1
|
Hu SJ, Cheng G, Chen GC, Zhou H, Zhang Q, Zhao QM, Lian CX, Zhao ZH, Zhang QL, Han T, Zhang QY, Qin LP. Cannabinoid receptors type 2: Function and development in agonist discovery from synthetic and natural sources with applications for the therapy of osteoporosis. ARAB J CHEM 2024; 17:105536. [DOI: 10.1016/j.arabjc.2023.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
2
|
Thomas F, Kayser O. Improving CBCA synthase activity through rational protein design. J Biotechnol 2023; 363:40-49. [PMID: 36681096 DOI: 10.1016/j.jbiotec.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/15/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Global interest for the minor cannabinoid cannabichromene (CBC) is growing steadily, as potential pharmaceutical applications continue to emerge. Due to low-yielding and unspecific extraction processes from its plant host Cannabis sativa, a biotechnological production is desirable. The complete heterologous biosynthesis of several other cannabinoids has recently been demonstrated as an accessible platform. However, the enzyme involved in the biosynthesis of CBC precursor cannabichromenic acid (CBCA) suffers from comparatively low catalytic efficiency, has not been crystallized, and remains poorly characterized. This study contributes to overcoming these challenges in three unique aspects. A deep‑learning‑assisted prediction of the CBCA synthase crystal structure using DeepMinds AlphaFold is performed and evaluated. The predicted CBCA synthase structure scored considerably higher in various quality assessments than the alternative template‑based homology modeling approach. A robust and practical understanding of crucial structure-function relationships for CBCA synthase is provided and a new binding mode for the substrate uncovered. Rational design approaches and computational analyses to suggest CBCAS variants with facilitated activity are applied. Through subsequent screening the substrate conversion of those variants is compared to the native enzyme. The best variant presented in this study increases CBCA production from crude lysate 22-fold and is one of five positions where substitutions had a significantly favorable impact on product formation.
Collapse
Affiliation(s)
- Fabian Thomas
- Department of Technical Biochemistry, TU Dortmund University, 44227 Dortmund, Germany
| | - Oliver Kayser
- Department of Technical Biochemistry, TU Dortmund University, 44227 Dortmund, Germany.
| |
Collapse
|
3
|
Storozhuk MV. Cannabidiol: potential in treatment of neurological diseases, flax as a possible natural source of cannabidiol. Front Cell Neurosci 2023; 17:1131653. [PMID: 37138768 PMCID: PMC10150377 DOI: 10.3389/fncel.2023.1131653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
|
4
|
Mass Spectrometry-Based Metabolomics of Phytocannabinoids from Non-Cannabis Plant Origins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103301. [PMID: 35630777 PMCID: PMC9147514 DOI: 10.3390/molecules27103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Phytocannabinoids are isoprenylated resorcinyl polyketides produced mostly in glandular trichomes of Cannabis sativa L. These discoveries led to the identification of cannabinoid receptors, which modulate psychotropic and pharmacological reactions and are found primarily in the human central nervous system. As a result of the biogenetic process, aliphatic ketide phytocannabinoids are exclusively found in the cannabis species and have a limited natural distribution, whereas phenethyl-type phytocannabinoids are present in higher plants, liverworts, and fungi. The development of cannabinomics has uncovered evidence of new sources containing various phytocannabinoid derivatives. Phytocannabinoids have been isolated as artifacts from their carboxylated forms (pre-cannabinoids or acidic cannabinoids) from plant sources. In this review, the overview of the phytocannabinoid biosynthesis is presented. Different non-cannabis plant sources are described either from those belonging to the angiosperm species and bryophytes, together with their metabolomic structures. Lastly, we discuss the legal framework for the ingestion of these biological materials which currently receive the attention as a legal high.
