DAO determination in patients with clinically suspected HIT. We measured DAO levels in 249 patients with suspected HIT and 50 healthy adult controls without HIT-related problems. Based on five clinical criteria, we divided patients into two groups: high (all five inclusion criteria; 41 patients) and low probability of HIT (≤4 inclusion criteria; 208 patients). Patients with a "high probability of HIT" had the lowest DAO (median: 8 U/mL, IQR: 6-10) in comparison to patients with a "low probability of HIT (median: 10 U/mL, IQR: 7-16, p = 0.0006) and healthy controls (median: 18 U/mL, IQR: 14-22, p < 0.0001). The specificity and sensitivity for DAO levels < 3/< 10 U/mL (manufacturer's set cut-off) to discriminate between patients with ''high probability of HIT'' and healthy controls were 100%/92% and 2%/71%. On the other hand, the specificity and sensitivity to discriminate between patients with ''high probability of HIT'' and ''low probability of HIT'' were 97%/61% and 2%/71%, respectively. Serum DAO determination represents an additional asset to the diagnosis of HIT based on clinical evaluation and assessment, but the diagnosis should not solely rely on DAO measurements.
Collapse
Affiliation(s)
- Kristina Arih
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nina Đorđević
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mitja Košnik
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | - Matija Rijavec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Yang JH, Byeon EH, Kang D, Hong SG, Yang J, Kim DR, Yun SP, Park SW, Kim HJ, Huh JW, Kim SY, Kim YW, Lee DK. Fermented Soybean Paste Attenuates Biogenic Amine-Induced Liver Damage in Obese Mice. Cells 2023; 12:cells12050822. [PMID: 36899958 PMCID: PMC10000487 DOI: 10.3390/cells12050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Biogenic amines are cellular components produced by the decarboxylation of amino acids; however, excessive biogenic amine production causes adverse health problems. The relationship between hepatic damage and biogenic amine levels in nonalcoholic fatty liver disease (NAFLD) remains unclear. In this study, mice were fed a high-fat diet (HFD) for 10 weeks to induce obesity, presenting early-stage of NAFLD. We administered histamine (20 mg/kg) + tyramine (100 mg/kg) via oral gavage for 6 days to mice with HFD-induced early-stage NAFLD. The results showed that combined histamine and tyramine administration increased cleaved PARP-1 and IL-1β in the liver, as well as MAO-A, total MAO, CRP, and AST/ALT levels. In contrast, the survival rate decreased in HFD-induced NAFLD mice. Treatment with manufactured or traditional fermented soybean paste decreased biogenically elevated hepatic cleaved PARP-1 and IL-1β expression and blood plasma MAO-A, CRP, and AST/ALT levels in HFD-induced NAFLD mice. Additionally, the biogenic amine-induced reduction in survival rate was alleviated by fermented soybean paste in HFD-induced NAFLD mice. These results show that biogenic amine-induced liver damage can be exacerbated by obesity and may adversely affect life conservation. However, fermented soybean paste can reduce biogenic amine-induced liver damage in NAFLD mice. These results suggest a beneficial effect of fermented soybean paste on biogenic amine-induced liver damage and provide a new research perspective on the relationship between biogenic amines and obesity.
Collapse
Affiliation(s)
- Ju-Hwan Yang
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Eun-Hye Byeon
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Dawon Kang
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Seong-Geun Hong
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Deok-Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Seung-Pil Yun
- Department of Pharmacology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Sang-Won Park
- Department of Pharmacology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Hyun-Joon Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - So-Yong Kim
- Fermented and Processed Food Science Division, National Institute of Agricultural Sciences, Wanju-Gun 55365, Republic of Korea
| | - Young-Wan Kim
- Department of Food Science and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
- Correspondence:
| |
Collapse
|
21
|
Abarquero D, Bodelón R, Flórez AB, Fresno JM, Renes E, Mayo B, Tornadijo ME. Technological and safety assessment of selected lactic acid bacteria for cheese starter cultures design: Enzymatic and antimicrobial activity, antibiotic resistance and biogenic amine production. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
22
|
Evaluation of the Adsorption Efficacy of Bentonite on Aflatoxin M 1 Levels in Contaminated Milk. Toxins (Basel) 2023; 15:toxins15020107. [PMID: 36828421 PMCID: PMC9966358 DOI: 10.3390/toxins15020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The existence of aflatoxin M1 (AFM1) in raw milk results in economic losses and public health risks. This research aims to examine the capability of bentonite to adsorb and/or eliminate AFM1 from various raw milk types. In addition, the effects of numerous bentonites (HAFR 1, 2, 3 and 4) on the nutritional characteristics of the milk were studied. Our findings revealed that goat milk had the highest value of AFM1 (490.30 ng/L) in comparison to other milks. AFM1 adsorption was influenced by applying bentonite (0.5 and 1 g) in a concentration-dependent manner for different time intervals (from 0 to 12 h). The percentage of AFM1 reached the maximum adsorption level after 12 h to 100, 98.5 and 98% for bentonites HAFR 3, 1 and 2, respectively. HAFR 3 (1 g bentonite) presented higher adsorption efficiency than other bentonites used in the phosphate buffer saline (PBS) and milk. Residual levels of AFM1 reached their lowest values of 0 and 1.5 ng/L while using HAFR 3 in PBS and milk, respectively. With regard to the influence of bentonite on the nutritional characteristics of milk, there was an increase in fat, protein and solid non-fat ratio while using HAFR 3 and 4, yet decreased lactose in comparison with the control. Scanning Electron Microscopy and Fourier Transform-Infrared Spectroscopy both identified bentonites as superior AFM1 binders. The results demonstrated that bentonite, particularly HAFR 3, was the most effective adsorbent and could thus be a promising candidate for the decontamination of AFM1 in milk.
