1
|
Mikulic-Petkovsek M, Ravnjak E, Rusjan D. Identification of Phenolic Compounds in the Invasive Plants Staghorn Sumac and Himalayan Balsam: Impact of Time and Solvent on the Extraction of Phenolics and Extract Evaluation on Germination Inhibition. PLANTS (BASEL, SWITZERLAND) 2024; 13:3339. [PMID: 39683130 DOI: 10.3390/plants13233339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
An HPLC-MS-DAD analysis of phenolic compounds was carried out on the extracts of staghorn sumac (Rhus typhina L.) and Himalayan balsam (Impatiens glandulifera Royle). This study focuses on the influence of solvent type and extraction time on the phenolic extraction efficiency from both invasive plants. Methanol extraction resulted in a 4.2 times higher content of hydroxybenzoic acids, a 3.7 times higher content of hydroxycinnamic acids, a 3.2 times higher content of flavanols, a 9.6 times higher content of flavanones, and an 8.7 times higher content of flavonols in the Himalayan balsam extract compared to aqueous extraction. Anthocyanins were only detected in the alcohol-based extraction. In comparison, the aqueous extraction from staghorn sumac resulted in a higher yield of total hydroxybenzoic acids, hydroxycinnamic acids, and flavonols, while the methanol extraction resulted in a 1.4-fold lower total polyphenolic content compared to the aqueous extraction. The type of solvent had no significant effect on the total content of flavanols in staghorn sumac. Extraction time considerably affected the total phenolic content in both plant extracts. After 84 h of extraction, the staghorn sumac extract showed a 3.5-fold increase in the total phenolic content compared to the initial measurement. In contrast, the Himalayan balsam extract showed a 40% decrease in the total phenolic content after 84 h. The Himalayan balsam extract reduced the germination of perennial ryegrass seeds by 55%, while the staghorn sumac extract reduced it by 80%. Both extracts also inhibited shoot and root growth of perennial ryegrass, although the Himalayan balsam extract at a concentration of 0.125 g/mL stimulated root growth of perennial ryegrass. The strategic use of invasive alien plants could be an effective approach to control their spread in the environment, potentially reducing management costs. The effectiveness of this approach depends largely on the type and content of allelochemicals present in the invasive plants.
Collapse
Affiliation(s)
- Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Eva Ravnjak
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Denis Rusjan
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Olchowik-Grabarek E, Sekowski S, Mierzwinska I, Zukowska I, Abdulladjanova N, Shlyonsky V, Zamaraeva M. Cell Type-Specific Anti- and Pro-Oxidative Effects of Punica granatum L. Ellagitannins. MEMBRANES 2024; 14:218. [PMID: 39452830 PMCID: PMC11509261 DOI: 10.3390/membranes14100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Pomegranate and its by-products contain a broad spectrum of phytochemicals, such as flavonoids, phenolic acids and tannins, having pleiotropic preventive and prophylactic properties in health disorders related to oxidative stress and microbial contamination. Here, we examined the biological effects of a pomegranate peel ellagitannins-enriched (>90%) extract, PETE. In vitro studies revealed that PETE has a strong antiradical action towards synthetic radicals and biologically relevant ROS surpassing or comparable to that of Trolox. In cellular models, it showed concentration-dependent (25-100 µg/mL) yet opposing effects depending on the cell membrane type and exposure conditions. In erythrocytes, PETE protected membrane integrity in the presence of the strong oxidant HClO and restored reduced glutathione levels to up to 85% of the control value while having much weaker acute and long-term intrinsic effects. Such protection persisted even after the removal of the extract from cells, indicating strong membrane interaction. In HeLa cancer cells, and at concentrations lower than those used for red blood cells, PETE induced robust potentiation of ROS production and mitochondrial potential dissipation, leading to autophagy-like membrane morphology changes and cell death. In S. aureus, the growth arrest and bacterial death in the presence of PETE (with MIC = 31.25 µg/mL and MBC = 125 µg/mL, respectively) can be linked to the tripled ROS induction by the extract in the same concentration range. This study indicates a specificity of ROS production by the pomegranate extract depending on the type of cell, the concentration of the extract and the time of incubation. This specificity witnesses a strong potential of the extract components as candidates in antioxidant and pro-oxidant therapy.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Iga Mierzwinska
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Izabela Zukowska
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Nodira Abdulladjanova
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100125, Uzbekistan;
| | - Vadim Shlyonsky
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| |
Collapse
|
3
|
Kaźmierczak T, Męczarska K, Lachowicz-Wiśniewska S, Cyboran-Mikołajczyk S, Oszmiański J, Bonarska-Kujawa D. Protective Effect of Polyphenolic Extracts from Hippophae rhamnoides L. and Reynoutria japonica Houtt. on Erythrocyte Membrane. Molecules 2024; 29:3090. [PMID: 38999046 PMCID: PMC11243633 DOI: 10.3390/molecules29133090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Sea buckthorn and Japanese knotweed are known in many traditional medicine systems to be a great source of bioactive substances. This research aims to compare the bioactivity and protective effects of the phenolic extracts of leaves from sea buckthorn and roots and leaves from the Japanese knotweed on erythrocytes. The polyphenol composition of the extract was analyzed using UPLC-PDA-ESI-MS/MS. The extracts' toxicity and impact on the erythrocytes' osmotic fragility were measured spectrophotometrically. The antioxidant activity was determined based on the inhibition of oxidation of erythrocytes and their membrane induced by 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH),measured spectrophotometrically and using fluorimetry. To find the possible mechanism of the extracts' action, extract-modified cells were observed under a microscope, and the potential localization of the extract's phytochemical composition was checked using fluorescent probes. The results showed that the used extracts are not toxic to erythrocytes, increase their osmotic resistance, and successfully protect them against free radicals. Extract components localize on the outer part of the membrane, where they can scavenge the free radicals from the environment. Altogether, the presented extracts can greatly protect living organisms against free radicals and can be used to support the treatment of diseases caused by excess free radicals.
