1
|
Sahu N, Mahanty B, Haldar D. Challenges and opportunities in bioprocessing of gellan gum: A review. Int J Biol Macromol 2024; 276:133912. [PMID: 39025193 DOI: 10.1016/j.ijbiomac.2024.133912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Gellan gum (GG) - the microbial exopolysaccharide is increasingly being adopted into drug development, tissue engineering, and food and pharmaceutical products. In spite of the commercial importance and expanding application horizon of GG, little attention has been directed toward the exploration of novel microbial cultures, development of advanced screening protocols, strain engineering, and robust upstream or downstream processes. This comprehensive review not only attempts to summarize the existing knowledge pool on GG bioprocess but also critically assesses their inherent challenges. The process optimization design augmented with advanced machine learning modeling tools, widely adopted in other microbial bioprocesses, should be extended to GG. The unification of mechanistic insight into data-driven modeling would help to formulate optimal feeding and process control strategies.
Collapse
Affiliation(s)
- Nageswar Sahu
- Division of Biotechnology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| | - Biswanath Mahanty
- Division of Biotechnology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| |
Collapse
|
2
|
Yi S, Zhang AH, Huang J, Yao T, Feng B, Zhou X, Hu Y, Pan M. Maximizing Polysaccharides and Phycoerythrin in Porphyridium purpureum via the Addition of Exogenous Compounds: A Response-Surface-Methodology Approach. Mar Drugs 2024; 22:138. [PMID: 38535479 PMCID: PMC10971926 DOI: 10.3390/md22030138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 11/12/2024] Open
Abstract
Phycoerythrin and polysaccharides have significant commercial value in medicine, cosmetics, and food industries due to their excellent bioactive functions. To maximize the production of biomass, phycoerythrin, and polysaccharides in Porphyridium purpureum, culture media were supplemented with calcium gluconate (CG), magnesium gluconate (MG) and polypeptides (BT), and their optimal amounts were determined using the response surface methodology (RSM) based on three single-factor experiments. The optimal concentrations of CG, MG, and BT were determined to be 4, 12, and 2 g L-1, respectively. The RSM-based models indicated that biomass and phycoerythrin production were significantly affected only by MG and BT, respectively. However, polysaccharide production was significantly affected by the interactions between CG and BT and those between MG and BT, with no significant effect from BT alone. Using the optimized culture conditions, the maximum biomass (5.97 g L-1), phycoerythrin (102.95 mg L-1), and polysaccharide (1.42 g L-1) concentrations met and even surpassed the model-predicted maximums. After optimization, biomass, phycoerythrin, and polysaccharides concentrations increased by 132.3%, 27.97%, and 136.67%, respectively, compared to the control. Overall, this study establishes a strong foundation for the highly efficient production of phycoerythrin and polysaccharides using P. purpureum.
Collapse
Affiliation(s)
- Sanjiong Yi
- Jiangsu Province Engineering Research Center for Marine Bio-Resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China; (S.Y.); (T.Y.); (B.F.)
| | - Ai-Hua Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-Resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China; (S.Y.); (T.Y.); (B.F.)
| | - Jianke Huang
- Jiangsu Province Engineering Research Center for Marine Bio-Resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China; (S.Y.); (T.Y.); (B.F.)
| | - Ting Yao
- Jiangsu Province Engineering Research Center for Marine Bio-Resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China; (S.Y.); (T.Y.); (B.F.)
| | - Bo Feng
- Jiangsu Province Engineering Research Center for Marine Bio-Resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China; (S.Y.); (T.Y.); (B.F.)
| | - Xinghu Zhou
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Investment Co., Ltd., Jiangsu Coast Development Group Co., Ltd., Nanjing 210019, China; (X.Z.); (M.P.)
| | - Yadong Hu
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Investment Co., Ltd., Jiangsu Coast Development Group Co., Ltd., Nanjing 210019, China; (X.Z.); (M.P.)
| | - Mingxuan Pan
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Investment Co., Ltd., Jiangsu Coast Development Group Co., Ltd., Nanjing 210019, China; (X.Z.); (M.P.)