Collapse
|
23
|
Zhernov YV, Simanduyev MY, Zaostrovtseva OK, Semeniako EE, Kolykhalova KI, Fadeeva IA, Kashutina MI, Vysochanskaya SO, Belova EV, Shcherbakov DV, Sukhov VA, Sidorova EA, Mitrokhin OV. Molecular Mechanisms of Scombroid Food Poisoning. Int J Mol Sci 2023; 24:ijms24010809. [PMID: 36614252 PMCID: PMC9821622 DOI: 10.3390/ijms24010809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Scombroid food poisoning (SFP) is a foodborne disease that develops after consumption of fresh fish and, rarely, seafood that has fine organoleptic characteristics but contains a large amount of exogenous histamine. SFP, like other food pseudo-allergic reactions (FPA), is a disorder that is clinically identical to allergic reactions type I, but there are many differences in their pathogenesis. To date, SFP has been widespread throughout the world and is an urgent problem, although exact epidemiological data on incidence varies greatly. The need to distinguish SFP from true IgE-associated allergy to fish and seafood is one of the most difficult examples of the differential diagnosis of allergic conditions. The most important difference is the absence of an IgE response in SFP. The pathogenesis of SFP includes a complex system of interactions between the body and chemical triggers such as exogenous histamine, other biogenic amines, cis-urocanic acid, salicylates, and other histamine liberators. Because of the wide range of molecular pathways involved in this process, it is critical to understand their differences. This may help predict and prevent poor outcomes in patients and contribute to the development of adequate hygienic rules and regulations for seafood product safety. Despite the vast and lengthy history of research on SFP mechanisms, there are still many blank spots in our understanding of this condition. The goals of this review are to differentiate various molecular mechanisms of SFP and describe methods of hygienic regulation of some biogenic amines that influence the concentration of histamine in the human body and play an important role in the mechanism of SFP.
Collapse
Affiliation(s)
- Yury V. Zhernov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Center for Medical Anthropology, N.N. Miklukho-Maclay Institute of Ethnology and Anthropology, Russian Academy of Sciences, 119017 Moscow, Russia
- Department of Medical and Biological Disciplines, Reaviz Medical University, 107564 Moscow, Russia
- Correspondence: ; Tel.: +7-(915)-1552000
| | - Mark Y. Simanduyev
- The Baku Branch, I.M. Sechenov First Moscow State Medical University (Sechenov University), Baku AZ1141, Azerbaijan
| | - Olga K. Zaostrovtseva
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Ekaterina E. Semeniako
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Kseniia I. Kolykhalova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Inna A. Fadeeva
- Department of Foreign Language, Faculty of World Economy, Diplomatic Academy of the Russian Foreign Ministry, 119034 Moscow, Russia
- Department of Public Administration in Foreign Policy, Diplomatic Academy of the Russian Foreign Ministry, 119034 Moscow, Russia
| | - Maria I. Kashutina
- Loginov Moscow Clinical Scientific and Practical Center, 111123 Moscow, Russia
- Department of Public Health Promotion, National Research Centre for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy, Clinical Pharmacology and Emergency Medicine, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Sonya O. Vysochanskaya
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Elena V. Belova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Denis V. Shcherbakov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Vitaly A. Sukhov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Ekaterina A. Sidorova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Oleg V. Mitrokhin
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
24
|
Bunga SJ, Ahmmed MK, Lawley B, Carne A, Bekhit AEDA. Physicochemical, biochemical and microbiological changes of jeotgal-like fermented Chinook salmon (Oncorhynchus tshawytscha) roe. Food Chem 2023; 398:133880. [DOI: 10.1016/j.foodchem.2022.133880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
|
25
|
Altafini A, Roncada P, Guerrini A, Sonfack GM, Accurso D, Caprai E. Development of Histamine in Fresh and Canned Tuna Steaks Stored under Different Experimental Temperature Conditions. Foods 2022; 11:foods11244034. [PMID: 36553776 PMCID: PMC9778485 DOI: 10.3390/foods11244034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Among biogenic amines, histamine is most frequently involved in foodborne intoxication. To evaluate histamine formation in tuna, several storage conditions were reproduced. An LC-MS/MS method was used for analytical determinations. Fresh tuna samples (not contaminated and grafted with tuna muscle naturally incurred with histamine at 6000 mg/kg) were stored at 4, 12, and 20 °C, and daily samples were collected for 6 days. The development of histamine was observed only in grafted tuna samples. At 4 °C, histamine formation progressed from 12.8 mg/kg (day 1) up to 68.2 mg/kg (day 6). At 12 °C, higher concentrations developed (23.9 mg/kg on day 1 up to 2721.3 mg/kg on day 6) relative to 20 °C (from 12.0 to 1681.0 mg/kg). It was found that at 4 °C, if grafted tuna was submerged in oil, histamine formation progressed more slowly. In a naturally contaminated sample, it was observed that the histamine distribution was uniform, while the normal cooking process did not affect the histamine level. Furthermore, it was found that the use of histamine-contaminated equipment for food handling may result in histamine formation in food. These results confirm the importance of implementing good hygiene practices and respecting the cold chain.
Collapse
Affiliation(s)
- Alberto Altafini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia, Italy
| | - Paola Roncada
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia, Italy
- Correspondence:
| | - Alessandro Guerrini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20100 Milan, Italy
| | - Gaetan Minkoumba Sonfack
- Reparto Chimico Degli Alimenti, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Via P. Fiorini 5, 40127 Bologna, Italy
| | - Damiano Accurso
- Reparto Chimico Degli Alimenti, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Via P. Fiorini 5, 40127 Bologna, Italy
| | - Elisabetta Caprai
- Reparto Chimico Degli Alimenti, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Via P. Fiorini 5, 40127 Bologna, Italy
| |
Collapse
|
26
|
Effect of stress factors on the production of biogenic amines by lactic acid bacteria isolated from fermented Mexican foods (cheese and beer). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Histamine Content in Selected Production Stages of Fish Products. J Vet Res 2022; 66:599-604. [PMID: 36846046 PMCID: PMC9945008 DOI: 10.2478/jvetres-2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Histamine intoxication, known as scombroid fish poisoning, is caused by the consumption of foods with high levels of histamine. This biogenic amine is formed as a result of histidine decarboxylation by bacterial decarboxylases present in food, including fish and fish products. The aim of this study was to investigate the content of histamine at different production stages of canned, marinated and smoked fish. Material and Methods Raw fish, semi-finished fish products, and the final products of the same production batches were collected between 2019 and 2022 from different fish production facilities in Poland. A total of 133 raw fish samples and 76 smoked fish, 54 brined fish, 39 canned fish and 18 marinated fish final products were analysed using high performance liquid chromatography with a diode array detector. Results Histamine was identified in 55 (17.2%) out of 320 tested samples, including 8 samples of raw fish with a histamine level above 100 mg/kg. However, no samples of fish products had histamine content above the European Union Commission limit. Conclusion The obtained results show that fish products on the Polish market are generally safe for consumers in regard to histamine intoxication risk.
