1
|
Janssen P, De Pauw L, Mambretti M, Lara O, Walckiers J, Mackens L, Rooman I, Guillaume B, De Ridder M, Ates G, Massie A. Characterization of the long-term effects of lethal total body irradiation followed by bone marrow transplantation on the brain of C57BL/6 mice. Int J Radiat Biol 2023; 100:385-398. [PMID: 37976378 DOI: 10.1080/09553002.2023.2283092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Total body irradiation (TBI) followed by bone marrow transplantation (BMT) is used in pre-clinical research to generate mouse chimeras that allow to study the function of a protein specifically on immune cells. Adverse consequences of irradiation on the juvenile body and brain are well described and include general fatigue, neuroinflammation, neurodegeneration and cognitive impairment. Yet, the long-term consequences of TBI/BMT performed on healthy adult mice have been poorly investigated. MATERIAL AND METHODS We developed a robust protocol to achieve near complete bone marrow replacement in mice using 2x550cGy TBI and evaluated the impact of the procedure on their general health, mood disturbances, memory, brain atrophy, neurogenesis, neuroinflammation and blood-brain barrier (BBB) permeability 2 and/or 16 months post-BMT. RESULTS We found a persistent decrease in weight along with long-term impact on locomotion after TBI and BMT. Although the TBI/BMT procedure did not lead to anxiety- or depressive-like behavior 2- or 16-months post-BMT, long-term spatial memory of the irradiated mice was impaired. We also observed radiation-induced impaired neurogenesis and cortical microglia activation 2 months post-BMT. Moreover, higher levels of hippocampal IgG in aged BMT mice suggest an enhanced age-related increase in BBB permeability that could potentially contribute to the observed memory deficit. CONCLUSIONS Overall health of the mice did not seem to be majorly impacted by TBI followed by BMT during adulthood. Yet, TBI-induced alterations in the brain and behavior could lead to erroneous conclusions on the function of a protein on immune cells when comparing mouse chimeras with different genetic backgrounds that might display altered susceptibility to radiation-induced damage. Ultimately, the BMT model we here present could also be used to study the related long-term consequences of TBI and BMT seen in patients.
Collapse
Affiliation(s)
- P Janssen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - L De Pauw
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - M Mambretti
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - O Lara
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - J Walckiers
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - L Mackens
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - I Rooman
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - B Guillaume
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Centre hospitalier de Jolimont, Service de Biochimie Médicale, La Louvière, Belgium
| | - M De Ridder
- Department of Radiotherapy, UZ Brussel, VUB, Brussels, Belgium
| | - G Ates
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - A Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
2
|
Collao N, D'Souza D, Messeiller L, Pilon E, Lloyd J, Larkin J, Ngu M, Cuillerier A, Green AE, Menzies KJ, Burelle Y, De Lisio M. Radiation induces long-term muscle fibrosis and promotes a fibrotic phenotype in fibro-adipogenic progenitors. J Cachexia Sarcopenia Muscle 2023; 14:2335-2349. [PMID: 37671686 PMCID: PMC10570115 DOI: 10.1002/jcsm.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Radiation-induced muscle pathology, characterized by muscle atrophy and fibrotic tissue accumulation, is the most common debilitating late effect of therapeutic radiation exposure particularly in juvenile cancer survivors. In healthy muscle, fibro/adipogenic progenitors (FAPs) are required for muscle maintenance and regeneration, while in muscle pathology FAPs are precursors for exacerbated extracellular matrix deposition. However, the role of FAPs in radiation-induced muscle pathology has not previously been explored. METHODS Four-week-old Male CBA or C57Bl/6J mice received a single dose (16 Gy) of irradiation (IR) to a single hindlimb with the shielded contralateral limb (CLTR) serving as a non-IR control. Mice were sacrificed 3, 7, 14 (acute IR response), and 56 days post-IR (long-term IR response). Changes in skeletal muscle morphology, myofibre composition, muscle niche cellular dynamics, DNA damage, proliferation, mitochondrial respiration, and metabolism and changes in progenitor cell fate where assessed. RESULTS Juvenile radiation exposure resulted in smaller myofibre cross-sectional area, particularly in type I and IIA myofibres (P < 0.05) and reduced the proportion of type I myofibres (P < 0.05). Skeletal muscle fibrosis (P < 0.05) was evident at 56 days post-IR. The IR-limb had fewer endothelial cells (P < 0.05) and fibro-adipogenic progenitors (FAPs) (P < 0.05) at 56 days post-IR. Fewer muscle satellite (stem) cells were detected at 3 and 56 days in the IR-limb (P < 0.05). IR induced FAP senescence (P < 0.05), increased their fibrogenic differentiation (P < 0.01), and promoted their glycolytic metabolism. Further, IR altered the FAP secretome in a manner that impaired muscle satellite (stem) cell differentiation (P < 0.05) and fusion (P < 0.05). CONCLUSIONS Our study suggests that following juvenile radiation exposure, FAPs contribute to long-term skeletal muscle atrophy and fibrosis. These findings provide rationale for investigating FAP-targeted therapies to ameliorate the negative late effects of radiation exposure in skeletal muscle.