Collapse
Affiliation(s)
- Teresa Kaźmierczak
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| | - Katarzyna Męczarska
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| | | | - Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| | - Jan Oszmiański
- Departament of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-630 Wroclaw, Poland
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| |
Collapse
|
4
|
Olchowik-Grabarek E, Czerkas K, Matchanov AD, Esanov RS, Matchanov UD, Zamaraeva M, Sekowski S. Antibacterial and Antihemolytic Activity of New Biomaterial Based on Glycyrrhizic Acid and Quercetin (GAQ) against Staphylococcus aureus. J Funct Biomater 2023; 14:368. [PMID: 37504863 PMCID: PMC10381813 DOI: 10.3390/jfb14070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
The goal of this study is to obtain and characterize the complex of quercetin with glycyrrhizic acid, which is known to serve as a drug delivery system. Quercetin is a flavonoid with a wide range of biological activities, including an antimicrobial effect. However, quercetin instability and low bioavailability that limits its use in medical practice makes it necessary to look for new nanoformulations of it. The formation of the GAQ complex (2:1) was confirmed by using UV and FT-IR spectroscopies. It was found that the GAQ exhibited antimicrobial and antihemolytical activities against S. aureus bacteria and its main virulent factor-α-hemolysin. The IC50 value for the antihemolytical effect of GAQ was 1.923 ± 0.255 µg/mL. Using a fluorescence method, we also showed that the GAQ bound tightly to the toxin that appears to underlie its antihemolytic activity. In addition, another mechanism of the antihemolytic activity of the GAQ against α-hemolysin was shown, namely, its ability to increase the rigidity of the outer layer of the erythrocyte membrane and thus inhibit the incorporation of α-hemolysin into the target cells, increasing their resistance to the toxin. Both of these effects of GAQ were observed at concentrations below the MIC value for S. aureus growth, indicating the potential of the complex as an antivirulence agent.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | - Krzysztof Czerkas
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | | | - Rahmat Sulton Esanov
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan
- National University of Uzbekistan, Tashkent 700174, Uzbekistan
| | | | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| |
Collapse
|
5
|
Hawashin A, Brakmann IC, Tian Y, Gründer S, Ortega-Ramírez AM. Modulation of Acid-Sensing Ion Channels by Tannic Acid and Green Tea via a Membrane-Mediated Mechanism. ACS Chem Neurosci 2023. [PMID: 37379568 DOI: 10.1021/acschemneuro.3c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated ion channels that contribute to pain perception and neurotransmission. Being involved in sensing inflammation and ischemia, ASIC1a and ASIC3 are promising drug targets. Polyphenol tannic acid (TA) as well as green tea can interact with a variety of ion channels, but their effect on ASICs remains unknown. In addition, it is unknown whether they interact with ion channels via a common mechanism. Here, we show that TA is a potent modulator of ASICs. TA inhibited the transient current of rat ASIC3 expressed in HEK cells with an apparent IC50 of 2.2 ± 0.6 μM; it potentiated the sustained current and induced a slowly declining decay current. In addition, it produced an acidic shift of the pH-dependent activation of ASIC3 and inhibited the window current at pH 7.0. Moreover, TA inhibited the transient current of ASIC1a, ASIC1b, and ASIC2a. Pentagalloylglucose that is chemically identical to the central part of TA and a green tea extract both had effects on ASIC3 comparable to TA. TA and green tea inhibited inward currents generated by gramicidin channels, indicating interaction with the membrane. These results show that TA, pentagalloylglucose, and green tea modulate ASICs and identify alteration of the membrane as the potential common mechanism of this modulation. These properties will limit clinical application of these molecules.