Collapse
|
28
|
Mollakhalili-Meybodi N, Arab M, Zare L. Harmful compounds of soy milk: characterization and reduction strategies. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3723-3732. [PMID: 36193379 PMCID: PMC9525506 DOI: 10.1007/s13197-021-05249-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 06/16/2023]
Abstract
Soymilk is a plant based product which is a rich source of nutrients. However, various harmful compounds including allergens, anti-nutritional factors, and biogenic amines (BAs) exist in soybeans that may be transferred into soymilk. These compounds cause difficulties for consumers from mild to severe symptoms. Soymilk production is considered as a critical step in quantity of harmful compounds in final product. Common steps in soy milk manufacturing include soaking, grinding, and heating process. Allergens contents could be decreased by heating alone or in combination with structural modifiers and fermentation. BAs could be reduced by optimizing fermentation process and using suitable strains, especially BAs degradable types. Soaking, grinding and heating of soybeans in water are considered as effective methods for inactivation of antinutritional factors. Isoflavones are soy phytochemicals, which potentially leads to breast cancer in some women, can be converted to less bioavailable forms during processing. Other treatments such as high hydrostatic pressure and irradiation are also effective in harmful compounds reduction. Combination of the processes is more effective in harmful compounds removal. Considering the increasing trends in soymilk consumption, this review is focused on introduction of harmful compounds in soymilk and investigating the effects of processing condition on their concentration.
Collapse
Affiliation(s)
- Neda Mollakhalili-Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Arab
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Zare
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
29
|
Fhoula I, Boumaiza M, Tayh G, Rehaiem A, Klibi N, Ouzari I. Antimicrobial activity and safety features assessment of Weissella spp. from environmental sources. Food Sci Nutr 2022; 10:2896-2910. [PMID: 36171785 PMCID: PMC9469857 DOI: 10.1002/fsn3.2885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/06/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Weissella strains have been reported to be useful in biotechnological and probiotic determinations, and some of them are considered opportunistic pathogens. Given the widespread interest about antimicrobial susceptibilities, transmission of resistances, and virulence factors, there is little research available on such topics for Weissella. The aim of this study was to assess the safety aspects and antimicrobial potential of 54 Weissella spp. strains from different environmental sources. Antibiotic susceptibility, hemolytic activity, horizontal transfer, and antibacterial activity were studied, as well as the detection of biogenic amine BA production on decarboxylase medium and PCR was performed. All the strains were nonhemolytic and sensitive to chloramphenicol and ampicillin. Several strains were classified as resistant to fusidic acid, and very low resistance rates were detected to ciprofloxacin, tetracycline, streptomycin, lincomycin, erythromycin, and rifampicin, although all strains had intrinsic resistance to vancomycin, nalidixic acid, kanamycin, and teicoplanin. Two BA-producing strains (W. halotolerans FAS30 and FAS29) exhibited tyrosine decarboxylase activity, and just one W. confusa FS077 produced both tyramine and histamine, and their genetic determinants were identified. Ornithine decarboxylase/odc gene was found in 16 of the Weissella strains, although 3 of them synthesize putrescine. Interestingly, eight strains with good properties displayed antibacterial activity. Conjugation frequencies of erythromycin from Bacillus to Weissella spp. varied in the average of 3 × 10-9 transconjugants/recipient. However, no tetracycline-resistant transconjugant was obtained with Enterococcus faecalis JH2-2 as recipient. The obtained results support the safe status of Weissella strains, derived from environmental sources, when used as probiotics in animal feed.
Collapse
Affiliation(s)
- Imene Fhoula
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Mohamed Boumaiza
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Ghassan Tayh
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
- Service de Microbiologie et d’ImmunologieEcole Nationale de Médecine VétérinaireUniversité ManoubaSidi ThabetTunisia
| | - Amel Rehaiem
- Faculty of Medicine of TunisResearch Laboratory “Antimicrobial Resistance” LR99ES09University of Tunis El ManarTunisTunisia
- Laboratory of MicrobiologyCharles Nicolle HospitalTunisTunisia
| | - Naouel Klibi
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Imene‐Hadda Ouzari
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| |
Collapse
|
30
|
Owolabi IO, Kolawole O, Jantarabut P, Elliott CT, Petchkongkaew A. The importance and mitigation of mycotoxins and plant toxins in Southeast Asian fermented foods. NPJ Sci Food 2022; 6:39. [PMID: 36045143 PMCID: PMC9433409 DOI: 10.1038/s41538-022-00152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Fermented foods (ffs) and beverages are widely consumed in Southeast Asia (SEA) for their nutritional balance, flavor, and food security. They serve as vehicles for beneficial microorganisms performing a significant role in human health. However, there are still major challenges concerning the safety of ffs and beverages due to the presence of natural toxins. In this review, the common toxins found in traditional ffs in SEA are discussed with special reference to mycotoxins and plant toxins. Also, mitigation measures for preventing risks associated with their consumption are outlined. Ochratoxin, citrinin, aflatoxins were reported to be major mycotoxins present in SEA ffs. In addition, soybean-based ff food products were more vulnerable to mycotoxin contaminations. Common plant toxins recorded in ffs include cyanogenic glycosides, oxalates, phytates and saponins. Combined management strategies such as pre-harvest, harvest and post-harvest control and decontamination, through the integration of different control methods such as the use of clean seeds, biological control methods, fermentation, appropriate packaging systems, and controlled processing conditions are needed for the safe consumption of indigenous ffs in SEA.