Collapse
Affiliation(s)
- Nicolas Collao
- School of Human Kinetics, Faculty of Health ScienceUniversity of OttawaOttawaCanada
- Éric Poulin Centre for Neuromuscular DiseaseUniversity of OttawaOttawaCanada
| | - Donna D'Souza
- School of Human Kinetics, Faculty of Health ScienceUniversity of OttawaOttawaCanada
| | - Laura Messeiller
- School of Human Kinetics, Faculty of Health ScienceUniversity of OttawaOttawaCanada
| | - Evan Pilon
- School of Human Kinetics, Faculty of Health ScienceUniversity of OttawaOttawaCanada
| | - Jessica Lloyd
- School of Human Kinetics, Faculty of Health ScienceUniversity of OttawaOttawaCanada
| | - Jillian Larkin
- School of Human Kinetics, Faculty of Health ScienceUniversity of OttawaOttawaCanada
| | - Matthew Ngu
- School of Human Kinetics, Faculty of Health ScienceUniversity of OttawaOttawaCanada
| | - Alexanne Cuillerier
- Interdisciplinary School of Health SciencesUniversity of OttawaOttawaCanada
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems BiologyUniversity of OttawaOttawaCanada
| | - Alexander E. Green
- Éric Poulin Centre for Neuromuscular DiseaseUniversity of OttawaOttawaCanada
- Interdisciplinary School of Health SciencesUniversity of OttawaOttawaCanada
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems BiologyUniversity of OttawaOttawaCanada
| | - Keir J. Menzies
- Éric Poulin Centre for Neuromuscular DiseaseUniversity of OttawaOttawaCanada
- Interdisciplinary School of Health SciencesUniversity of OttawaOttawaCanada
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems BiologyUniversity of OttawaOttawaCanada
| | - Yan Burelle
- Interdisciplinary School of Health SciencesUniversity of OttawaOttawaCanada
| | - Michael De Lisio
- School of Human Kinetics, Faculty of Health ScienceUniversity of OttawaOttawaCanada
- Éric Poulin Centre for Neuromuscular DiseaseUniversity of OttawaOttawaCanada
- Department of Cellular and Molecular Medicine, Regenerative Medicine ProgramUniversity of OttawaOttawaCanada
| |
Collapse
|
3
|
King SN, Kaissieh N, Haxton C, Shojaei M, Malott L, Devara L, Thompson R, Osman KL, Millward J, Blackburn M, Lever TE. Radiation induced changes in profibrotic markers in the submental muscles and their correlation with tongue movement. PLoS One 2023; 18:e0287044. [PMID: 37352202 PMCID: PMC10289304 DOI: 10.1371/journal.pone.0287044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/29/2023] [Indexed: 06/25/2023] Open
Abstract
Swallowing impairment is a major complication of radiation treatment for oropharyngeal cancers. Developing targeted therapies that improve swallowing outcomes relies on an understanding of the mechanisms that influence motor function after radiation treatment. The purpose of this study was to determine whether there is a correlation between radiation induced changes in tongue movement and structural changes in irradiated submental muscles, as well as assess other possible causes for dysfunction. We hypothesized that a clinically relevant total radiation dose to the submental muscles would result in: a) quantifiable changes in tongue strength and displacement during drinking two months post treatment; and b) a profibrotic response and/or fiber type transition in the irradiated tissue. Sprague-Dawley adult male rats received radiation to the submental muscles at total dose-volumes known to provoke dysphagia in humans. A clinical linear accelerator administered 8 fractions of 8Gy for a total of 64Gy. Comparisons were made to sham-treated rats that received anesthesia only. Swallowing function was assessed using videofluoroscopy and tongue strength was analyzed via force lickometer. TGFβ1 expression was analyzed via ELISA. The amount of total collagen was analyzed by picrosirius red staining. Immunofluorescence was used to assess fiber type composition and size. Significant changes in licking function during drinking were observed at two months post treatment, including a slower lick rate and reduced tongue protrusion during licking. In the mylohyoid muscle, significant increases in TGFβ1 protein expression were found post radiation. Significant increases in the percentage of collagen content were observed in the irradiated geniohyoid muscle. No changes in fiber type expression were observed. Results indicate a profibrotic transition within the irradiated swallowing muscles that contributes to tongue dysfunction post-radiation treatment.
Collapse
Affiliation(s)
- Suzanne N. King
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Nada Kaissieh
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Chandler Haxton
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Marjan Shojaei
- Department of Radiation Oncology, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Luke Malott
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Lekha Devara
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Rebecca Thompson
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Kate L. Osman
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Jessica Millward
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Megan Blackburn
- Department of Radiation Oncology, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Teresa E. Lever
- Department of Otolaryngology—Head and Neck Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| |
Collapse
|
4
|
Wolfram S, Takayesu JSK, Pierce LJ, Jagsi R, Lipps DB. Changes in pectoralis major stiffness and thickness following radiotherapy for breast cancer: A 12-month follow-up case series. Radiother Oncol 2023; 179:109450. [PMID: 36572281 DOI: 10.1016/j.radonc.2022.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Radiotherapy (RT) is a common and often essential treatment for breast cancer, but has been associated with pectoralis major (PM) muscle fibrosis and atrophy. In an initial prospective evaluation, we assessed muscle stiffness and muscle thickness of the sternocostal and clavicular regions of the PM with ultrasound shear wave elastography and B-mode imaging. Changes in PM muscle stiffness and thickness following RT can be detected within the first twelve months of RT completion. These parameters may potentially be useful for screening of patients who would benefit from post-RT physical therapy. Further studies with larger sample sizes that include patients who receive nodal radiation are necessary to confirm these findings.
Collapse
Affiliation(s)
- Susann Wolfram
- School of Kinesiology: University of Michigan, 830 N. University Ave., School of Kinesiology Building 1250, Ann Arbor, MI 48109, USA.
| | - Jamie Seul Ki Takayesu
- Department of Radiation Oncology: University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA.
| | - Lori Jo Pierce
- Department of Radiation Oncology: University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA.
| | - Reshma Jagsi
- Department of Radiation Oncology: University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA.
| | - David Benjamin Lipps
- School of Kinesiology: University of Michigan, 830 N. University Ave., School of Kinesiology Building 1250, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
King SN, Greenwell E, Kaissieh N, Devara L, Carter Z, Fox J, Blackburn M. Acute effects of radiation treatment to submental muscles on burrowing and swallowing behaviors in a rat model. PLoS One 2022; 17:e0268457. [PMID: 35560040 PMCID: PMC9106154 DOI: 10.1371/journal.pone.0268457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Swallowing impairments are a major complication of radiation treatment for oropharyngeal cancers, influencing oral intake and quality of life. The timing and functional consequences of radiation treatment on the swallowing process is not clearly understood. A rodent radiation injury model was used to investigate the onset of oral and pharyngeal dysfunctions in deglutition related to radiation treatment. This study tested the hypothesis that (Wall et al., 2013) alterations in normal biting, licking, and swallowing performance would be measurable following 64Gy of fractionated radiation to the submental muscles; and (Kotz et al., 2004) radiation will affect the animal’s general well-being as measured via burrowing activity. Seven rats received radiation using a clinical linear accelerator given in 8 fractions of 8Gy and another seven animals received sham anesthesia only treatment. Swallowing bolus transit/size was assessed via videofluoroscopy, tongue movement during drinking was measured via an electrical lick sensor, and biting was analyzed from acoustic recordings of a vermicelli pasta test. Burrowing activity was measured by the amount of gravel substrate displaced within a container. Measurements were taken at baseline, during treatment (1–4 weeks), and after completion of treatment (weeks 5 & 6). Decreases in licking frequency and increases in inter-lick interval were observed 5- and 6-weeks post-treatment. Significant decreases in burrowing performance, swallowing frequency, and inter-swallow interval were observed starting the last week of treatment and continuing up to 2-weeks after completion. Results suggest that tongue dysfunction is one of the first treatment related feeding problems to present immediately after the completion of radiation to the submental muscles.