Collapse
Affiliation(s)
- Ammar Hawashin
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | - Ilka C Brakmann
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | - Yuemin Tian
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, Aachen D-52074, Germany
| | | |
Collapse
|
6
|
Sekowski S, Naziris N, Chountoulesi M, Olchowik-Grabarek E, Czerkas K, Veiko A, Abdulladjanova N, Demetzos C, Zamaraeva M. Interaction of Rhus typhina Tannin with Lipid Nanoparticles: Implication for the Formulation of a Tannin-Liposome Hybrid Biomaterial with Antibacterial Activity. J Funct Biomater 2023; 14:296. [PMID: 37367260 DOI: 10.3390/jfb14060296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Tannins are natural plant origin polyphenols that are promising compounds for pharmacological applications due to their strong and different biological activities, including antibacterial activity. Our previous studies demonstrated that sumac tannin, i.e., 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose (isolated from Rhus typhina L.), possesses strong antibacterial activity against different bacterial strains. One of the crucial factors of the pharmacological activity of tannins is their ability to interact with biomembranes, which may result in the penetration of these compounds into cells or the realization of their activity on the surface. The aim of the current work was to study the interactions of sumac tannin with liposomes as a simple model of the cellular membrane, which is widely used in studies focused on the explanation of the physicochemical nature of molecule-membrane interactions. Additionally, these lipid nanovesicles are very often investigated as nanocarriers for different types of biologically active molecules, such as antibiotics. In the frame of our study, using differential scanning calorimetry, zeta-potential, and fluorescence analysis, we have shown that 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose interacts strongly with liposomes and can be encapsulated inside them. A formulated sumac-liposome hybrid nanocomplex demonstrated much stronger antibacterial activity in comparison with pure tannin. Overall, by using the high affinity of sumac tannin to liposomes, new, functional nanobiomaterials with strong antibacterial activity against Gram-positive strains, such as S. aureus, S. epidermitis, and B. cereus, can be formulated.
Collapse
Affiliation(s)
- Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Krzysztof Czerkas
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Artem Veiko
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola, 5, 230030 Grodno, Belarus
| | - Nodira Abdulladjanova
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| |
Collapse
|
7
|
Inhibition of AGEs formation, antioxidative, and cytoprotective activity of Sumac (Rhus typhina L.) tannin under hyperglycemia: molecular and cellular study. Mol Cell Biochem 2023; 478:443-457. [PMID: 35861915 DOI: 10.1007/s11010-022-04522-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
It is well known that accumulation of advanced glycation ends products (AGEs) lead to various diseases such as diabetes and diabetic complications. In this study we showed that hydrolysable tannin from Sumac (Rhus typhina L.)-3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose (C55H40O34) inhibited generation of glycation markers in bovine serum albumin such as AGEs, dityrosine, N'-formylkynurenine and kynurenine under high glucose treatment. This effect was accompanied by stabilization of the protein structure, as was shown using ATR-FT-IR spectroscopy and fluorescence methods. C55H40O34 exhibited also a neuroprotective effect in high glucose-exposed Neuro2A cells suppressing ROS formation and expression of phospho NF-κβ and iNOS. At the same time C55H40O34 increased expression of heme oxygenase-1 and NAD(P)H: quinone oxidoreductase and mitochondrial complex I and V activities. Results from this study demonstrates a potent antiglycation activity of C55H40O34 in vitro and indicates its possible therapeutic application in glycation related diseases.
Collapse
|
8
|
Olchowik-Grabarek E, Sękowski S, Kwiatek A, Płaczkiewicz J, Abdulladjanova N, Shlyonsky V, Swiecicka I, Zamaraeva M. The Structural Changes in the Membranes of Staphylococcus aureus Caused by Hydrolysable Tannins Witness Their Antibacterial Activity. MEMBRANES 2022; 12:1124. [PMID: 36363679 PMCID: PMC9698758 DOI: 10.3390/membranes12111124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Polyphenols, including tannins, are phytochemicals with pronounced antimicrobial properties. We studied the activity of two hydrolysable tannins, (i) gallotannin-1,2,3,4,5-penta-O-galloyl-β-D-glucose (PGG) and (ii) ellagitannin-1,2-di-O-galloyl-4,6-valoneoyl-β-D-glucose (dGVG), applied alone and in combination with antibiotics against Staphylococcus aureus strain 8324-4. We also evaluated the effect of these tannins on bacterial membrane integrity and fluidity and studied their interaction with membrane proteins and lipids. A correlation between the antimicrobial activity of the tannins and their membranotropic action depending on the tannin molecular structure has been demonstrated. We found that the antibacterial activity of PGG was stronger than dGVG, which can be associated with its larger flexibility, dipole moment, and hydrophobicity. In addition, we also noted the membrane effects of the tannins observed as an increase in the size of released bacterial membrane vesicles.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Szymon Sękowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Jagoda Płaczkiewicz
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Nodira Abdulladjanova
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan
| | - Vadim Shlyonsky
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Izabela Swiecicka
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| |
Collapse
|
9
|
Granato D, Reshamwala D, Korpinen R, Azevedo L, Vieira do Carmo MA, Cruz TM, Marques MB, Wen M, Zhang L, Marjomäki V, Kilpeläinen P. From the forest to the plate - Hemicelluloses, galactoglucomannan, glucuronoxylan, and phenolic-rich extracts from unconventional sources as functional food ingredients. Food Chem 2022; 381:132284. [PMID: 35121317 DOI: 10.1016/j.foodchem.2022.132284] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022]
Abstract
This study aimed to characterise pressurised hot water (PHW) extracts from nonconventional sources of functional carbohydrates and phenolic compounds in terms of antioxidant capacity, antiviral activity, toxicity, and human erythrocytes' protection antidiabetic potential. PHW extracts of Norway spruce bark (E1 + E2) and Birch sawdust (E3 + E4) contained mostly galactoglucomannan and glucuronoxylan. In contrast, samples E5 to E9 PHW extracted from Norway spruce, and Scots pine bark are rich sources of phenolic compounds. Overall, phenolic-rich extracts presented the highest inhibition of α-amylase and α-glucosidase and protection against stable non-enveloped enteroviruses. Additionally, all extracts protected human erythrocytes from hemolysis. Cell-based experiments using human cell lines (IMR90 and A549) showed extracts' non-toxicin vitroprofile. Considering the relative toxicological safety of extracts from these unconventional sources, functional carbohydrates and polyphenol-rich extracts can be obtained and further used in food models.