Collapse
Affiliation(s)
- Iyiola O Owolabi
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland
| | - Phantakan Jantarabut
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Christopher T Elliott
- International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand. .,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand. .,Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland.
| |
Collapse
|
31
|
Negahdary M, Angnes L. An aptasensing platform for detection of heat shock protein 70 kDa (HSP70) using a modified gold electrode with lady fern-like gold (LFG) nanostructure. Talanta 2022; 246:123511. [DOI: 10.1016/j.talanta.2022.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|
32
|
Bulut M, Çelebi Sezer Y, Ceylan MM, Alwazeer D, Koyuncu M. Hydrogen-rich water can reduce the formation of biogenic amines in butter. Food Chem 2022; 384:132613. [DOI: 10.1016/j.foodchem.2022.132613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022]
|
33
|
Dkhar DS, Kumari R, Mahapatra S, Divya, Kumar R, Tripathi T, Chandra P. Antibody-receptor bioengineering and its implications in designing bioelectronic devices. Int J Biol Macromol 2022; 218:225-242. [PMID: 35870626 DOI: 10.1016/j.ijbiomac.2022.07.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Antibodies play a crucial role in the defense mechanism countering pathogens or foreign antigens in eukaryotes. Its potential as an analytical and diagnostic tool has been exploited for over a century. It forms immunocomplexes with a specific antigen, which is the basis of immunoassays and aids in developing potent biosensors. Antibody-based sensors allow for the quick and accurate detection of various analytes. Though classical antibodies have prolonged been used as bioreceptors in biosensors fabrication due to their increased fragility, they have been engineered into more stable fragments with increased exposure of their antigen-binding sites in the recent era. In biosensing, the formats constructed by antibody engineering can enhance the signal since the resistance offered by a conventional antibody is much more than these fragments. Hence, signal amplification can be observed when antibody fragments are utilized as bioreceptors instead of full-length antibodies. We present the first systematic review on engineered antibodies as bioreceptors with the description of their engineering methods. The detection of various target analytes, including small molecules, macromolecules, and cells using antibody-based biosensors, has been discussed. A comparison of the classical polyclonal, monoclonal, and engineered antibodies as bioreceptors to construct highly accurate, sensitive, and specific sensors is also discussed.
Collapse
Affiliation(s)
- Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rahul Kumar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India.
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
34
|
Occurrence of Toxic Biogenic Amines in Various Types of Soft and Hard Cheeses and Their Control by Bacillus polymyxa D05-1. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Egyptian cheeses are considered an important part of the Egyptian diet. This study aimed to examine 60 random samples of different types of commercial cheeses in Egypt, including soft cheeses (Domiati and Tallaga) and hard cheeses (Cheddar and Ras). The samples were subjected to chemical and microbial examination. Biogenic amines (BAs) are nitrogenous compounds found in a variety of foods; their presence is undesirable and related to spoilage, and can result in toxicological effects in humans. Thus, BAs were determined by using a high-performance liquid chromatography (HPLC) analysis. Moreover, the ability of Bacillus polymyxa D05-1 to reduce levels of experimentally added biogenic amines during the manufacturing of Tallaga cheese was investigated. The obtained results revealed variations in the chemical composition between the investigated samples. Furthermore, many cheese samples contained high levels of BAs, including histamine, tyramine and putrescine. Domiati cheese had the highest levels of BAs, followed by Tallaga and Cheddar, whereas Ras cheese had the lowest levels. The existence of yeasts, molds, coliforms and the high levels of BAs in cheese samples indicate the unsanitary conditions in which they were made and stored. Furthermore, addition of B. polymyxa D05-1 during Tallaga cheese manufacturing resulted in a reduction in BA levels.
Collapse
|
35
|
Lee JE, Yun JH, Lee E, Hong SP. Untargeted Metabolomics reveals Doenjang metabolites affected by manufacturing process and microorganisms. Food Res Int 2022; 157:111422. [PMID: 35761668 DOI: 10.1016/j.foodres.2022.111422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
Abstract
Doenjang is a traditional Korean fermented soybean-based food that is now produced industrially as traditional Doenjang and modernized Doenjang, depending on the conditions of the manufacturing process. In this study, the effect of the production process on Doenjang metabolites was analyzed using untargeted capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS). Of the 247 metabolites detected in 19 traditional and three modernized Doenjang samples, the level of 55 metabolites were significantly different between the two production groups. The S-plot of the orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed that nine compounds (tryptamine, 2-phenylethylamine, citrulline, gamma-aminobutyric acid, putrescine, tyramine, 2-aminoisobutyric acid, stachydrine, and N5-ethylglutamine) were highly distributed in the traditional group, and six compounds (arginine, citric acid, choline, cytidine, hypoxanthine, and glucaric acid) were considered distinguishable metabolites of the modernized group. Microbial community analysis indicated that the levels of these metabolites were significantly altered by the presence of Bacillus spp., Enterococcus faecium, Tetragenococcus halophilus, Aspergillus oryzae, Penicillium spp., and Saccharomyces cerevisiae. These findings will give better understanding of the influence of the manufacturing process on Doenjang production in terms of both microbial activity and metabolite profiles.
Collapse
Affiliation(s)
- Jang-Eun Lee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Jeong-Hyun Yun
- Research Group of Traditional Food, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Eunjung Lee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Sang Pil Hong
- Research Group of Traditional Food, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
36
|
Oktariani AF, Ramona Y, Sudaryatma PE, Dewi IAMM, Shetty K. Role of Marine Bacterial Contaminants in Histamine Formation in Seafood Products: A Review. Microorganisms 2022; 10:microorganisms10061197. [PMID: 35744715 PMCID: PMC9227395 DOI: 10.3390/microorganisms10061197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Histamine is a toxic biogenic amine commonly found in seafood products or their derivatives. This metabolite is produced by histamine-producing bacteria (HPB) such as Proteus vulgaris, P. mirabilis, Enterobacter aerogenes, E. cloacae, Serratia fonticola, S. liquefaciens, Citrobacter freundii, C. braakii, Clostridium spp., Raoultella planticola, R. ornithinolytica, Vibrio alginolyticus, V. parahaemolyticus, V. olivaceus, Acinetobacter lowffi, Plesiomonas shigelloides, Pseudomonas putida, P. fluorescens, Aeromonas spp., Photobacterium damselae, P. phosphoreum, P. leiognathi, P. iliopiscarium, P. kishitanii, and P. aquimaris. In this review, the role of these bacteria in histamine production in fish and seafood products with consequences for human food poisoning following consumption are discussed. In addition, methods to control their activity in countering histamine production are proposed.