| |
Collapse
|
3
|
Peña-Medina RL, Fimbres-Olivarría D, Enríquez-Ocaña LF, Martínez-Córdova LR, Del-Toro-Sánchez CL, López-Elías JA, González-Vega RI. Erythroprotective Potential of Phycobiliproteins Extracted from Porphyridium cruentum. Metabolites 2023; 13:metabo13030366. [PMID: 36984806 PMCID: PMC10057957 DOI: 10.3390/metabo13030366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
There are multiple associations between the different blood groups (ABO and RhD) and the incidence of oxidative stress-related diseases, such as certain carcinomas and COVID-19. Bioactive compounds represent an alternative to its prevention and treatment. Phycobiliproteins (PBP) are bioactive compounds present in the microalga Porphyridium cruentum and, despite its antioxidant activity, their inhibitory effect on hemolysis has not been reported. The aim of this work was to evaluate the erythroprotective potential of phycobiliproteins from P. cruentum in different blood groups. The microalga was cultured in F/2 medium under controlled laboratory conditions. Day 10 of culture was determined as the harvest point. The microalgal biomass was lyophilized and a methanolic (MetOH), Tris HCl (T-HCl), and a physiological solution (PS) ultrasound-assisted extraction were performed. Extract pigments were quantified by spectrophotometry. The antioxidant activity of the extracts was evaluated with the ABTS+•, DPPH•, and FRAP methods, finding that the main antioxidant mechanism on the aqueous extracts was HAT (hydrogen atom transfer), while for MetOH it was SET (single electron transfer). The results of the AAPH, hypotonicity, and heat-induced hemolysis revealed a probable relationship between the different antigens (ABO and RhD) with the antihemolytic effect, highlighting the importance of bio-directed drugs.
Collapse
Affiliation(s)
- Rubria Lucía Peña-Medina
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Diana Fimbres-Olivarría
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
- Correspondence: (D.F.-O.); (R.I.G.-V.)
| | - Luis Fernando Enríquez-Ocaña
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Luis Rafael Martínez-Córdova
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - José Antonio López-Elías
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Ricardo Iván González-Vega
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Mexico
- Correspondence: (D.F.-O.); (R.I.G.-V.)
| |
Collapse
|
4
|
Laroche C. Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. Mar Drugs 2022; 20:md20050336. [PMID: 35621987 PMCID: PMC9148076 DOI: 10.3390/md20050336] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic organisms that can produce/accumulate biomolecules with industrial interest. Among these molecules, EPSs are macromolecular polysaccharidic compounds that present biological activities and physico-chemical properties, allowing to consider their valorization in diverse commercial markets, such as cosmetic, therapeutic, nutraceutic, or hydrocolloids areas. The number of microalgae and cyanobacteria strains described to produce such EPSs has increased in recent years as, among the 256 producing strains gathered in this review, 86 were published in the last 10 years (~33%). Moreover, with the rise of research on microalgae EPSs, a variety of monosaccharides compositions have been discovered, highlighting the versatility of these organisms. If some production strategies can be applied to increase EPS production yields, it appears that case by case studies are needed to promote EPS synthesis by a strain, as many responses exist. This paper proposes an up-to-date state of the art of the diversity of microalgae and cyanobacteria EPS-producing strains, associated to the variability of compositions. The strategies for the production and extraction of the polymers are also discussed. Finally, an overview of the biological activities and physico-chemical properties allow one to consider their use on several commercial markets.
Collapse
Affiliation(s)
- Céline Laroche
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Han SI, Jeon MS, Park YH, Kim S, Choi YE. Semi-continuous immobilized cultivation of Porphyridium cruentum for sulfated polysaccharides production. BIORESOURCE TECHNOLOGY 2021; 341:125816. [PMID: 34454230 DOI: 10.1016/j.biortech.2021.125816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, semi-continuous immobilized cultivation of Porphyridium cruentum through calcium alginate beads was performed for sulfated polysaccharides (SPs) production. The cell biomass and daily SPs productivity in the calcium alginate bead immobilized culture were increased by up to 79 ± 3.4% and 45.6 ± 3.2%, compared to those in the control, respectively. Furthermore, simultaneous application of immobilization and blue wavelength illumination further increased the phycobiliproteins content by 260 ± 9%, compared to those in the control. Similarly, nutrient deficiencies in combination with immobilization increased daily SPs productivity by about twice that of the control. The chemical composition and biological activity of the extracellular polymeric substances produced through immobilization were similar to those of the control. This study suggests the potential application of calcium alginate beads-based immobilization for continuous and high-efficiency SPs production using P. cruentum.