Collapse
Affiliation(s)
- Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Risto Korpinen
- Biorefinery and Bioproducts, Production Systems Unit - Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; Separation Science, LUT School of Engineering Science, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000 Alfenas, Brazil
| | | | - Thiago Mendanha Cruz
- Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000 Alfenas, Brazil
| | - Mariza Boscacci Marques
- Department of Chemistry, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Brazil
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036 Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036 Hefei, China
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Petri Kilpeläinen
- Biorefinery and Bioproducts, Production Systems Unit - Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland.
| |
Collapse
|
10
|
Recovery of Bioactive Ellagitannins by Ultrasound/Microwave-Assisted Extraction from Mexican Rambutan Peel ( Nephelium lappaceum L.). Molecules 2022; 27:molecules27051592. [PMID: 35268692 PMCID: PMC8911573 DOI: 10.3390/molecules27051592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Rambutan (Nephelium lappaceum L.) is a tropical fruit from Asia which has become the main target of many studies involving polyphenolic analysis. Mexico produces over 8 million tons per year of rambutan, generating a huge amount of agro-industrial waste since only the pulp is used and the peel, which comprises around 45% of the fruit’s weight, is left behind. This waste can later be used in the recovery of polyphenolic fractions. In this work, emerging technologies such as microwave, ultrasound, and the hybridization of both were tested in the extraction of phenolic compounds from Mexican rambutan peel. The results show that the hybrid technology extraction yielded the highest polyphenolic content (176.38 mg GAE/g of dry rambutan peel). The HPLC/MS/ESI analysis revealed three majoritarian compounds: geraniin, corilagin, and ellagic acid. These compounds explain the excellent results for the biological assays, namely antioxidant activity evaluated by the DPPH, ABTS, and LOI (Lipid oxidation inhibition) assays that exhibited great antioxidant capacity with IC50 values of 0.098, 0.335, and 0.034 mg/mL respectively, as well as prebiotic activity demonstrated by a µMax (maximum growth) of 0.203 for Lactobacillus paracasei. Lastly, these compounds have shown no hemolytic activity, opening the door for the elaboration of different products in the food, cosmetic, and pharmaceutical industries.
Collapse
|
11
|
Makarova K, Sajkowska-Kozielewicz JJ, Zawada K, Olchowik-Grabarek E, Ciach MA, Gogolewski K, Dobros N, Ciechowicz P, Freichels H, Gambin A. Harvest time affects antioxidant capacity, total polyphenol and flavonoid content of Polish St John's wort's (Hypericum perforatum L.) flowers. Sci Rep 2021; 11:3989. [PMID: 33597594 PMCID: PMC7889936 DOI: 10.1038/s41598-021-83409-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/02/2021] [Indexed: 11/08/2022] Open
Abstract
The polyphenol content and antioxidant capacity of hyperforin and hypericin-standardized H. perforatum L. extracts may vary due to the harvest time. In this work, ethanol and ethanol-water extracts of air-dried and lyophilized flowers of H. perforatum L., collected throughout a vegetation season in central Poland, were studied. Air-dried flowers extracts had higher polyphenol (371 mg GAE/g) and flavonoid (160 mg CAE/g) content, DPPH radical scavenging (1672 mg DPPH/g), ORAC (5214 µmol TE/g) and FRAP (2.54 mmol Fe2+/g) than lyophilized flowers extracts (238 mg GAE/g, 107 mg CAE/g, 1287 mg DPPH/g, 3313 µmol TE/g and 0.31 mmol Fe2+/g, respectively). Principal component analysis showed that the collection date influenced the flavonoid and polyphenol contents and FRAP of ethanol extracts, and DPPH and ORAC values of ethanol-water extracts. The ethanol extracts with the highest polyphenol and flavonoid content protected human erythrocytes against bisphenol A-induced damage. Both high field and benchtop NMR spectra of selected extracts, revealed differences in composition caused by extraction solvent and raw material collection date. Moreover, we have shown that benchtop NMR can be used to detect the compositional variation of extracts if the assignment of signals is done previously.
Collapse
Affiliation(s)
- Katerina Makarova
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy With Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland.