Collapse
Affiliation(s)
- Adnorita Fandah Oktariani
- Doctoral Study Program of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
- PT. Intimas Surya, Denpasar 80222, Bali, Indonesia
| | - Yan Ramona
- Doctoral Study Program of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
- Integrated Laboratory for Biosciences and Biotechnology, Udayana University, Denpasar 80361, Bali, Indonesia
- Correspondence: (Y.R.); (K.S.); Tel.: +62-85101523213 (Y.R.)
| | | | - Ida Ayu Mirah Meliana Dewi
- School of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Correspondence: (Y.R.); (K.S.); Tel.: +62-85101523213 (Y.R.)
| |
Collapse
|
37
|
Sánchez-Pérez S, Comas-Basté O, Duelo A, Veciana-Nogués MT, Berlanga M, Latorre-Moratalla ML, Vidal-Carou MC. Intestinal Dysbiosis in Patients with Histamine Intolerance. Nutrients 2022; 14:nu14091774. [PMID: 35565742 PMCID: PMC9102523 DOI: 10.3390/nu14091774] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
An underlying cause of histamine intolerance is diamine oxidase (DAO) deficiency, which leads to defective homeostasis and a higher systemic absorption of histamine. Impaired DAO activity may have a genetic, pharmacological or pathological origin. A recent proposal also suggests it can arise from an alteration in the gut microbiota, although only one study has explored this hypothesis to date. A greater abundance of histamine-secreting bacteria in the gut could lead to the development of histamine intolerance. Thus, the aim of this study was to characterize the composition of the intestinal microbiota of patients with histamine intolerance symptoms and compare it with that of healthy individuals. The study was performed by sequencing bacterial 16S rRNA genes (V3-V4 region) and analyzing the data using the EzBioCloud Database. Dysbiosis of the gut microbiota was observed in the histamine intolerance group who, in comparison with the healthy individuals, had a significantly lower proportion of Prevotellaceae, Ruminococcus, Faecalibacterium and Faecablibacterium prausnitzii, which are bacteria related to gut health. They also had a significantly higher abundance of histamine-secreting bacteria, including the genera Staphylococcus and Proteus, several unidentified genera belonging to the family Enterobacteriaceae and the species Clostridium perfringens and Enterococcus faecalis. A greater abundance of histaminogenic bacteria would favor the accumulation of high levels of histamine in the gut, its subsequent absorption in plasma and the appearance of adverse effects, even in individuals without DAO deficiency.
Collapse
Affiliation(s)
- Sònia Sánchez-Pérez
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomía, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (O.C.-B.); (A.D.); (M.T.V.-N.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Oriol Comas-Basté
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomía, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (O.C.-B.); (A.D.); (M.T.V.-N.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Adriana Duelo
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomía, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (O.C.-B.); (A.D.); (M.T.V.-N.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - M. Teresa Veciana-Nogués
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomía, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (O.C.-B.); (A.D.); (M.T.V.-N.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Mercedes Berlanga
- Departament de Biologia, Sanitat i Mediambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| | - M. Luz Latorre-Moratalla
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomía, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (O.C.-B.); (A.D.); (M.T.V.-N.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomía, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.S.-P.); (O.C.-B.); (A.D.); (M.T.V.-N.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
38
|
Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Kari ZA, Nirmal NP, Edinur HA, Ray RR. Engineered Biofilm: Innovative Nextgen Strategy for Quality Enhancement of Fermented Foods. Front Nutr 2022; 9:808630. [PMID: 35479755 PMCID: PMC9036442 DOI: 10.3389/fnut.2022.808630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Microbial communities within fermented food (beers, wines, distillates, meats, fishes, cheeses, breads) products remain within biofilm and are embedded in a complex extracellular polymeric matrix that provides favorable growth conditions to the indwelling species. Biofilm acts as the best ecological niche for the residing microbes by providing food ingredients that interact with the fermenting microorganisms' metabolites to boost their growth. This leads to the alterations in the biochemical and nutritional quality of the fermented food ingredients compared to the initial ingredients in terms of antioxidants, peptides, organoleptic and probiotic properties, and antimicrobial activity. Microbes within the biofilm have altered genetic expression that may lead to novel biochemical pathways influencing their chemical and organoleptic properties related to consumer acceptability. Although microbial biofilms have always been linked to pathogenicity owing to its enhanced antimicrobial resistance, biofilm could be favorable for the production of amino acids like l-proline and L-threonine by engineered bacteria. The unique characteristics of many traditional fermented foods are attributed by the biofilm formed by lactic acid bacteria and yeast and often, multispecies biofilm can be successfully used for repeated-batch fermentation. The present review will shed light on current research related to the role of biofilm in the fermentation process with special reference to the recent applications of NGS/WGS/omics for the improved biofilm forming ability of the genetically engineered and biotechnologically modified microorganisms to bring about the amelioration of the quality of fermented food.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | | | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
39
|
Tan LL, Tan CH, Ng NKJ, Tan YH, Conway PL, Loo SCJ. Potential Probiotic Strains From Milk and Water Kefir Grains in Singapore-Use for Defense Against Enteric Bacterial Pathogens. Front Microbiol 2022; 13:857720. [PMID: 35432232 PMCID: PMC9011154 DOI: 10.3389/fmicb.2022.857720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Kefir grains consist of complex symbiotic mixtures of bacteria and yeasts, and are reported to impart numerous health-boosting properties to milk and water kefir beverages. The objective of this work was to investigate the microbial communities in kefir grains, and explore the possibility of deriving useful probiotic strains from them. A total of 158 microbial strains, representing six fungal and 17 bacterial species, were isolated from milk and water kefir grains collected from a Singapore-based homebrewer. Based on 16S rRNA sequencing, isolated genera included Lactobacillus, Liquorilactobacillus, Lacticaseibacillus, Lentilactobacillus, Leuconostoc, Lactococcus, Acetobacter, Gluconobacter, Oenococcus, Clostridium, Zymomonas, Saccharomyces, Kluyveromyces, Pichia, Lachancea, Candida, and Brettanomyces. To characterize these isolates, a funnel approach, involving numerous phenotypic and genomic screening assays, was applied to identify kefir-derived microbial strains with the highest probiotic potential. Particular focus was placed on examining the pathogen inhibitory properties of kefir isolates toward enteric pathogens which pose a considerable global health burden. Enteric pathogens tested include species of Bacillus, Salmonella, Vibrio, Clostridium, Klebsiella, Escherichia, and Staphylococcus. Well diffusion assays were conducted to determine the propensity of kefir isolates to inhibit growth of enteric pathogens, and a competitive adhesion/exclusion assay was used to determine the ability of kefir isolates to out-compete or exclude attachment of enteric pathogens to Caco-2 cells. Seven bacterial strains of Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Liquorilactobacillus satsumensis, Lactobacillus helveticus, and Lentilactobacillus kefiri, were ultimately identified as potential probiotics, and combined to form a "kefir probiotics blend." Desirable probiotic characteristics, including good survival in acid and bile environments, bile salt hydrolase activity, antioxidant activity, non-cytotoxicity and high adhesion to Caco-2 cells, and a lack of virulence or antimicrobial resistance genes. In addition, vitamin and γ-aminobutyric acid (GABA) synthesis genes, were identified in these kefir isolates. Overall, probiotic candidates derived in this study are well-characterized strains with a good safety profile which can serve as novel agents to combat enteric diseases. These kefir-derived probiotics also add diversity to the existing repertoire of probiotic strains, and may provide consumers with alternative product formats to attain the health benefits of kefir.