Collapse
Affiliation(s)
- Sang-Il Han
- Institute of Green Manufacturing Technology, Korea University, Seoul 02841, Republic of Korea; Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Seo Jeon
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yun Hwan Park
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sok Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; OJEong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Ferreira AS, Mendonça I, Póvoa I, Carvalho H, Correia A, Vilanova M, Silva TH, Coimbra MA, Nunes C. Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Microalgae Polysaccharides: An Overview of Production, Characterization, and Potential Applications. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2040046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic microorganisms capable of synthesizing several biocompounds, including polysaccharides with antioxidant, antibacterial, and antiviral properties. At the same time that the accumulation of biomolecules occurs, microalgae can use wastewater and gaseous effluents for their growth, mitigating these pollutants. The increase in the production of polysaccharides by microalgae can be achieved mainly through nutritional limitations, stressful conditions, and/or adverse conditions. These compounds are of commercial interest due to their biological and rheological properties, which allow their application in various sectors, such as pharmaceuticals and foods. Thus, to increase the productivity and competitiveness of microalgal polysaccharides with commercial hydrocolloids, the cultivation parameters and extraction/purification processes have been optimized. In this context, this review addresses an overview of the production, characterization, and potential applications of polysaccharides obtained by microalgae and cyanobacteria. Moreover, the main opportunities and challenges in relation to obtaining these compounds are highlighted.
Collapse
|
8
|
Rodas-Zuluaga LI, Castillo-Zacarías C, Núñez-Goitia G, Martínez-Prado MA, Rodríguez-Rodríguez J, López-Pacheco IY, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R. Implementation of k La-Based Strategy for Scaling Up Porphyridium purpureum (Red Marine Microalga) to Produce High-Value Phycoerythrin, Fatty Acids, and Proteins. Mar Drugs 2021; 19:md19060290. [PMID: 34064032 PMCID: PMC8224092 DOI: 10.3390/md19060290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Porphyridium purpureum is a well-known Rhodophyta that recently has attracted enormous attention because of its capacity to produce many high-value metabolites such as the pigment phycoerythrin and several high-value fatty acids. Phycoerythrin is a fluorescent red protein-pigment commercially relevant with antioxidant, antimicrobial activity, and fluorescent properties. The volumetric mass transfer coefficient (kLa) was kept constant within the different scaling-up stages in the present study. This scaling-up strategy was sought to maintain phycoerythrin production and other high-value metabolites by Porphyridium purpureum, using hanging-bag photobioreactors. The kLa was monitored to ensure the appropriate mixing and CO2 diffusion in the entire culture during the scaling process (16, 80, and 400 L). Then, biomass concentration, proteins, fatty acids, carbohydrates, and phycoerythrin were determined in each step of the scaling-up process. The kLa at 16 L reached a level of 0.0052 s-1, while at 80 L, a value of 0.0024 s-1 was achieved. This work result indicated that at 400 L, 1.22 g L-1 of biomass was obtained, and total carbohydrates (117.24 mg L-1), proteins (240.63 mg L-1), and lipids (17.75% DW) were accumulated. Regarding fatty acids production, 46.03% palmitic, 8.03% linoleic, 22.67% arachidonic, and 2.55% eicosapentaenoic acid were identified, principally. The phycoerythrin production was 20.88 mg L-1 with a purity of 2.75, making it viable for food-related applications. The results of these experiments provide insight into the high-scale production of phycoerythrin via the cultivation of P. purpureum in an inexpensive and straightforward culture system.