Collapse
Affiliation(s)
- Suzanne N. King
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| | - Evan Greenwell
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Nada Kaissieh
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Lekha Devara
- School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Zachary Carter
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky, United States of America
| | - James Fox
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky, United States of America
| | - Megan Blackburn
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
6
|
Fairman CM, Lønbro S, Cardaci TD, VanderVeen BN, Nilsen TS, Murphy AE. Muscle wasting in cancer: opportunities and challenges for exercise in clinical cancer trials. JCSM RAPID COMMUNICATIONS 2022; 5:52-67. [PMID: 36118249 PMCID: PMC9481195 DOI: 10.1002/rco2.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Low muscle in cancer is associated with an increase in treatment-related toxicities and is a predictor of cancer-related and all-cause mortality. The mechanisms of cancer-related muscle loss are multifactorial, including anorexia, hypogonadism, anaemia, inflammation, malnutrition, and aberrations in skeletal muscle protein turnover and metabolism. METHODS In this narrative review, we summarise relevant literature to (i) review the factors influencing skeletal muscle mass regulation, (ii) provide an overview of how cancer/treatments negatively impact these, (iii) review factors beyond muscle signalling that can impact the ability to participate in and respond to an exercise intervention to counteract muscle loss in cancer, and (iv) provide perspectives on critical areas of future research. RESULTS Despite the well-known benefits of exercise, there remains a paucity of clinical evidence supporting the impact of exercise in cancer-related muscle loss. There are numerous challenges to reversing muscle loss with exercise in clinical cancer settings, ranging from the impact of cancer/treatments on the molecular regulation of muscle mass, to clinical challenges in responsiveness to an exercise intervention. For example, tumour-related/treatment-related factors (e.g. nausea, pain, anaemia, and neutropenia), presence of comorbidities (e.g. diabetes, arthritis, and chronic obstructive pulmonary disease), injuries, disease progression and bone metastases, concomitant medications (e.g., metformin), can negatively affect an individual's ability to exercise safely and limit subsequent adaptation. CONCLUSIONS This review identifies numerous gaps and oppportunities in the area of low muscle and muscle loss in cancer. Collaborative efforts between preclinical and clinical researchers are imperative to both understanding the mechanisms of atrophy, and develop appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Ciaran M. Fairman
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina 29033, USA
- Correspondence to: Ciaran Fairman, Department of Exercise Science, University of South Carolina, Columbia, SC 29033, USA.
| | - Simon Lønbro
- Department of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
| | - Thomas D. Cardaci
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina 29033, USA
| | - Brandon N. VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Tormod S. Nilsen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Angela E. Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
7
|
Yamazaki M, Suzuki T, Hiraga C, Yoshida Y, Baba A, Saitou H, Ogane S, Fujii T, Takano M, Katakura A, Tanaka I, Nomura T, Takano N. Effect of postoperative radiotherapy for free flap volume changing after tongue reconstruction. Oral Radiol 2021; 37:518-523. [PMID: 33184774 DOI: 10.1007/s11282-020-00489-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the effect of postoperative radiotherapy (RT) on temporal volume changes with a cutaneous free flap (CF) and a myocutaneous free flap (MCF). METHODS The subjects were 24 men and 11 women (mean age, 50.5 ± 15.5 years) with tongue or floor of mouth cancer. Twenty-seven cases of CF and eight cases of MCF were selected. The flap volume change of the reconstructed tongue was calculated using computed tomography (CT) images taken immediately and at one year postoperatively using the DICOM image processing software OsiriX®. RESULTS The reduction rate in flap volume at one year postoperatively was 82.0 ± 15% in CF without RT, 70.3 ± 26.1% in CF with RT, 88.5 ± 14.7% in MCF without RT, and 99.5 ± 16% in MCF with RT. The MCF volume was significantly higher compared to the CF volume. Although postoperative RT reduced the CF volume by 30%, there was only a slight reduction in the MCF volume. CONCLUSIONS We evaluated the effect of postoperative RT on volume reduction in 35 cases of the reconstructed tongue with CF and MCF using a computer-assisted volume rendering technique. In this study, the effect of RT on volume reduction was different between the CF and MCF.
Collapse
Affiliation(s)
- Masae Yamazaki
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan
| | - Taiki Suzuki
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan.
- Oral Cancer Center, Tokyo Dental College, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan.
| | - Chiho Hiraga
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan
| | - Yoshifumi Yoshida
- Department of Oral Medicine, Hospital Dentistry, Tokyo Dental College, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan
| | - Akira Baba
- Department of Radiology, The Jikei University School of Medicine and University Hospital, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 1058461, Japan
| | - Hirokazu Saitou
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan
- Oral Cancer Center, Tokyo Dental College, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan
| | - Satoru Ogane
- Oral Cancer Center, Tokyo Dental College, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan
| | - Takako Fujii
- Department of Plastic Surgery, Tokyo Dental College Ichikawa General Hospital, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan
| | - Masayuki Takano
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, 2-9-18, Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Akira Katakura
- Department of Oral Pathological Science and Surgery, Tokyo Dental College, 2-9-18, Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Ichiro Tanaka
- Department of Plastic Surgery, Tokyo Dental College Ichikawa General Hospital, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan
- Oral Cancer Center, Tokyo Dental College, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan
| | - Nobuo Takano
- Oral Cancer Center, Tokyo Dental College, 5-11-13, Sugano, Ichikawa-shi, Chiba, 272-8513, Japan
| |
Collapse
|
8
|
Pu D, Lee VHF, Chan KMK, Yuen MTY, Quon H, Tsang RKY. The Relationships Between Radiation Dosage and Long-term Swallowing Kinematics and Timing in Nasopharyngeal Carcinoma Survivors. Dysphagia 2021; 37:612-621. [PMID: 33909131 PMCID: PMC9072442 DOI: 10.1007/s00455-021-10311-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the relationship between intensity-modulated radiation therapy (IMRT) dosimetry and swallowing kinematic and timing measures. Thirteen kinematic and timing measures of swallowing from videofluoroscopic analysis were used as outcome measures to reflect swallowing function. IMRT dosimetry was accessed for thirteen swallowing-related structures. A cohort of 44 nasopharyngeal carcinoma (NPC) survivors at least 3 years post-IMRT were recruited. The cohort had a mean age of 53.2 ± 11.9 years, 77.3% of whom were male. There was an average of 68.24 ± 14.15 months since end of IMRT; 41 (93.2%) had undergone concurrent chemotherapy. For displacement measures, female sex and higher doses to the cricopharyngeus, glottic larynx, and base of tongue were associated with reduced hyolaryngeal excursion and pharyngeal constriction, and more residue. For timing measures, higher dose to the genioglossus was associated with reduced processing time at all stages of the swallow. The inferior pharyngeal constrictor emerged with a distinctly different pattern of association with mean radiation dosage compared to other structures. Greater changes to swallowing kinematics and timing were observed for pudding thick consistency than thin liquid. Increasing radiation dosage to swallowing-related structures is associated with reduced swallowing kinematics. However, not all structures are affected the same way, therefore organ sparing during treatment planning for IMRT needs to consider function rather than focusing on select muscles. Dose-response relationships should be investigated with a comprehensive set of swallowing structures to capture the holistic process of swallowing.