Collapse
Affiliation(s)
- Li Ling Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chuan Hao Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Noele Kai Jing Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yoke Hun Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Patricia Lynne Conway
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
40
|
Berthoud H, Wechsler D, Irmler S. Production of Putrescine and Cadaverine by Paucilactobacillus wasatchensis. Front Microbiol 2022; 13:842403. [PMID: 35308356 PMCID: PMC8928434 DOI: 10.3389/fmicb.2022.842403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Lactic acid bacteria (LAB) play a key role in many food fermentations. However, some LAB species can also cause food spoilage, e.g., through the formation of biogenic amines. Paucilactobacillus wasatchensis is a LAB that causes late gas production in Cheddar cheese, the molecular causes of which are not fully understood. This study reports on the ability of P. wasatchensis WDC04 to produce cadaverine and putrescine in broth supplemented with lysine and ornithine, as well as in a model cheese. The raclette-type semi-hard cheese produced with P. wasatchensis as an adjunct culture contained 1,085 mg kg−1 of cadaverine and 304 mg kg−1 of putrescine after 120 days of ripening. We identified two ornithine decarboxylase genes (odc) and a putrescine-ornithine antiporter gene (potE) in the genome sequence of P. wasatchensis. We could show that the two odc genes, which are located on two contigs, are contiguous and form the genetic cluster odc2-odc1-potE. Alignment searches showed that similar gene clusters exist in the genomes of Levilactobacillus paucivorans DSMZ22467, Lentilactobacillus kribbianus YH-lac9, Levilactobacillus hunanensis 151-2B, and Levilactobacillus lindianensis 220-4. More amino acid sequence comparisons showed that Odc1 and Odc2 shared 72 and 69% identity with a lysine and ornithine decarboxylase from Ligilactobacillus saerimneri 30a, respectively. To clarify the catalytic activities of both enzymes, the odc-coding genes were cloned and heterologously expressed as His-tagged fusion protein. The purified Odc1 protein decarboxylated lysine into cadaverine, while the recombinant Odc2 protein preferentially produced putrescine from ornithine but also exhibited low lysine decarboxylating activity. Both enzymes were active at pH of 5.5, a value often found in cheese. To our knowledge, this is only the second lysine decarboxylase in LAB whose function has been verified. The tandem arrangement of the genes in a single cluster suggests a gene duplication, evolving the ability to metabolize more amino. Divergent substrate preferences highlight the necessity of verifying the functions of genes, in addition to automatic annotation based on sequence similarity. Acquiring new biochemical data allows better predictive models and, in this case, more accurate biogenic amine production potential for LAB strains and microbiomes.
Collapse
|
41
|
Schirone M, Esposito L, D’Onofrio F, Visciano P, Martuscelli M, Mastrocola D, Paparella A. Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. Foods 2022; 11:foods11060788. [PMID: 35327210 PMCID: PMC8947279 DOI: 10.3390/foods11060788] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/12/2023] Open
Abstract
Biogenic amines (BAs) can be found in a wide range of meat and meat products, where they are important as an index for product stability and quality, but also for their impact on public health. This review analyzes the scientific evidence gathered so far on the presence and role of biogenic amines in meat and meat products, also considering the effect of technological conditions on BAs accumulation or decrease. The data provided can be useful for developing solutions to control BAs formation during the shelf-life, for example by novel starters for dry cured products, as well as by packaging technologies and materials for fresh meats. Further research, whose trends are reviewed in this paper, will fill the knowledge gaps, and allow us to protect such perishable products along the distribution chain and in the home environment.
Collapse
Affiliation(s)
| | | | | | - Pierina Visciano
- Correspondence: (P.V.); (M.M.); Tel.: +39-0861-266911 (P.V. & M.M.)
| | | | | | | |
Collapse
|
42
|
Wu G, Dou X, Li D, Xu S, Zhang J, Ding Z, Xie J. Recent Progress of Fluorescence Sensors for Histamine in Foods. BIOSENSORS 2022; 12:161. [PMID: 35323431 PMCID: PMC8945960 DOI: 10.3390/bios12030161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 05/03/2023]
Abstract
Biological amines are organic nitrogen compounds that can be produced by the decomposition of spoiled food. As an important biological amine, histamine has played an important role in food safety. Many methods have been used to detect histamine in foods. Compared with traditional analysis methods, fluorescence sensors as an adaptable detection tool for histamine in foods have the advantages of low cost, convenience, less operation, high sensitivity, and good visibility. In terms of food safety, fluorescence sensors have shown great utilization potential. In this review, we will introduce the applications and development of fluorescence sensors in food safety based on various types of materials. The performance and effectiveness of the fluorescence sensors are discussed in detail regarding their structure, luminescence mechanism, and recognition mechanism. This review may contribute to the exploration of the application of fluorescence sensors in food-related work.
Collapse
Affiliation(s)
- Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Shihan Xu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (S.X.); (J.Z.)
| | - Jicheng Zhang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (S.X.); (J.Z.)