| | - Joanna J Sajkowska-Kozielewicz
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy With Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Katarzyna Zawada
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy With Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Michał Aleksander Ciach
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097, Warszawa, Poland
- Centre for Statistics, Hasselt University, Diepenbeek, 3590, Limburg, Belgium
| | - Krzysztof Gogolewski
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097, Warszawa, Poland
| | - Natalia Dobros
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy With Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Paulina Ciechowicz
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy With Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | | | - Anna Gambin
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097, Warszawa, Poland
| |
Collapse
|
12
|
Zhou S, Sun L, Qian S, Ma Y, Ma R, Dong Y, Shi Y, Jiang S, Ye H, Shen Z, Zhang S, Shen J, Yu K, Wang S. Iron overload adversely effects bone marrow haematogenesis via SIRT-SOD2-mROS in a process ameliorated by curcumin. Cell Mol Biol Lett 2021; 26:2. [PMID: 33435886 PMCID: PMC7805071 DOI: 10.1186/s11658-020-00244-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/25/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Iron overload, which is common in patients with haematological disorders, is known to have a suppressive effect on haematogenesis. However, the mechanism for this effect is still unclear. The antioxidant curcumin has been reported to protect against iron overload-induced bone marrow damage through an as-yet-unknown mechanism. METHODS We established iron overload cell and mouse models. Mitochondrial reactive oxygen species (mROS) levels, autophagy levels and the SIRT3/SOD2 pathway were examined in the models and in the bone marrow of patients with iron overload. RESULTS Iron overload was shown to depress haematogenesis and induce mitochondrion-derived superoxide anion-dependent autophagic cell death. Iron loading decreased SIRT3 protein expression, promoted an increase in SOD2, and led to the elevation of mROS. Overexpression of SIRT3 reversed these effects. Curcumin treatment ameliorated peripheral blood cells generation, enhanced SIRT3 activity, decreased SOD2 acetylation, inhibited mROS production, and suppressed iron loading-induced autophagy. CONCLUSIONS Our results suggest that curcumin exerts a protective effect on bone marrow by reducing mROS-stimulated autophagic cell death in a manner dependent on the SIRT3/SOD2 pathway.
Collapse
Affiliation(s)
- Shujuan Zhou
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Lan Sun
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Shanhu Qian
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yongyong Ma
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Ruye Ma
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yuqing Dong
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yifen Shi
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Songfu Jiang
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Haige Ye
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Zhijian Shen
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Shenghui Zhang
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jianping Shen
- Department of Haematology, The First Affiliated Hospital of Zhejiang Chinese Medical University; The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, People's Republic of China.
| | - Kang Yu
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| | - Siqian Wang
- Department of Prosthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Sekowski S, Olchowik-Grabarek E, Wieckowska W, Veiko A, Oldak L, Gorodkiewicz E, Karamov E, Abdulladjanova N, Mavlyanov S, Lapshina E, Zavodnik IB, Zamaraeva M. Spectroscopic, Zeta-potential and Surface Plasmon Resonance analysis of interaction between potential anti-HIV tannins with different flexibility and human serum albumin. Colloids Surf B Biointerfaces 2020; 194:111175. [DOI: 10.1016/j.colsurfb.2020.111175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
|
14
|
Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: structure-related activity study. Sci Rep 2020; 10:11168. [PMID: 32636484 PMCID: PMC7341856 DOI: 10.1038/s41598-020-68030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
The objective of the study was a comparative analysis of the antihemolytic activity against two Staphylococcus aureus strains (8325-4 and NCTC 5655) as well as α-hemolysin and of the membrane modifying action of four hydrolysable tannins with different molecular mass and flexibility: 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-d-glucose (T1), 1,2,3,4,5-penta-O-galloyl-β-d-glucose (T2), 3-O-galloyl-1,2-valoneoyl-β-d-glucose (T3) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T4). We showed that all the compounds studied manifested antihemolytic effects in the range of 5–50 µM concentrations. However, the degree of the reduction of hemolysis by the investigated tannins was not uniform. A valoneoyl group—containing compounds (T3 and T4) were less active. Inhibition of the hemolysis induced by α-hemolysin was also noticed on preincubated with the tannins and subsequently washed erythrocytes. In this case the efficiency again depended on the tannin structure and could be represented by the following order: T1 > T2 > T4 > T3. We also found a relationship between the degree of antihemolytic activity of the tannins studied and their capacity to increase the ordering parameter of the erythrocyte membrane outer layer and to change zeta potential. Overall, our study showed a potential of the T1 and T2 tannins as anti-virulence agents. The results of this study using tannins with different combinations of molecular mass and flexibility shed additional light on the role of tannin structure in activity manifestation.
Collapse
|
15
|
Borisova MP, Kataev AA, Sivozhelezov VS. Action of tannin on cellular membranes: Novel insights from concerted studies on lipid bilayers and native cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1103-1111. [PMID: 30926363 DOI: 10.1016/j.bbamem.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Hydrolyzable tannin (3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose) has a dual effect on the cell membrane: (1) it binds to a plasmalemmal protein of the Chara corallina cell (C50 = 2.7 ± 0.3 μM) and (2) it forms ionic channels in the lipid membrane. Based on these facts, a molecular model for the interaction of tannins with the cell membrane is proposed. The model suggests that the molecules of hydrolyzable tannin bind electrostatically to the outer groups of the membrane protein responsible for the Ca2+-dependent chloride current and blocks it. Some tannin molecules penetrate into the hydrophobic region of the membrane, and when a particular concentration is reached, they form ion-conducting structures selective toward Cl-.