Collapse
Affiliation(s)
- Laura Isabel Rodas-Zuluaga
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Carlos Castillo-Zacarías
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Gabriela Núñez-Goitia
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico; (G.N.-G.); (M.A.M.-P.)
| | - María Adriana Martínez-Prado
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico; (G.N.-G.); (M.A.M.-P.)
| | - José Rodríguez-Rodríguez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Itzel Y. López-Pacheco
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Juan Eduardo Sosa-Hernández
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
- Correspondence: (H.M.N.I.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
- Correspondence: (H.M.N.I.); (R.P.-S.)
| |
Collapse
|
9
|
Huang Z, Zhong C, Dai J, Li S, Zheng M, He Y, Wang M, Chen B. Simultaneous enhancement on renewable bioactive compounds from Porphyridium cruentum via a novel two-stage cultivation. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Antioxidant and Cytotoxic Effects on Tumor Cells of Exopolysaccharides From Tetraselmis suecica (Kylin) Butcher Grown Under Autotrophic and Heterotrophic Conditions. Mar Drugs 2020; 18:md18110534. [PMID: 33114784 PMCID: PMC7693365 DOI: 10.3390/md18110534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 01/15/2023] Open
Abstract
Marine microalgae produce extracellular metabolites such as exopolysaccharides (EPS) with potentially beneficial biological applications to human health, especially antioxidant and antitumor properties, which can be increased with changes in crop trophic conditions. This study aimed to develop the autotrophic and heterotrophic culture of Tetraselmis suecica (Kylin) Butcher in order to increase EPS production and to characterize its antioxidant activity and cytotoxic effects on tumor cells. The adaptation of autotrophic to heterotrophic culture was carried out by progressively reducing the photoperiod and adding glucose. EPS extraction and purification were performed. EPS were characterized by Fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry. The antioxidant capacity of EPS was analyzed by the 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) method, and the antitumor capacity was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, showing high activity on human leukemia, breast and lung cancer cell lines. Although total EPS showed no cytotoxicity, acidic EPS showed cytotoxicity over the gingival fibroblasts cell line. Heterotrophic culture has advantages over autotrophic, such as increasing EPS yield, higher antioxidant capacity of the EPS and, to the best of our knowledge, this is the first probe that T. suecica EPS have cytotoxic effects on tumor cells; therefore, they could offer greater advantages as possible natural nutraceuticals for the pharmaceutical industry.
Collapse
|
11
|
Medina-Cabrera EV, Rühmann B, Schmid J, Sieber V. Optimization of growth and EPS production in two Porphyridum strains. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Medina-Cabrera EV, Rühmann B, Schmid J, Sieber V. Characterization and comparison of Porphyridium sordidum and Porphyridium purpureum concerning growth characteristics and polysaccharide production. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Li S, Ji L, Chen C, Zhao S, Sun M, Gao Z, Wu H, Fan J. Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum. BIORESOURCE TECHNOLOGY 2020; 309:123362. [PMID: 32305848 DOI: 10.1016/j.biortech.2020.123362] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
An efficient biomass and high-value bioactive substances production strategy was developed for unicellular microalgae Porphyridium purpureum. We studied the optimal culture method and metabolites accumulation under different C/N conditions, and further proposed methods to increase the yield under high C/N ratio. The highest biomass reached 16.24 g/L with ASW medium by mixotrophy. High C/N ratio and mediate C/N can significantly promote the synthesis and secretion of polysaccharides, as well as the accumulation of ω-6 PUFAs; however, inhibit the growth, resulting in lower yield. With the significant increase of C/N ratio, protein degradation was accelerated, providing sufficient nitrogen source for efficient accumulation of carbohydrates (1.66 g/L EPS) and PUFAs (231.24 mg/L ARA). Finally, we reduced the growth inhibition, shortened the culture cycle, and doubled the final biomass to 9.34 g/L under nitrogen deficiency condition. Our exploitation of a cost-effective and feasible culture method for red algae is particularly significant.