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| |
Collapse
|
43
|
Tedner SG, Asarnoj A, Thulin H, Westman M, Konradsen JR, Nilsson C. Food allergy and hypersensitivity reactions in children and adults-A review. J Intern Med 2022; 291:283-302. [PMID: 34875122 DOI: 10.1111/joim.13422] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adverse reactions after food intake are commonly reported and a cause of concern and anxiety that can lead to a very strict diet. The severity of the reaction can vary depending on the type of food and mechanism, and it is not always easy to disentangle different hypersensitivity diagnoses, which sometimes can exist simultaneously. After a carefully taken medical history, hypersensitivity to food can often be ruled out or suspected. The most common type of allergic reaction is immunoglobulin E (IgE)-mediated food allergy (prevalence 5-10%). Symptoms vary from mild itching, stomach pain, and rash to severe anaphylaxis. The definition of IgE-mediated food allergy is allergic symptoms combined with specific IgE-antibodies, and therefore only IgE-antibodies to suspected allergens should be analyzed. Nowadays, methods of molecular allergology can help with the diagnostic process. The most common allergens are milk and egg in infants, peanut and tree nuts in children, and fish and shellfish in adults. In young children, milk/egg allergy has a good chance to remit, making it important to follow up and reintroduce the food when possible. Other diseases triggered by food are non-IgE-mediated food allergy, for example, eosinophilic esophagitis, celiac disease, food protein-induced enterocolitis syndrome, and hypersensitivity to milk and biogenic amines. Some of the food hypersensitivities dominate in childhood, others are more common in adults. Interesting studies are ongoing regarding the possibilities of treating food hypersensitivity, such as through oral immunotherapy. The purpose of this review was to provide an overview of the most common types of food hypersensitivity reactions.
Collapse
Affiliation(s)
- Sandra G Tedner
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Asarnoj
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Thulin
- Allergy and Lung Department, Sachs' Children and Youth Hospital, Stockholm, Sweden.,Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Marit Westman
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Asthma and Allergy Clinic S:t Göran, Stockholm, Sweden
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Nilsson
- Allergy and Lung Department, Sachs' Children and Youth Hospital, Stockholm, Sweden.,Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Marzo CM, Gambini S, Poletti S, Munari F, Assfalg M, Guzzo F. Inhibition of Human Monoamine Oxidases A and B by Specialized Metabolites Present in Fresh Common Fruits and Vegetables. PLANTS 2022; 11:plants11030346. [PMID: 35161329 PMCID: PMC8838583 DOI: 10.3390/plants11030346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Abstract
Diets rich in fruits and vegetables are associated with better psychological wellbeing and cognitive functions, although it is unclear which molecules and mechanisms are involved. One potential explanation is the inhibition of monoamine oxidases (MAOs), which have been linked to several neurological disorders. The present study investigated the ability of kiwifruit to inhibit MAO-A and MAO-B, refining an in vitro assay to avoid confounding effects. Ultra-performance liquid chromatography/mass spectrometry (UPLC-QTOF) and nuclear magnetic resonance spectroscopy (NMR) were used to select individual kiwifruit metabolites for further analysis. Moreover, extracts of other common fruits and vegetables were screened to identify promising candidate inhibitors. Multiple extracts and compounds inhibited both enzymes, and the selective inhibition of MAO-B by the major kiwifruit specialized metabolite D-(−)-quinic acid was observed. These results suggest that fruits and vegetables contain metabolites that inhibit the activity of MAO-A and -B, offering a potential natural option for the treatment of neurological disorders, in which MAOs are involved.
Collapse
|
45
|
MOGHADAM MAM, ANVAR SA, AMINI K, KHANI M. The effect of Lactococcus lactis and Bifidobacterium bifidum probiotics cell free supernatants on the expression of HDC and TDC genes in Staphylococcus strains isolated from milk. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.03221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Narzary Y, Das S, Goyal AK, Lam SS, Sarma H, Sharma D. Fermented fish products in South and Southeast Asian cuisine: indigenous technology processes, nutrient composition, and cultural significance. JOURNAL OF ETHNIC FOODS 2021; 8:33. [DOI: https:/doi.org/10.1186/s42779-021-00109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/30/2021] [Indexed: 09/01/2023]
Abstract
AbstractThe cleaner production of biomass into value-added products via microbial processes adds uniqueness in terms of food quality. The microbe-mediated traditional process for transforming biomass into food is a sustainable practice in Asian food industries. The 18 fermented fish products derived through this process as well as the associated micro-flora and nutritional composition have been focused. This review aims to update the process of green conversion biomass into value-added food products for a more sustainable future. Fish products are classified based on the substrate and source of the enzymes used in fermentation, which includes the three types of technology processing discussed. According to the findings, these fermented fish contain a plethora of beneficial microbiota, making them a valuable source of probiotics that may confer nutritional and health benefits.Bacillus(12 products),Lactobacillus(12 products),Micrococcus(9 products), andStaphylococcus(9 products) were the most common bacterial genera found in 18 fermented fish products. Consuming fermented fish products is beneficial to human health due to their high levels of carbohydrate, protein, fat, and lactic acid. However, biogenic amines, which are produced by certain bacteria as a by-product of their catabolic activity, are a significant potential hazard in traditionally fermented fish.
Collapse
|
47
|
Polak T, Mejaš R, Jamnik P, Kralj Cigić I, Poklar Ulrih N, Cigić B. Accumulation and Transformation of Biogenic Amines and Gamma-Aminobutyric Acid (GABA) in Chickpea Sourdough. Foods 2021; 10:foods10112840. [PMID: 34829121 PMCID: PMC8618307 DOI: 10.3390/foods10112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
In general, sourdough fermentation leads to an improvement in the technological, nutritional, and sensory properties of bakery products. The use of non-conventional flours with a specific autochthonous microbiota may lead to the formation of secondary metabolites, which may even have undesirable physiological and toxicological effects. Chickpea flours from different suppliers have been used to produce sourdoughs by spontaneous and inoculated fermentations. The content of nutritionally undesirable biogenic amines (BA) and beneficial gamma-aminobutyric acid (GABA) was determined by chromatography. Fenugreek sprouts, which are a rich source of amine oxidases, were used to reduce the BA content in the sourdoughs. Spontaneous fermentation resulted in a high accumulation of cadaverine, putrescine, and tyramine for certain flours. The use of commercial starter cultures was not effective in reducing the accumulation of BA in all sourdoughs. The addition of fenugreek sprouts to the suspension of sourdough with pH raised to 6.5 resulted in a significant reduction in BA contents. Enzymatic oxidation was less efficient during kneading. Baking resulted in only a partial degradation of BA and GABA in the crust and not in the crumb. Therefore, it could be suggested to give more importance to the control of sourdough fermentation with regard to the formation of nutritionally undesirable BA and to exploit the possibilities of their degradation.