Collapse
Affiliation(s)
- Marina P Borisova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
| | - Anatoly A Kataev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Victor S Sivozhelezov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
16
|
Sekowski S, Terebka M, Veiko A, Lapshina E, Sulkowska U, Zavodnik IB, Abdulladjanova N, Mavlyanov S, Roszkowska A, Zamaraeva M. Epigallocatechin gallate (EGCG) activity against UV light-induced photo damages in erythrocytes and serum albumin—theoretical and experimental studies. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Olas B. Berry Phenolic Antioxidants - Implications for Human Health? Front Pharmacol 2018; 9:78. [PMID: 29662448 PMCID: PMC5890122 DOI: 10.3389/fphar.2018.00078] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/23/2018] [Indexed: 12/17/2022] Open
Abstract
Antioxidants present in the diet may have a significant effect on the prophylaxis and progression of various diseases associated with oxidative stress. Berries contain a range of chemical compounds with antioxidant properties, including phenolic compounds. The aim of this review article is to provide an overview of the current knowledge of such phenolic antioxidants, and to discuss whether these compounds may always be natural gifts for human health, based on both in vitro and in vivo studies. It describes the antioxidant properties of fresh berries (including aronia berries, grapes, blueberries, sea buckthorn berries, strawberries and other berries) and their various products, especially juices and wines. Some papers report that these phenolic compounds may sometimes behave like prooxidants, and sometimes demonstrate both antioxidant and prooxidant activity, while others note they do not behave the same way in vitro and in vivo. However, no unwanted or toxic effects (i.e., chemical, hematological or urinary effect) have been associated with the consumption of berries or berry juices or other extracts, especially aronia berries and aronia products in vivo, and in vitro, which may suggest that the phenolic antioxidants found in berries are natural gifts for human health. However, the phenolic compound content of berries and berry products is not always well described, and further studies are required to determine the therapeutic doses of different berry products for use in future clinical studies. Moreover, further experiments are needed to understand the beneficial effects reported so far from the mechanistic point of view. Therefore, greater attention should be paid to the development of well-controlled and high-quality clinical studies in this area.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
18
|
Olchowik-Grabarek E, Makarova K, Mavlyanov S, Abdullajanova N, Zamaraeva M. Comparative analysis of BPA and HQ toxic impacts on human erythrocytes, protective effect mechanism of tannins (Rhus typhina). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1200-1209. [PMID: 29082470 PMCID: PMC5766716 DOI: 10.1007/s11356-017-0520-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Several studies reported that bisphenol A (BPA) and its metabolite hydroquinone (HQ) have adverse effects on human and animal health. In this work, a comparative study of influence of the BPA and HQ, environment pollutants, on human erythrocytes was carried out. It was shown that BPA and HQ to varying extents caused oxidative damage in human erythrocytes: hemolysis, decreased GSH level, and methemoglobin formation. It was demonstrated that hydrolysable tannins 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose (C55H40O34) and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (C41H32O26) (PGG) isolated from the Rhus typhina L. leaves in the range of 1-50 μM concentrations inhibited hemolysis and methemoglobin formation and also increased intracellular reduced glutathione in erythrocytes treated with BPA or HQ. It was revealed by electron paramagnetic resonance (EPR) using 5-doxyl-stearic acid (5-DS) that C55H40O34 and C41H32O26 increased the rigidity of erythrocyte membranes at the depth of 5th carbon atom of the fatty acid hydrocarbon chain. Taken together, these results allow to conclude that tannins from the Rhus typhina L. leaves protect erythrocytes from oxidative stress caused by BPA or HQ both due to their antioxidant activity as well as their interaction with the erythrocyte membrane components.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Department of Biophysics, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Katerina Makarova
- Department of Physical Chemistry, Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Saidmukhtar Mavlyanov
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Abdullaev 83, Tashkent, Uzbekistan, 100125
| | - Nodira Abdullajanova
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Abdullaev 83, Tashkent, Uzbekistan, 100125
| | - Maria Zamaraeva
- Department of Biophysics, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| |
Collapse
|
19
|
Wang S, Zhu F. Chemical composition and biological activity of staghorn sumac (Rhus typhina). Food Chem 2017; 237:431-443. [DOI: 10.1016/j.foodchem.2017.05.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/04/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022]
|
20
|
Sekowski S, Ionov M, Abdulladjanova N, Makhmudov R, Mavlyanov S, Milowska K, Bryszewska M, Zamaraeva M. Interaction of α-synuclein with Rhus typhina tannin - Implication for Parkinson's disease. Colloids Surf B Biointerfaces 2017; 155:159-165. [PMID: 28419945 DOI: 10.1016/j.colsurfb.2017.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 01/17/2023]
Abstract
The etiology of Parkinson's disease (PD) relates to α-synuclein, a small protein with the ability to aggregate and form Lewy bodies. One of its prevention strategies is inhibition of α-synuclein oligomerization. We have investigated the interaction of α-synuclein and human serum albumin with 3,6-bis-О-di-О-galloyl-1,2,4-tri-О-galloyl-β-d-glucose (a tannin isolated from the plant Rhus typhina). Using fluorescence spectroscopy method we found that this tannin interacts strongly with α-synuclein forming complexes. Circular dichroism analysis showed a time-dependent inhibition of α-synuclein aggregation in the presence of the tannin. On the other hand, 3,6-bis-О-di-О-galloyl-1,2,4-tri-О-galloyl-β-d-glucose had a much stronger interaction with human serum albumin than α-synuclein. The calculated binding constant for tannin-protein interaction was considerably higher for albumin than α-synuclein. This tannin interacted with albumin through a "sphere of action" mechanism. The results lead to the conclusion that 3,6-bis-О-di-О-galloyl-1,2,4-tri-О-galloyl-β-d-glucose is a potent preventive compound against Parkinson's disease. However, this tannin interacts very strongly with human serum albumin, significantly reducing the bioavailability of this compound.