Collapse
Affiliation(s)
- Dai Pu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Swallowing Research Laboratory, Faculty of Education, The University of Hong Kong, Hong Kong, China.,School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Frankston, Australia
| | - Victor H F Lee
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Karen M K Chan
- Swallowing Research Laboratory, Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Margaret T Y Yuen
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Oncology and Otolaryngology and Head and Neck Surgery, Johns Hopkins University, Baltimore, USA
| | - Raymond K Y Tsang
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,Department of Surgery and Department of ENT, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China.
| |
Collapse
|
9
|
Anderson J, Belafsky P, Clayton S, Archard J, Pavlic J, Rao S, Farwell DG, Kuhn M, Deng P, Halmai J, Bauer G, Fink K, Fury B, Perotti N, Walker J, Beliveau A, Birkeland A, Abouyared M, Cary W, Nolta J. Model of radiation-induced ambulatory dysfunction. JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/jmedsci.jmedsci_259_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Chemoradiation impairs myofiber hypertrophic growth in a pediatric tumor model. Sci Rep 2020; 10:19501. [PMID: 33177579 PMCID: PMC7659015 DOI: 10.1038/s41598-020-75913-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
Pediatric cancer treatment often involves chemotherapy and radiation, where off-target effects can include skeletal muscle decline. The effect of such treatments on juvenile skeletal muscle growth has yet to be investigated. We employed a small animal irradiator to administer fractionated hindlimb irradiation to juvenile mice bearing implanted rhabdomyosarcoma (RMS) tumors. Hindlimb-targeted irradiation (3 × 8.2 Gy) of 4-week-old mice successfully eliminated RMS tumors implanted one week prior. After establishment of this preclinical model, a cohort of tumor-bearing mice were injected with the chemotherapeutic drug, vincristine, alone or in combination with fractionated irradiation (5 × 4.8 Gy). Single myofiber analysis of fast-contracting extensor digitorum longus (EDL) and slow-contracting soleus (SOL) muscles was conducted 3 weeks post-treatment. Although a reduction in myofiber size was apparent, EDL and SOL myonuclear number were differentially affected by juvenile irradiation and/or vincristine treatment. In contrast, a decrease in myonuclear domain (myofiber volume/myonucleus) was observed regardless of muscle or treatment. Thus, inhibition of myofiber hypertrophic growth is a consistent feature of pediatric cancer treatment.
Collapse
|
11
|
King SN, Al-Quran Z, Hurley J, Wang B, Dunlap N. Cytokine and Growth Factor Response in a Rat Model of Radiation Induced Injury to the Submental Muscles. Dysphagia 2020; 36:457-464. [PMID: 32734547 DOI: 10.1007/s00455-020-10162-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Submental muscles (i.e., mylohyoid and geniohyoid) play a vital role during swallowing, protecting the airway from ingested material. To design therapies to reduce the functional deficits associated with radiation treatment relies in part on our understanding of the changes in the cytokine and growth factor response that can impact muscle function. The purpose of this study is to quantify changes in the inflammatory, pro-fibrotic, and pro-angiogenic factors following 48 Gy of fractionated radiation to the mylohyoid muscle. We hypothesized that (1) irradiation will provoke increases in TGF-1β and MMP-2 mRNA in the mylohyoid muscle; and (2) muscles surrounding the target location (i.e., geniohyoid and digastric muscles) will exhibit similar alterations in their gene expression profiles. Rats were exposed to 6 fractions of 8 Gy using a 6 MeV electron beam on a clinical linear accelerator. The highest dose curve was focused at the mylohyoid muscle. After 2- and 4-weeks post-radiation, the mylohyoid, geniohyoid, and digastric muscles were harvested. Expression of TNF-α, IFNγ, IL-1β, IL-6, TGF-1β, VEGF, MMP-2, and MMP-9 mRNA was analyzed via PCR and/or RT-PCR. TGF-1β, MMP-2, and IL-6 expression was upregulated in the irradiated mylohyoid compared to non-irradiated controls. No notable changes in TNF-α, IFNγ, and IL-1β mRNA expression were observed in irradiated muscles. Differing expression profiles were found in the surrounding muscles post-radiation. Results demonstrated that irradiation provokes molecular signals involved in the regulation of wound healing, which could lead to fibrosis or atrophy in the swallowing muscle after radiation.
Collapse
Affiliation(s)
- Suzanne N King
- Department of Otolaryngology - Head and Neck Surgery and Communicative Disorders, University of Louisville, Louisville, KY, USA.
| | - Zakariyya Al-Quran
- Department of Otolaryngology - Head and Neck Surgery and Communicative Disorders, University of Louisville, Louisville, KY, USA
| | | | - Brian Wang
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Neal Dunlap
- Department of Radiation Oncology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
12
|
Amorim NML, Kee A, Coster ACF, Lucas C, Bould S, Daniel S, Weir JM, Mellett NA, Barbour J, Meikle PJ, Cohn RJ, Turner N, Hardeman EC, Simar D. Irradiation impairs mitochondrial function and skeletal muscle oxidative capacity: significance for metabolic complications in cancer survivors. Metabolism 2020; 103:154025. [PMID: 31765667 DOI: 10.1016/j.metabol.2019.154025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Metabolic complications are highly prevalent in cancer survivors treated with irradiation but the underlying mechanisms remain unknown. METHODS Chow or high fat-fed C57Bl/6J mice were irradiated (6Gy) before investigating the impact on whole-body or skeletal muscle metabolism and profiling their lipidomic signature. Using a transgenic mouse model (Tg:Pax7-nGFP), we isolated muscle progenitor cells (satellite cells) and characterised their metabolic functions. We recruited childhood cancer survivors, grouped them based on the use of total body irradiation during their treatment and established their lipidomic profile. RESULTS In mice, irradiation delayed body weight gain and impaired fat pads and muscle weights. These changes were associated with impaired whole-body fat oxidation in chow-fed mice and altered ex vivo skeletal muscle fatty acid oxidation, potentially due to a reduction in oxidative fibres and reduced mitochondrial enzyme activity. Irradiation led to fasting hyperglycaemia and impaired glucose uptake in isolated skeletal muscles. Cultured satellite cells from irradiated mice showed decreased fatty acid oxidation and reduced glucose uptake, recapitulating the host metabolic phenotype. Irradiation resulted in a remodelling of lipid species in skeletal muscles, with the extensor digitorum longus muscle being particularly affected. A large number of lipid species were reduced, with several of these species showing a positive correlation with mitochondrial enzymes activity. In cancer survivors exposed to irradiation, we found a similar decrease in systemic levels of most lipid species, and lipid species that increased were positively correlated with insulin resistance (HOMA-IR). CONCLUSION Irradiation leads to long-term alterations in body composition, and lipid and carbohydrate metabolism in skeletal muscle, and affects muscle progenitor cells. Such changes result in persistent impairment of metabolic functions, providing a new mechanism for the increased prevalence of metabolic diseases reported in irradiated individuals. In this context, changes in the lipidomic signature in response to irradiation could be of diagnostic value.
Collapse
Affiliation(s)
- Nadia M L Amorim
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Anthony Kee
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Adelle C F Coster
- School of Mathematics and Statistics, UNSW Sydney, Sydney, Australia
| | - Christine Lucas
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sarah Bould
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sara Daniel
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Jacquelyn M Weir
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Natalie A Mellett
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Jayne Barbour
- Mitochondrial Bioenergetics Lab, Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Richard J Cohn
- School of Women's and Children's Health, UNSW Sydney, Randwick, Australia; Kids Cancer Centre, Sydney Children's Hospital Network, Randwick, Australia
| | - Nigel Turner
- Mitochondrial Bioenergetics Lab, Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia.