Collapse
Affiliation(s)
- Shaohua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liang Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Cheng Chen
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shuxin Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Meng Sun
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo 255000, PR China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
14
|
What Is in Store for EPS Microalgae in the Next Decade? Molecules 2019; 24:molecules24234296. [PMID: 31775355 PMCID: PMC6930497 DOI: 10.3390/molecules24234296] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Microalgae and their metabolites have been an El Dorado since the turn of the 21st century. Many scientific works and industrial exploitations have thus been set up. These developments have often highlighted the need to intensify the processes for biomass production in photo-autotrophy and exploit all the microalgae value including ExoPolySaccharides (EPS). Indeed, the bottlenecks limiting the development of low value products from microalgae are not only linked to biology but also to biological engineering problems including harvesting, recycling of culture media, photoproduction, and biorefinery. Even respecting the so-called "Biorefinery Concept", few applications had a chance to emerge and survive on the market. Thus, exploiting EPS from microalgae for industrial applications in some low-value markets such as food is probably not a mature proposition considering the competitiveness of polysaccharides from terrestrial plants, macroalgae, and bacteria. However, it does not imply drawing a line on their uses but rather "thinking them" differently. This review provides insights into microalgae, EPS, and their exploitation. Perspectives on issues affecting the future of EPS microalgae are also addressed with a critical point of view.
Collapse
|
15
|
Sosa-Hernández JE, Rodas-Zuluaga LI, Castillo-Zacarías C, Rostro-Alanís M, de la Cruz R, Carrillo-Nieves D, Salinas-Salazar C, Fuentes Grunewald C, Llewellyn CA, Olguín EJ, Lovitt RW, Iqbal HMN, Parra-Saldívar R. Light Intensity and Nitrogen Concentration Impact on the Biomass and Phycoerythrin Production by Porphyridium purpureum. Mar Drugs 2019; 17:md17080460. [PMID: 31394767 PMCID: PMC6723636 DOI: 10.3390/md17080460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/05/2023] Open
Abstract
Several factors have the potential to influence microalgae growth. In the present study, nitrogen concentration and light intensity were evaluated in order to obtain high biomass production and high phycoerythrin accumulation from Porphyridium purpureum. The range of nitrogen concentrations evaluated in the culture medium was 0.075-0.450 g L-1 and light intensities ranged between 30 and 100 μmol m-2 s-1. Surprisingly, low nitrogen concentration and high light intensity resulted in high biomass yield and phycoerythrin accumulation. Thus, the best biomass productivity (0.386 g L-1 d-1) and biomass yield (5.403 g L-1) were achieved with NaNO3 at 0.075 g L-1 and 100 μmol m-2 s-1. In addition, phycoerythrin production was improved to obtain a concentration of 14.66 mg L-1 (2.71 mg g-1 of phycoerythrin over dry weight). The results of the present study indicate that it is possible to significantly improve biomass and pigment production in Porphyridium purpureum by limiting nitrogen concentration and light intensity.
Collapse
Affiliation(s)
- Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Laura Isabel Rodas-Zuluaga
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Carlos Castillo-Zacarías
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Magdalena Rostro-Alanís
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Reynaldo de la Cruz
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan C.P. 45138, Jalisco, Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | | | - Carole A Llewellyn
- Department of Biosciences, Singleton Park, Swansea University, Swansea, Wales SA2 8PP, UK
| | - Eugenia J Olguín
- Environmental Biotechnology Group, Institute of Ecology(INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz 91070, Mexico
| | - Robert W Lovitt
- College of Engineering, Swansea University, Swansea SA2 8PP, UK
- Membranology Ltd., Unit D5 Rainbow Business Centre, Swansea SA7 9FP, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
16
|
Li T, Xu J, Wu H, Jiang P, Chen Z, Xiang W. Growth and Biochemical Composition of Porphyridium purpureum SCS-02 under Different Nitrogen Concentrations. Mar Drugs 2019; 17:md17020124. [PMID: 30791567 PMCID: PMC6410139 DOI: 10.3390/md17020124] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 11/27/2022] Open
Abstract
Microalgae of the genus Porphyridium show great potential for large-scale commercial cultivation, as they accumulate large quantities of B-phycoerythrin (B-PE), long chain polyunsaturated fatty acids (LC-PUFAs) and exopolysaccharide (EPS). The present study aimed to adjust culture nitrogen concentrations to produce Porphyridium biomass rich in B-PE, LC-PUFAs and EPS. Porphyridium purpureum SCS-02 was cultured in ASW culture medium with low nitrogen supply (LN, 3.5 mM), medium nitrogen supply (MN, 5.9 mM) or high nitrogen supply (HN, 17.6 mM). HN significantly enhanced the accumulation of biomass, intracellular protein, B-PE and eicosapentaenoic acid. LN increased the intracellular carbohydrate and arachidonic acid content, and promoted the secretion of EPS. The total lipids content was almost unaffected by nitrogen concentration. Based on these results, a semi-continuous two-step process was proposed, which included the production of biomass rich in B-PE and LC-PUFAs with sufficient nitrogen, and induced EPS excretion with limited nitrogen and strong light.