Collapse
Affiliation(s)
- Szymon Sekowski
- Department of Biophysics, Laboratory of Molecular Biophysics, Faculty of Biology and Chemistry, University of Bialystok, 15-950 Bialystok, Poland.
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Nodira Abdulladjanova
- Institute of Bioorganic Chemistry, Academy of Science of Republic of Uzbekistan, 100143, Tashkent, Uzbekistan
| | - Rustam Makhmudov
- Institute of Bioorganic Chemistry, Academy of Science of Republic of Uzbekistan, 100143, Tashkent, Uzbekistan
| | - Saidmukhtar Mavlyanov
- Institute of Bioorganic Chemistry, Academy of Science of Republic of Uzbekistan, 100143, Tashkent, Uzbekistan
| | - Katarzyna Milowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Maria Zamaraeva
- Department of Biophysics, Laboratory of Molecular Biophysics, Faculty of Biology and Chemistry, University of Bialystok, 15-950 Bialystok, Poland
| |
Collapse
|
21
|
Qiu DR, Wang DC, Yang SX, Zhang YM, Wei DS, Zhang MZ, Sun JZ, Cong J, Guo J, He SL, Qin JC. Chemical constituents from the fruits of Rhus typhina L. and their chemotaxonomic significance. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Moualek I, Iratni Aiche G, Mestar Guechaoui N, Lahcene S, Houali K. Antioxidant and anti-inflammatory activities of Arbutus unedo aqueous extract. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Olchowik-Grabarek E, Mavlyanov S, Abdullajanova N, Gieniusz R, Zamaraeva M. Specificity of Hydrolysable Tannins from Rhus typhina L. to Oxidants in Cell and Cell-Free Models. Appl Biochem Biotechnol 2016; 181:495-510. [PMID: 27600811 DOI: 10.1007/s12010-016-2226-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/26/2016] [Indexed: 01/08/2023]
Abstract
Polyphenols of plant origin with wide range of antiradical activity can prevent diseases caused by oxidative and inflammatory processes. In this study, we show using ESR method that the purified water-soluble extract from leaves of Rhus typhina L. containing hydrolysable tannins and its main component, 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose (C55H40O34), displayed a strong antiradical activity against the synthetic 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) in homogenous (solution) and heterogeneous systems (suspension of DPPH containing liposomes) in the range of 1-10 μg/ml. The C55H40O34 and extract at 1-30 μg/ml also efficiently, but to a various degree, decreased reactive oxygen and nitrogen species (RONS) formation induced in erythrocytes by oxidants, following the sequence: tert-butyl hydroperoxide (tBuOOH) > peroxynitrite (ONOO-) >hypochlorous acid (HClO). The explanation of these differences should be seen in the specificity of scavenging different RONS types. These relationships can be represented for C55H40O34 and the extract by the following order of selectivity: O.-2 ≥ NO· > ·OH > 1O2. The extract exerted a more pronounced antiradical effect in reaction with DPPH and ROS in all models of oxidative stress in erythrocytes in comparison with C55H40O34. The redox processes between the extract components and their specificity in relation to RONS can underlie this effect.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Department of Biophysics, University of Bialystok, K. Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Saidmukhtar Mavlyanov
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Abdullaev 83, Tashkent, Uzbekistan, 100125
| | - Nodira Abdullajanova
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Abdullaev 83, Tashkent, Uzbekistan, 100125
| | - Ryszard Gieniusz
- Laboratory of Magnetism, University of Bialystok, K. Ciolkowskiego 1L, 15-245, Bialystok, Poland
| | - Maria Zamaraeva
- Department of Biophysics, University of Bialystok, K. Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| |
Collapse
|
24
|
Nassiri-Asl M, Hosseinzadeh H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother Res 2016; 30:1392-403. [PMID: 27196869 DOI: 10.1002/ptr.5644] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 01/31/2023]
Abstract
Vitis vinifera fruit (grape) contains various phenolic compounds, flavonoids and stilbenes. In recent years, active constituents found in the fruits, seeds, stems, skin and pomaces of grapes have been identified and some have been studied. In this review, we summarize the active constituents of different parts of V. vinifera and their pharmacological effects including skin protection, antioxidant, antibacterial, anticancer, antiinflammatory and antidiabetic activities, as well as hepatoprotective, cardioprotective and neuroprotective effects in experimental studies published after our 2009 review. Clinical and toxicity studies have also been examined. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Sekowski S, Ionov M, Dubis A, Mavlyanov S, Bryszewska M, Zamaraeva M. Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes. J Membr Biol 2015; 249:171-9. [PMID: 26621636 DOI: 10.1007/s00232-015-9858-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/18/2015] [Indexed: 11/30/2022]
Abstract
We have examined the interaction between hydrolysable tannin 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-D-glucose (OGβDG) with neutral liposomes as a model of cell membranes composed of three lipids: lecithin, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at different mass ratios. OGβDG in the concentration range 0.5-15 µg/ml (0.4-12 µM) strongly interacts with liposomal membranes by changing their structure, surface charge and fluidity. Used OGβDG molecules decrease and increase the rigidity of hydrophilic surface and hydrophobic parts of liposomes, respectively. At higher concentrations of tannin (>15 µM), liposomes are aggregated. Fourier Transform Infra-Red (FTIR) analysis showed that mainly -OH groups from OGβDG and also PO(2-) groups from phospholipids are responsible for the interaction. Obtained data indicate the importance of membrane lipid composition in interactions between tannins and cells.