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
13
|
Lee D, Seo Y, Kim YW, Kim S, Bae H, Choi J, Lim I, Bang H, Kim JH, Ko JH. Far-infrared radiation stimulates platelet-derived growth factor mediated skeletal muscle cell migration through extracellular matrix-integrin signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:141-150. [PMID: 30820158 PMCID: PMC6384197 DOI: 10.4196/kjpp.2019.23.2.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
Despite increased evidence of bio-activity following far-infrared (FIR) radiation, susceptibility of cell signaling to FIR radiation-induced homeostasis is poorly understood. To observe the effects of FIR radiation, FIR-radiated materials-coated fabric was put on experimental rats or applied to L6 cells, and microarray analysis, quantitative real-time polymerase chain reaction, and wound healing assays were performed. Microarray analysis revealed that messenger RNA expressions of rat muscle were stimulated by FIR radiation in a dose-dependent manner in amount of 10% and 30% materials-coated. In 30% group, 1,473 differentially expressed genes were identified (fold change [FC] > 1.5), and 218 genes were significantly regulated (FC > 1.5 and p < 0.05). Microarray analysis showed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and cell migration-related pathways were significantly stimulated in rat muscle. ECM and platelet-derived growth factor (PDGF)-mediated cell migration-related genes were increased. And, results showed that the relative gene expression of actin beta was increased. FIR radiation also stimulated actin subunit and actin-related genes. We observed that wound healing was certainly promoted by FIR radiation over 48 h in L6 cells. Therefore, we suggest that FIR radiation can penetrate the body and stimulate PDGF-mediated cell migration through ECM-integrin signaling in rats.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Yelim Seo
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Young-Won Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Seongtae Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyemi Bae
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jeongyoon Choi
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Inja Lim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyoweon Bang
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jung-Ha Kim
- Department of Family Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Jae-Hong Ko
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|
14
|
Counts BR, Fix DK, Hetzler KL, Carson JA. The Effect of Estradiol Administration on Muscle Mass Loss and Cachexia Progression in Female Apc Min/+ Mice. Front Endocrinol (Lausanne) 2019; 10:720. [PMID: 31736871 PMCID: PMC6838005 DOI: 10.3389/fendo.2019.00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia is a multifactorial muscle wasting condition characterized by severe body weight and muscle mass loss which is secondary to chronic disease. The mechanistic examination of cachexia has predominately focused on the male phenotype and created significant gaps in understanding cachexia progression in the female. Female hypogonadism can accompany cancer cachexia and is characterized by reduced circulating 17ß-estradiol and uterine atrophy. Estrogen has known functions in skeletal muscle homeostasis involving the regulation of muscle protein turnover, cellular stressors, and oxidative metabolism. However, 17ß-estradiol's ability to regulate cachexia progression in the female is not known. The purpose of this study was to determine the effect of gonadal function and estradiol administration on muscle mass loss and cachexia progression in female Apc Min/+ mice. Methods: Female C57BL/6 (B6; N = 82) and Apc Min/+ (MIN; N = 88) mice were used in two separate experiments. In experiment 1, mice were sacrificed at either 12 (N = 20) or 20 (N = 41) weeks of age. Body weight and estrous cycle presence was determined weekly. In experiment 2, B6 and MIN mice were randomly allocated to: Control (N = 17), received E2 pellet (E2, N = 18), ovariectomy surgery (OVX; N = 19) or ovariectomy surgery with E2 pellet (OVX + E2; N = 21). 17ß-estradiol was administered through an implanted slow-releasing pellet (0.1 mg). In estrogen and ovariectomy experiments, food intake, and functional outcomes were recorded 1 week prior to sacrifice. Results: We report that E2 administration prevented body weight loss, muscle mass loss, cage inactivity, and grip strength loss associated with cachexia. In skeletal muscle, E2 reduced skeletal muscle AMPK phosphorylation, improved mTORC1 signaling, and prevented mitochondrial dysfunction. Conclusion: Our results demonstrate a role for 17ß-estradiol for the prevention of skeletal muscle mass loss in female tumor bearing mice. Furthermore, 17ß-estradiol prevented cachexia's disruption in skeletal muscle signaling involving AMPK and mTORC1, in addition to improving mitochondrial function in female tumor bearing mice.
Collapse
Affiliation(s)
- Brittany R. Counts
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dennis K. Fix
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States
| | - Kimbell L. Hetzler
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: James A. Carson
| |
Collapse
|
15
|
Hardee JP, Counts BR, Gao S, VanderVeen BN, Fix DK, Koh HJ, Carson JA. Inflammatory signalling regulates eccentric contraction-induced protein synthesis in cachectic skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:369-383. [PMID: 29215198 PMCID: PMC5879978 DOI: 10.1002/jcsm.12271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/04/2017] [Accepted: 10/24/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Skeletal muscle responds to eccentric contractions (ECC) with an anabolic response that involves the induction of protein synthesis through the mechanistic target of rapamycin complex 1. While we have reported that repeated ECC bouts after cachexia initiation attenuated muscle mass loss and inflammatory signalling, cachectic muscle's capacity to induce protein synthesis in response to ECC has not been determined. Therefore, we examined cachectic muscle's ability to induce mechano-sensitive pathways and protein synthesis in response to an anabolic stimulus involving ECC and determined the role of muscle signal transducer and activator of transcription 3 (STAT3)/nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signalling on ECC-induced anabolic signalling. METHODS Mechano-sensitive pathways and anabolic signalling were examined immediately post or 3 h after a single ECC bout in cachectic male ApcMin/+ mice (n = 17; 16 ± 1% body weight loss). Muscle STAT3/NFκB regulation of basal and ECC-induced anabolic signalling was also examined in an additional cohort of ApcMin/+ mice (n = 10; 16 ± 1% body weight loss) that received pyrrolidine dithiocarbamate 24 h prior to a single ECC bout. In all experiments, the left tibialis anterior performed ECC while the right tibialis anterior served as intra-animal control. Data were analysed by Student's t-test or two-way repeated measures analysis of variance with Student-Newman-Keuls post-hoc when appropriate. The accepted level of significance was set at P < 0.05 for all analysis. RESULTS ApcMin/+ mice exhibited a cachectic muscle signature demonstrated by perturbed proteostasis (Ribosomal Protein S6 (RPS6), P70S6K, Atrogin-1, and Muscle RING-finger protein-1 (MuRF1)), metabolic (adenosine monophosphate-activated protein kinase, Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and Cytochrome c oxidase subunit IV (COXIV)), and inflammatory (STAT3, NFκB, extracellular signal-regulated kinases 1 and 2, and P38) signalling pathway regulation. Nonetheless, mechano-sensitive signalling pathways (P38, extracellular signal-regulated kinases 1 and 2, and Protein kinase B (AKT)) were activated immediately post-ECC irrespective of cachexia. While cachexia did not attenuate ECC-induced P70S6K activation, the protein synthesis induction remained suppressed compared with healthy controls. However, muscle STAT3/NFκB inhibition increased basal and ECC-induced protein synthesis in cachectic ApcMin/+ mice. CONCLUSIONS These studies demonstrate that mechano-sensitive signalling is maintained in cachectic skeletal muscle, but chronic STAT3/NFκB signalling serves to attenuate basal and ECC-induced protein synthesis.