Collapse
Affiliation(s)
- Tomaž Polak
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Rok Mejaš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Irena Kralj Cigić
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Blaž Cigić
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
- Correspondence: ; Tel.: +386-1-320-37-84; Fax: +386-1-256-57-82
| |
Collapse
|
48
|
Czerwiński M, Bednarska-Czerwińska A, Zmarzły N, Boroń D, Oplawski M, Grabarek BO. Evaluation of the Differences in the Expression of Biogenic Amine-Related mRNAs and Proteins in Endometrioid Endometrial Cancer. J Clin Med 2021; 10:jcm10214872. [PMID: 34768392 PMCID: PMC8584663 DOI: 10.3390/jcm10214872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Biogenic amines, such as adrenaline, noradrenaline, histamine, dopamine, and serotonin are important neurotransmitters that also regulate cell viability. Their detection and analysis are helpful in the diagnosis of many diseases, including cancer. The aim of this study was to determine the expression profile of the biogenic amine-related genes and proteins in endometrioid endometrial cancer compared to the control group. The material consisted of endometrial tissue samples and whole blood collected from 30 endometrioid endometrial cancer patients and 30 cancer-free patients. The gene expression was determined by the mRNA microarrays and validated by qRT-PCR. Protein levels were determined in the serum by the enzyme-linked immunosorbent assay (ELISA). Overexpression of histamine H1–H3 receptors and early growth response 1 and silencing of calmodulin, the histamine H4 receptor, and the dopamine D5 receptor have been reported in endometrioid endometrial cancer. The obtained results indicate disturbances in the signaling activated by histamine and dopamine receptors, which could potentially contribute to the progression of endometrioid endometrial cancer.
Collapse
Affiliation(s)
- Michał Czerwiński
- American Medical Clinic, 40-600 Katowice, Poland
- Gyncentrum Fertility Clinic, 40-121 Katowice, Poland;
- Correspondence:
| | - Anna Bednarska-Czerwińska
- Gyncentrum Fertility Clinic, 40-121 Katowice, Poland;
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (D.B.); (B.O.G.)
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (D.B.); (B.O.G.)
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (D.B.); (B.O.G.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Departament of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Fredry 22, 40-662 Katowice, Poland
| | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (D.B.); (B.O.G.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Departament of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Fredry 22, 40-662 Katowice, Poland
| |
Collapse
|
49
|
Omer AK, Mohammed RR, Ameen PSM, Abas ZA, Ekici K. Presence of Biogenic Amines in Food and Their Public Health Implications: A Review. J Food Prot 2021; 84:1539-1548. [PMID: 34375430 DOI: 10.4315/jfp-21-047] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022]
Abstract
ABSTRACT Essential foods as part of a daily meal may include numerous kinds of biogenic amines (BAs) at various concentrations. BAs have a variety of toxicological effects on human health and have been linked to multiple outbreaks of foodborne disease. BAs also are known to cause cancer based on their ability to react with nitrite salts, resulting in the production of carcinogenic organic compounds (nitrosamines). Ingestion of large quantities of BAs in food causes toxicological effects and health disorders, including psychoactive, vasoactive, and hypertensive effects and respiratory, gastrointestinal, cardiovascular, and neurological disorders. The toxicity of BAs is linked closely to the BAs histamine and tyramine. Other amines, such as phenylethylamine, putrescine, and cadaverine, are important because they can increase the negative effects of histamine. The key method for reducing BA concentrations and thus foodborne illness is management of the bacterial load in foods. Basic good handling and hygiene practices should be used to control the formation of histamine and other BAs and reduce the toxicity histamine and tyramine. A better understanding of BAs is essential to enhance food safety and quality. This review also includes a discussion of the public health implications of BAs in foods. HIGHLIGHTS
Collapse
Affiliation(s)
- Abdullah Khalid Omer
- Smart Health Tower, François Mitterrand Street, Sulaimani, Iraq.,Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rebin Rafaat Mohammed
- Sulaimani Veterinary Directorate, Veterinary Quarantine, Bashmakh International Border, Sulaimani, Iraq
| | - Peshraw S Mohammed Ameen
- Sulaimani Veterinary Directorate, Veterinary Quarantine, Bashmakh International Border, Sulaimani, Iraq
| | - Zaniar Ali Abas
- Sulaimani Veterinary Directorate, Veterinary Quarantine, Bashmakh International Border, Sulaimani, Iraq
| | - Kamil Ekici
- Department of Food Hygiene and Technology, Veterinary College, University of Van Yününcü Yıl, Van, Turkey
| |
Collapse
|
50
|
Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology 2021; 197:108721. [PMID: 34274348 DOI: 10.1016/j.neuropharm.2021.108721] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
For the last 20 years, researchers have focused their intention on the impact of gut microbiota in healthy and pathological conditions. This year (2021), more than 25,000 articles can be retrieved from PubMed with the keywords "gut microbiota and physiology", showing the constant progress and impact of gut microbes in scientific life. As a result, numerous therapeutic perspectives have been proposed to modulate the gut microbiota composition and/or bioactive factors released from microbes to restore our body functions. Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson's, Alzheimer's, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain pathologies. The objective of this review is to describe recent scientific elements that explore the communication between gut microbiota and the brain by focusing our interest on the enteric nervous system (ENS) as an intermediate partner. The ENS, which is known as the "second brain", could be under the direct or indirect influence of the gut microbiota and its released factors (short-chain fatty acids, neurotransmitters, gaseous factors, etc.). Thus, in addition to their actions on tissue (adipose tissue, liver, brain, etc.), microbes can have an impact on local ENS activity. This potential modification of ENS function has global repercussions in the whole body via the gut-brain axis and represents a new therapeutic strategy.
Collapse
|