Collapse
Affiliation(s)
- Szymon Sekowski
- Department of Biophysics, Laboratory of Molecular Biophysics, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland.
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Alina Dubis
- Department of Natural Products Chemistry, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland.,Bio-Nano-Techno Center, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland
| | - Saidmukhtar Mavlyanov
- Institute of Bioorganic Chemistry, Academy of Science of Republic of Uzbekistan, Tashkent-143, Uzbekistan
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Maria Zamaraeva
- Department of Biophysics, Laboratory of Molecular Biophysics, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland
| |
Collapse
|
26
|
Rosa RLD, Nardi GM, Januário AGDF, Boçois R, Bagatini KP, Bonatto SJR, Pinto ADO, Ferreira JRN, Mariano LNB, Niero R, Iagher F. Anti-inflammatory, analgesic, and immunostimulatory effects of Luehea divaricata Mart. & Zucc. (Malvaceae) bark. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000300020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Luehea divaricata (Malvaceae) is a plant widely used for treatment of various inflammatory and infectious conditions; however few reports discuss its biological properties. The aim of this study was to evaluate the anti-inflammatory and analgesic effects as well as the macrophage activity in mice treated with the hydroalcoholic crude extract of L. divaricata(CLD). Thin layer chromatography revealed presence of epicathequin, stigmasterol, lupeol and α,β-amyrin in the extract. To evaluate the anti-inflammatory and analgesic activities, animals were subjected to paw edema induced by carrageenan test, writhing, formalin and capsaicin tests. Immunomodulatory activity was evaluated by adhesion and phagocytic capacity, lysosomal volume, and reactive oxygen species (ROS) production by peritoneal macrophages, after daily treatment with CLD for 15 days. CLD promoted reduction in paw edema (36.8% and 50.2%; p<0.05 at doses of 100 and 300 mg/kg, respectively), inhibited writhing behavior at the higher dose (64.4%, p<0.05), reduced formalin reactivity (81.2% and 91.6% at doses of 100 and 300 mg/kg, respectively, p<0.05), and reduced capsaicin reactivity by 63.9% (300 mg/kg). CLD (200 mg• kg-1• day-1) increased phagocytosis capacity of macrophages (~3 fold, p<0.05), neutral red uptake (~50%, p<0.001), and ROS production (~90%, p<0.001). These data suggest that CLD possesses anti-inflammatory, analgesic and immunostimulatory properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rivaldo Niero
- Chemical-Pharmaceutical Research Center University, Brazil
| | | |
Collapse
|
27
|
Abu-Reidah IM, Ali-Shtayeh MS, Jamous RM, Arráez-Román D, Segura-Carretero A. HPLC-DAD-ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem 2014; 166:179-191. [PMID: 25053044 DOI: 10.1016/j.foodchem.2014.06.011] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 01/18/2023]
Abstract
Rhus coriaria L. (sumac) is an important crop widely used in the Mediterranean basin as a food spice, and also in folk medicine, due to its health-promoting properties. Phytochemicals present in plant foods are in part responsible for these consequent health benefits. Nevertheless, detailed information on these bioactive compounds is still scarce. Therefore, the present work was aimed at investigating the phytochemical components of sumac fruit epicarp using HPLC-DAD-ESI-MS/MS in two different ionisation modes. The proposed method provided tentative identification of 211 phenolic and other phyto-constituents, most of which have not been described so far in R. coriaria fruits. More than 180 phytochemicals (tannins, (iso)flavonoids, terpenoids, etc.) are reported herein in sumac fruits for the first time. The obtained results highlight the importance of R. coriaria as a promising source of functional ingredients, and boost its potential use in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Ibrahim M Abu-Reidah
- Biodiversity & Environmental Research Center (BERC), Til, Nablus POB 696, Palestine; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva, 18071 Granada, Spain; Functional Food Research and Development Centre (CIDAF), PTS Granada, Avda. del Conocimiento, Edificio Bioregión, 18016 Granada, Spain
| | | | - Rana M Jamous
- Biodiversity & Environmental Research Center (BERC), Til, Nablus POB 696, Palestine
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva, 18071 Granada, Spain; Functional Food Research and Development Centre (CIDAF), PTS Granada, Avda. del Conocimiento, Edificio Bioregión, 18016 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva, 18071 Granada, Spain; Functional Food Research and Development Centre (CIDAF), PTS Granada, Avda. del Conocimiento, Edificio Bioregión, 18016 Granada, Spain.
| |
Collapse
|
28
|
Olchowik-Grabarek E, Swiecicka I, Andreeva-Kovaleskaya Z, Solonin A, Bonarska-Kujawa D, Kleszczyńska H, Mavlyanov S, Zamaraeva M. Role of Structural Changes Induced in Biological Membranes by Hydrolysable Tannins from Sumac Leaves (Rhus typhina L.) in their Antihemolytic and Antibacterial Effects. J Membr Biol 2014; 247:533-40. [DOI: 10.1007/s00232-014-9664-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/09/2014] [Indexed: 01/03/2023]
|