Collapse
Affiliation(s)
- Justin P Hardee
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA
| | - Brittany R Counts
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA
| | - Song Gao
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA
| | - Brandon N VanderVeen
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA
| | - Dennis K Fix
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA
| | - Ho-Jin Koh
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA
| | - James A Carson
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
16
|
Kneppers A, Verdijk L, de Theije C, Corten M, Gielen E, van Loon L, Schols A, Langen R. A novel in vitro model for the assessment of postnatal myonuclear accretion. Skelet Muscle 2018; 8:4. [PMID: 29444710 PMCID: PMC5813369 DOI: 10.1186/s13395-018-0151-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/26/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Due to the post-mitotic nature of myonuclei, postnatal myogenesis is essential for skeletal muscle growth, repair, and regeneration. This process is facilitated by satellite cells through proliferation, differentiation, and subsequent fusion with a pre-existing muscle fiber (i.e., myonuclear accretion). Current knowledge of myogenesis is primarily based on the in vitro formation of syncytia from myoblasts, which represents aspects of developmental myogenesis, but may incompletely portray postnatal myogenesis. Therefore, we aimed to develop an in vitro model that better reflects postnatal myogenesis, to study the cell intrinsic and extrinsic processes and signaling involved in the regulation of postnatal myogenesis. METHODS Proliferating C2C12 myoblasts were trypsinized and co-cultured for 3 days with 5 days differentiated C2C12 myotubes. Postnatal myonuclear accretion was visually assessed by live cell time-lapse imaging and cell tracing by cell labeling with Vybrant® DiD and DiO. Furthermore, a Cre/LoxP-based cell system was developed to semi-quantitatively assess in vitro postnatal myonuclear accretion by the conditional expression of luciferase upon myoblast-myotube fusion. Luciferase activity was assessed luminometrically and corrected for total protein content. RESULTS Live cell time-lapse imaging, staining-based cell tracing, and recombination-dependent luciferase activity, showed the occurrence of postnatal myonuclear accretion in vitro. Treatment of co-cultures with the myogenic factor IGF-I (p < 0.001) and the cytokines IL-13 (p < 0.05) and IL-4 (p < 0.001) increased postnatal myonuclear accretion, while the myogenic inhibitors cytochalasin D (p < 0.001), myostatin (p < 0.05), and TNFα (p < 0.001) decreased postnatal myonuclear accretion. Furthermore, postnatal myonuclear accretion was increased upon recovery from electrical pulse stimulation-induced fiber damage (p < 0.001) and LY29004-induced atrophy (p < 0.001). Moreover, cell type-specific siRNA-mediated knockdown of myomaker in myoblasts (p < 0.001), but not in myotubes, decreased postnatal myonuclear accretion. CONCLUSIONS We developed a physiologically relevant, sensitive, high-throughput cell system for semi-quantitative assessment of in vitro postnatal myonuclear accretion, which can be used to mimic physiological myogenesis triggers, and can distinguish the cell type-specific roles of signals and responses in the regulation of postnatal myogenesis. As such, this method is suitable for both basal and translational research on the regulation of postnatal myogenesis, and will improve our understanding of muscle pathologies that result from impaired satellite cell number or function.
Collapse
Affiliation(s)
- Anita Kneppers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Lex Verdijk
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Chiel de Theije
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mark Corten
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ellis Gielen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc van Loon
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Annemie Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ramon Langen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
17
|
Narsale AA, Puppa MJ, Hardee JP, VanderVeen BN, Enos RT, Murphy EA, Carson JA. Short-term pyrrolidine dithiocarbamate administration attenuates cachexia-induced alterations to muscle and liver in ApcMin/+ mice. Oncotarget 2018; 7:59482-59502. [PMID: 27449092 PMCID: PMC5312326 DOI: 10.18632/oncotarget.10699] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/09/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer cachexia is a complex wasting condition characterized by chronic inflammation, disrupted energy metabolism, and severe muscle wasting. While evidence in pre-clinical cancer cachexia models have determined that different systemic inflammatory inhibitors can attenuate several characteristics of cachexia, there is a limited understanding of their effects after cachexia has developed, and whether short-term administration is sufficient to reverse cachexia-induced signaling in distinctive target tissues. Pyrrolidine dithiocarbamate (PDTC) is a thiol compound having anti-inflammatory and antioxidant properties which can inhibit STAT3 and nuclear factor κB (NF-κB) signaling in mice. This study examined the effect of short-term PDTC administration to ApcMin/+ mice on cachexia-induced disruption of skeletal muscle protein turnover and liver metabolic function. At 16 weeks of age ApcMin/+ mice initiating cachexia (7% BW loss) were administered PDTC (10mg/kg bw/d) for 2 weeks. Control ApcMin/+ mice continued to lose body weight during the treatment period, while mice receiving PDTC had no further body weight decrease. PDTC had no effect on either intestinal tumor burden or circulating IL-6. In muscle, PDTC rescued signaling disrupting protein turnover regulation. PDTC suppressed the cachexia induction of STAT3, increased mTORC1 signaling and protein synthesis, and suppressed the induction of Atrogin-1 protein expression. Related to cachectic liver metabolic function, PDTC treatment attenuated glycogen and lipid content depletion independent to the activation of STAT3 and mTORC1 signaling. Overall, these results demonstrate short-term PDTC treatment to cachectic mice attenuated cancer-induced disruptions to muscle and liver signaling, and these changes were independent to altered tumor burden and circulating IL-6.
Collapse
Affiliation(s)
- Aditi A Narsale
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | - Melissa J Puppa
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | - Justin P Hardee
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | - Brandon N VanderVeen
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | - Reilly T Enos
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - James A Carson
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
18
|
Patsalos A, Pap A, Varga T, Trencsenyi G, Contreras GA, Garai I, Papp Z, Dezso B, Pintye E, Nagy L. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury. J Physiol 2017; 595:5815-5842. [PMID: 28714082 DOI: 10.1113/jp274361] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. ABSTRACT Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6Chigh ) to a repair (Ly6Clow ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics.