Collapse
Affiliation(s)
- Tao Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Jin Xu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Peiliang Jiang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Zishuo Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
17
|
Optimal cultivation towards enhanced biomass and floridean starch production by Porphyridium marinum. Int J Biol Macromol 2019; 129:152-161. [PMID: 30711564 DOI: 10.1016/j.ijbiomac.2019.01.207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 11/24/2022]
Abstract
Optimal conditions for maximal biomass and starch production by the marine red microalgae Porphyridium marinum were investigated. Box-Behnken Design was used to model the effect of light intensity, NaNO3 concentration and salinity on the growth of microalgae but also on their starch and protein contents. These three factors increased biomass production by 13.6% in optimized conditions. A maximum starch production (140.21 μg·mL-1), 30.6% higher than that of the control, was attained at a light intensity of 100 μmol photons·m-2·s-1, a NaNO3 concentration of 1 g·L-1 and a NaCl concentration of 20 g·L-1. FT-IR spectroscopy was used to estimate the biochemical composition (carbohydrate accumulation) of P. marinum and revealed significant changes (P < 0.05) depending on culture conditions. FT-IR analysis highlighted also that the culture conditions leading to highest starch production by P. marinum corresponded to lowest sulfated polysaccharide and protein contents.
Collapse
|
18
|
Zaib M, Athar MM. Voltammetric Detection of Hg(II) in Real Wastewater Using Red Alga Modified Carbon Paste Electrode: Mechanism Insight. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3225-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Angelaalincy M, Senthilkumar N, Karpagam R, Kumar GG, Ashokkumar B, Varalakshmi P. Enhanced Extracellular Polysaccharide Production and Self-Sustainable Electricity Generation for PAMFCs by Scenedesmus sp. SB1. ACS OMEGA 2017; 2:3754-3765. [PMID: 30023702 PMCID: PMC6044837 DOI: 10.1021/acsomega.7b00326] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/06/2017] [Indexed: 05/27/2023]
Abstract
In this study, a freshwater microalga, Scenedesmus sp. SB1, was isolated, purified, and identified by its internal transcribed spacer region (ITS1-5.8S-ITS2). Media optimization through the Plackett-Burman Design and response surface methodology (RSM) showed a maximum exopolysaccharide (EPS) production of 48 mg/L (1.8-fold higher than that for unoptimized media). Characterization using gas chromatography-mass spectrometry, Fourier transform infrared, X-ray diffraction, and thermogravimetric analysis reveals that the EPS is a sulfated pectin polysaccharide with a crystallinity index of 15.2% and prompt thermal stability. Furthermore, the photoelectrogenic activity of Scenedesmus sp. SB1 inoculated in BG-11 and RSM-optimized BG-11 (ROBG-11) media was tested by cyclic voltammogram studies, revealing the potential of the inoculated strain in ROBG-11 toward photosynthetic algal microbial fuel cells over normal BG-11. To the best of our knowledge, functional group characterization, physical and thermal property and media optimization for EPS production by RSM and electrogenic activity studies are reported for the first time in Scenedesmus sp. SB1.