Collapse
Affiliation(s)
- Andreas Patsalos
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Tamas Varga
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | | | - Gerardo Alvarado Contreras
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Zoltan Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Dezso
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Pintye
- Department of Radiotherapy, Institute of Oncology, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary.,MTA-DE 'Lendület' Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary.,Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| |
Collapse
|
19
|
Mikhaeil JS, Sacco SM, Saint C, Gittings W, Bunda J, Giles CR, Fajardo VA, Vandenboom R, Ward WE, LeBlanc PJ. Influence of longitudinal radiation exposure from microcomputed tomography scanning on skeletal muscle function and metabolic activity in female CD-1 mice. Physiol Rep 2017; 5:5/13/e13338. [PMID: 28676556 PMCID: PMC5506525 DOI: 10.14814/phy2.13338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 01/15/2023] Open
Abstract
Microcomputed tomography (μCT) is an imaging technology to assess bone microarchitecture, a determinant of bone strength. When measured in vivo, μCT exposes the skeletal site of interest to a dose of radiation, in addition to nearby skeletal muscles as well. Therefore, the aim of this study was to determine the effects of repeated radiation exposure from in vivo μCT on muscle health – specifically, muscle morphometrics, contractile function, and enzyme activity. This study exposed the right hind limb of female mice to either a low (26 cGy) or moderate (46 cGy) dose, at 2, 4, and 6 months of age, while the left hind limb of the same animal was exposed to a single dose at 6 months to serve as a nonirradiated control. Muscle weight, cross‐sectional area, isometric contractile function, and representative maximal enzyme activities of amino acid, fatty acid, glucose, and oxidative metabolism in extensor digitorum longus (EDL) and soleus were assessed. Low‐dose radiation had no effect. In contrast, moderate‐dose radiation resulted in a 5% increase in time‐to‐peak tension and 16% increase in half‐relaxation time of isometric twitches in EDL, although these changes were not seen when normalized to force. Moderate‐dose radiation also resulted in an ~33% decrease in citrate synthase activity in soleus but not EDL, with no changes to the other enzymes measured. Thus, three low doses of radiation over 6 months had no effect on contractile function or metabolic enzyme activity in soleus and EDL of female mice. In contrast, three moderate doses of radiation over 6 months induced some effects on metabolic enzyme activity in soleus but not EDL. Future studies that wish to investigate muscle tissue that is adjacent to scanned bone should take radiation exposure dose into consideration.
Collapse
Affiliation(s)
- John S Mikhaeil
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Sandra M Sacco
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Caitlin Saint
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - William Gittings
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Jordan Bunda
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Cameron R Giles
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Val A Fajardo
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Rene Vandenboom
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Wendy E Ward
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Paul J LeBlanc
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada .,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| |
Collapse
|
20
|
Fix DK, Hardee JP, Bateman TA, Carson JA. Effect of irradiation on Akt signaling in atrophying skeletal muscle. J Appl Physiol (1985) 2016; 121:917-924. [PMID: 27562841 DOI: 10.1152/japplphysiol.00218.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Muscle irradiation (IRR) exposure can accompany unloading during spaceflight or cancer treatment, and this has been shown to be sufficient by itself to induce skeletal muscle signaling associated with a remodeling response. Although protein kinase B/Akt has an established role in the regulation of muscle growth and metabolism, there is a limited understanding of how Akt signaling in unloaded skeletal muscle is affected by IRR. Therefore, we examined the combined effects of acute IRR and short-term unloading on muscle Akt signaling. Female C57BL/6 mice were subjected to load bearing or hindlimb suspension (HS) for 5 days (n = 6/group). A single, unilateral hindlimb IRR dose (0.5 Gy X-ray) was administered on day 3 Gastrocnemius muscle protein expression was examined. HS resulted in decreased AktT308 phosphorylation, whereas HS+IRR resulted in increased AktT308 phosphorylation above baseline. HS resulted in reduced AktS473 phosphorylation, which was rescued by HS+IRR. Interestingly, IRR alone resulted in increased phosphorylation of AktS473, but not that of AktT308 HS resulted in decreased mTORC1 signaling, and this suppression was not altered by IRR. Both IRR and HS resulted in increased MuRF-1 expression, whereas atrogin-1 expression was not affected by either condition. These results demonstrate that either IRR alone or when combined with HS can differentially affect Akt phosphorylation, but IRR did not disrupt suppressed mTORC1 signaling by HS. Collectively, these findings highlight that a single IRR dose is sufficient to disrupt the regulation of Akt signaling in atrophying skeletal muscle.
Collapse
Affiliation(s)
- Dennis K Fix
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Ted A Bateman
- Departments of Biomedical Engineering and Radiation Oncology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - James A Carson
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| |
Collapse
|
21
|
Renner M, Feng R, Springer D, Chen MK, Ntamack A, Espina A, Saligan LN. A murine model of peripheral irradiation-induced fatigue. Behav Brain Res 2016; 307:218-26. [PMID: 27012391 PMCID: PMC4853268 DOI: 10.1016/j.bbr.2016.03.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Fatigue is the most ubiquitous side effect of cancer treatment, but its etiology remains elusive. Further investigations into cancer-related fatigue pathobiology necessitate the expanded use of animal models. This study describes the development of a murine model of radiation-induced fatigue. METHODS Voluntary wheel running activity measured fatigue in 5-8 week-old, male C57BL/6 mice before and after γ irradiation totaling 2400cGy (3 consecutive days×800cGy daily fractionated doses) to the lower abdominal areas. Three trials confirmed fatigue behavior at this dose. Anhedonia, body weight, and hemoglobin were also measured. Gastrointestinal, skeletal muscle, and bone marrow tissue samples were evaluated for signs of damage. RESULTS In two validation trials, irradiated mice (trial 1, n=8; trial 2, n=8) covered less cumulative distance in kilometers post-irradiation (trial 1, mean=115.3±12.3; trial 2, mean=113.6±21.8) than sham controls (trial 1, n=5, mean=126.3±5.7, p=0.05; trial 2, n=8, mean=140.9±25.4, p=0.02). Decreased mean daily running distance and speed were observed during the last four hours of the dark cycle in irradiated mice compared to controls for two weeks post-irradiation. There were no differences in saccharin preference or hemoglobin levels between groups, no effect of changes in body weight or hemoglobin on wheel running distance, additionally, histology showed no damage to muscle, bone marrow, or gastrointestinal integrity, with the latter confirmed by ELISA. CONCLUSION We characterized a novel mouse model of fatigue caused by peripheral radiation and not associated with anemia, weight changes, or anhedonia. This model provides opportunities for detailed study of the mechanisms of radiation-induced fatigue.
Collapse
Affiliation(s)
- Michael Renner
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Rebekah Feng
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Danielle Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Mei-Kuang Chen
- Department of Psychology, University of Arizona, United States
| | - Andre Ntamack
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alexandra Espina
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Leorey N Saligan
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
22
|
King SN, Dunlap NE, Tennant PA, Pitts T. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer. Dysphagia 2016; 31:339-51. [PMID: 27098922 PMCID: PMC5340192 DOI: 10.1007/s00455-016-9710-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/08/2016] [Indexed: 11/25/2022]
Abstract
Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia comprised a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration.
Collapse
Affiliation(s)
- Suzanne N King
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St MDR 616, Louisville, KY, 40202, USA
| | - Neal E Dunlap
- Department of Radiation Oncology, University of Louisville, Louisville, USA
| | - Paul A Tennant
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville, Louisville, USA
| | - Teresa Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St MDR 616, Louisville, KY, 40202, USA.
| |
Collapse
|
23
|
Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations. Sci Rep 2016; 6:26202. [PMID: 27197761 PMCID: PMC4873756 DOI: 10.1038/srep26202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/28/2016] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1−/− animals. Pus1−/− mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1−/− mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1−/− mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1−/− mice.