Collapse
Affiliation(s)
- Mariajoseph Angelaalincy
- Department
of Molecular Microbiology, School of Biotechnology, Department of Physical
Chemistry, School of Chemistry, and Department of Genetic Engineering, School of
Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Nangan Senthilkumar
- Department
of Molecular Microbiology, School of Biotechnology, Department of Physical
Chemistry, School of Chemistry, and Department of Genetic Engineering, School of
Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Rathinasamy Karpagam
- Department
of Molecular Microbiology, School of Biotechnology, Department of Physical
Chemistry, School of Chemistry, and Department of Genetic Engineering, School of
Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Georgepeter Gnana Kumar
- Department
of Molecular Microbiology, School of Biotechnology, Department of Physical
Chemistry, School of Chemistry, and Department of Genetic Engineering, School of
Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Balasubramaniem Ashokkumar
- Department
of Molecular Microbiology, School of Biotechnology, Department of Physical
Chemistry, School of Chemistry, and Department of Genetic Engineering, School of
Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Perumal Varalakshmi
- Department
of Molecular Microbiology, School of Biotechnology, Department of Physical
Chemistry, School of Chemistry, and Department of Genetic Engineering, School of
Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
20
|
Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 2016; 34:1159-1179. [DOI: 10.1016/j.biotechadv.2016.08.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/22/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022]
|
21
|
Takusagawa M, Nakajima Y, Saito T, Misumi O. Primitive red alga Cyanidioschyzon merolae accumulates storage glucan and triacylglycerol under nitrogen depletion. J GEN APPL MICROBIOL 2016; 62:111-7. [PMID: 27181396 DOI: 10.2323/jgam.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most microalgae accumulate neutral lipids, including triacylglycerol (TAG), into spherical structures called lipid bodies (LBs) under environmental stress conditions such as nutrient depletion. In green algae, starch accumulation precedes TAG accumulation, and the starch is thought to be a substrate for TAG synthesis. However, the relationship between TAG synthesis and the starch content in red algae, as well as how TAG accumulation is regulated, is unclear. In this study, we cultured the primitive red alga Cyanidioschyzon merolae under nitrogen-depleted conditions, and monitored the formation of starch granules (SGs) and LBs using microscopy. SGs stained with potassium iodide were observed at 24 h; however, LBs stained specifically with BODIPY 493/503 were observed after 48 h. Quantitative analysis of neutral sugar and cytomorphological semi-quantitative analysis of TAG accumulation also supported these results. Thus, the accumulation of starch occurred and preceded the accumulation of TAG in cells of C. merolae. However, TAG accumulation was not accompanied by a decrease in the starch content, suggesting that the starch is a major carbon storage sink, at least under nitrogen-depleted conditions. Quantitative real-time PCR revealed that the mRNA levels of genes involved in starch and TAG synthesis rarely changed during the culture period, suggesting that starch and TAG synthesis in C. merolae are not controlled through gene transcription but at other stages, such as translation and/or enzymatic activity.
Collapse
Affiliation(s)
- Mari Takusagawa
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University
| | | | | | | |
Collapse
|
22
|
Simas-Rodrigues C, Villela HDM, Martins AP, Marques LG, Colepicolo P, Tonon AP. Microalgae for economic applications: advantages and perspectives for bioethanol. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4097-108. [PMID: 25873683 DOI: 10.1093/jxb/erv130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Renewable energy has attracted significant interest in recent years as a result of sustainability, environmental impact, and socio-economic considerations. Given existing technological knowledge and based on projections relating to biofuels derived from microalgae, microalgal feedstock is considered to be one of the most important renewable energy sources potentially available for industrial production. Therefore, this review examines microalgal bioethanol technology, which converts biomass from microalgae to fuel, the chemical processes involved, and possible ways of increasing the bioethanol yield, such as abiotic factors and genetic manipulation of fermenting organisms.
Collapse
Affiliation(s)
- Cíntia Simas-Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Helena D M Villela
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Aline P Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Luiza G Marques
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Angela P Tonon
- Los Alamos National Laboratory, Bioscience Division, PO Box M888, Los Alamos, NM 87545, USA
| |
Collapse
|
23
|
|