Collapse
|
24
|
Hsieh CH, Lin YC, Chen YJ, Wu HD, Wang LY. Diaphragm contractile dysfunction causes by off-target low-dose irradiation. Am J Transl Res 2016; 8:1510-1517. [PMID: 27186277 PMCID: PMC4859636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Diaphragm is a primary inspiratory muscle and often receives off-target dose in patients with thoracic radiotherapy, and whether acute effect of low dose irradiation would cause contractile dysfunction of the diaphragm remains unclear. We use a rat model to investigate the effect of low-dose irradiation on diaphragm contractile function in the current study. METHODS The radiation dose distributions in patients with esophageal cancer receiving radiotherapy were calculated to determine the dose received by the off-target diaphragm area. Rats were randomly assigned to an irradiated or a non-irradiated control group (n = 10 per group). A single-fraction of 5 Gy radiation was then delivered to the diaphragms of Sprague-Dawley rats in the irradiated group. The control group received sham irradiation (0 Gy). Rats were sacrificed 24 hours after the irradiation procedures and diaphragms were removed en bloc for contractile function assessment, oxidative injury and DNA damage analysis. Oxidative injury was determined by analyzing concentration of protein carbonyls and DNA damage was determined by analyzing retention of γH2AX foci in nuclei of diaphragmatic tissue. RESULTS At 24 hours after delivery of a single dose of 5 Gy radiation, specific twitch (p = 0.03) and tetanus tension (p = 0.02) were significantly lower in the irradiated group than in the control group. The relative force-frequency curves showed a significant downward shift in the irradiated group. Protein carbonyl level (p < 0.01) and percentage of γH2AX-positive diaphragm muscle cells were significantly higher in the irradiated group than in the control group 24 hours after irradiation (58% vs. 30%, p = 0.01). CONCLUSIONS Off-target low dose irradiation could induce acute contractile dysfunction of the diaphragm which was related to radiation-induced direct DNA and indirect oxidative damage.
Collapse
Affiliation(s)
- Chen-Hsi Hsieh
- Department of Radiation Oncology, Far Eastern Memorial HospitalTaipei, Taiwan
- Department of Medicine, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
| | - Yun-Cheng Lin
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan UniversityTaiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
- Department of Radiation Oncology, Mackay Memorial HospitalTaipei, Taiwan
| | - Huey-Dong Wu
- Department of Integrated Diagnostic & Therapeutics, National Taiwan University HospitalTaipei, Taiwan
| | - Li-Ying Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan UniversityTaiwan
- Physical Therapy Center, National Taiwan University HospitalTaipei, Taiwan
| |
Collapse
|
25
|
Carson JA, Hardee JP, VanderVeen BN. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting. Semin Cell Dev Biol 2015; 54:53-67. [PMID: 26593326 DOI: 10.1016/j.semcdb.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed.
Collapse
Affiliation(s)
- James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA.
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| | - Brandon N VanderVeen
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| |
Collapse
|
26
|
Hardee JP, Mangum JE, Gao S, Sato S, Hetzler KL, Puppa MJ, Fix DK, Carson JA. Eccentric contraction-induced myofiber growth in tumor-bearing mice. J Appl Physiol (1985) 2015; 120:29-37. [PMID: 26494443 DOI: 10.1152/japplphysiol.00416.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/16/2015] [Indexed: 02/07/2023] Open
Abstract
Cancer cachexia is characterized by the progressive loss of skeletal muscle mass. While mouse skeletal muscle's response to an acute bout of stimulated low-frequency concentric muscle contractions is disrupted by cachexia, gaps remain in our understanding of cachexia's effects on eccentric contraction-induced muscle growth. The purpose of this study was to determine whether repeated bouts of stimulated high-frequency eccentric muscle contractions [high-frequency electrical muscle stimulation (HFES)] could stimulate myofiber growth during cancer cachexia progression, and whether this training disrupted muscle signaling associated with wasting. Male Apc(Min/+) mice initiating cachexia (N = 9) performed seven bouts of HFES-induced eccentric contractions of the left tibialis anterior muscle over 2 wk. The right tibialis anterior served as the control, and mice were killed 48 h after the last stimulation. Age-matched C57BL/6 mice (N = 9) served as wild-type controls. Apc(Min/+) mice lost body weight, muscle mass, and type IIA, IIX, and IIB myofiber cross-sectional area. HFES increased myofiber cross-sectional area of all fiber types, regardless of cachexia. Cachexia increased muscle noncontractile tissue, which was attenuated by HFES. Cachexia decreased the percentage of high succinate dehydrogenase activity myofibers, which was increased by HFES, regardless of cachexia. While cachexia activated AMP kinase, STAT3, and ERK1/2 signaling, HFES decreased AMP kinase phosphorylation, independent of the suppression of STAT3. These results demonstrate that cachectic skeletal muscle can initiate a growth response to repeated eccentric muscle contractions, despite the presence of a systemic cachectic environment.
Collapse
Affiliation(s)
- Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Joshua E Mangum
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Song Gao
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Shuichi Sato
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Kimbell L Hetzler
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Melissa J Puppa
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Dennis K Fix
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
27
|
Gao S, Carson JA. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes. Am J Physiol Cell Physiol 2015; 310:C66-79. [PMID: 26491045 DOI: 10.1152/ajpcell.00052.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022]
Abstract
Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes.
Collapse
Affiliation(s)
- Song Gao
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
28
|
Hetzler KL, Hardee JP, Puppa MJ, Narsale AA, Sato S, Davis JM, Carson JA. Sex differences in the relationship of IL-6 signaling to cancer cachexia progression. Biochim Biophys Acta Mol Basis Dis 2014; 1852:816-25. [PMID: 25555992 DOI: 10.1016/j.bbadis.2014.12.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023]
Abstract
A devastating aspect of cancer cachexia is severe loss of muscle and fat mass. Though cachexia occurs in both sexes, it is not well-defined in the female. The Apc(Min/+) mouse is genetically predisposed to develop intestinal tumors; circulating IL-6 is a critical regulator of cancer cachexia in the male Apc(Min/+) mouse. The purpose of this study was to examine the relationship between IL-6 signaling and cachexia progression in the female Apc(Min/+) mouse. Male and female Apc(Min/+) mice were examined during the initiation and progression of cachexia. Another group of females had IL-6 overexpressed between 12 and 14 weeks or 15-18 weeks of age to determine whether IL-6 could induce cachexia. Cachectic female Apc(Min/+) mice lost body weight, muscle mass, and fat mass; increased muscle IL-6 mRNA expression was associated with these changes, but circulating IL-6 levels were not. Circulating IL-6 levels did not correlate with downstream signaling in muscle in the female. Muscle IL-6r mRNA expression and SOCS3 mRNA expression as well as muscle IL-6r protein and STAT3 phosphorylation increased with severe cachexia in both sexes. Muscle SOCS3 protein increased in cachectic females but decreased in cachectic males. IL-6 overexpression did not affect cachexia progression in female Apc(Min/+) mice. Our results indicate that female Apc(Min/+) mice undergo cachexia progression that is at least initially IL-6-independent. Future studies in the female will need to determine mechanisms underlying regulation of IL-6 response and cachexia induction.
Collapse
Affiliation(s)
- Kimbell L Hetzler
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Melissa J Puppa
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Aditi A Narsale
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Shuichi Sato
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - J Mark Davis
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA.
| |
Collapse
|