Collapse
|
5
|
Appendino G, Taglialatela-Scafati O, Muñoz E. Cannabidiol (CBD) From Non-Cannabis Plants: Myth or Reality? Nat Prod Commun 2022. [DOI: 10.1177/1934578x221098843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reports on the occurrence of cannabidiol (CBD, 1) in non-cannabis plants are critically reviewed. The isolation of 1 from Humulus Kriya (sic) was fraudulent and from Trema orientalis and stevia dubious, while the occurrence of traces of 1 in flax needs additional confirmation. The presence of high concentration of cannabigerol (CBG, 3a) and its corresponding acidic precursor (GBGA, 3b) in Helichrysum umbraculigerum could not be confirmed, but this plant deserves additional attention due to the possible phytocannabinoids accumulation in selected chemotypes.
Collapse
Affiliation(s)
| | | | - Eduardo Muñoz
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Menéndez Pidal, Universidad de Córdoba, Spain Córdoba, Spain
| |
Collapse
|
6
|
Cannabis sativa Bioactive Compounds and Their Extraction, Separation, Purification, and Identification Technologies: An Updated Review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Wound coverage by the linen dressing accelerates ulcer healing. Postepy Dermatol Alergol 2021; 38:827-841. [PMID: 34849131 PMCID: PMC8610069 DOI: 10.5114/ada.2021.110116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Chronic ulcers are the main cause of morbidity and mortality, and the incidence of chronic wounds is expected to increase given that people live longer and that there are civil diseases. Aim Much attention in the treatment of wounds concerns a dressing that involves wound cleansing, bacterial balance, exudate management and local tissue in a wound environment. These important elements of the evaluation led to the development of an interactive dressing based entirely on flax raw materials. Material and methods The complete dressing for wound coverage was prepared from plant (flax) row products: seedcakes, oil, fiber. The content of bioactive compounds (qualitatively and quantitatively) was tested using chromatographic techniques, and their biological activity during tests on fibroblast cell cultures (NHDF). As a final step the clinical trial were performed. Results The dressings, which help control the microenvironment, combining with exudate using hydrophilic fibre, controlling the flow of exudate from the wound to the dressing were generated. They stimulate the activity in the healing cascade and accelerate the healing process by combining lignocellulose fibre with higher amounts of phenolic compounds, sterols, cannabidiol and unsaturated fatty acids simultaneously with the 3-hydroxybutyrate polymer. All constituents of linen dressing are natural, originate from two types of the engineered flax plant. Pre-clinical data reveal a reasonable reduction in wound size in patients with chronic leg ulcers treated with a linen dressing. Conclusions For the first time, a successful application of the innovative interactive linen dressing in the treatment of chronic wounds was noted.
Collapse
|
8
|
Abstract
The public and health care providers are increasingly curious about the potential medical benefits of Cannabis. In vitro and in vivo studies of Cannabis have suggested it has favorable effects on regulating pain, pruritus, and inflammation, making it a potentially attractive therapeutic agent for many dermatologic conditions. The body of literature reporting on the role of cannabinoids in dermatology is in its infancy but growing. We review the current research, possible cutaneous adverse effects, and future directions for cannabinoids and their use in skin cancer, acne, psoriasis, pruritus, dermatitis, scleroderma, dermatomyositis, cutaneous lupus erythematous, epidermolysis bullosa, pain, and wound healing.
Collapse
Affiliation(s)
- Kimberly Shao
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Campbell Stewart
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
9
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Dimmito MP, Stefanucci A, Della Valle A, Scioli G, Cichelli A, Mollica A. An overview on plants cannabinoids endorsed with cardiovascular effects. Biomed Pharmacother 2021; 142:111963. [PMID: 34332376 DOI: 10.1016/j.biopha.2021.111963] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
Nowadays cardiovascular diseases (CVDs) are the major causes for the reduction of the quality of life. The endocannabinoid system is an attractive therapeutic target for the treatment of cardiovascular disorders due to its involvement in vasomotor control, cardiac contractility, blood pressure and vascular inflammation. Alteration in cannabinoid signalling can be often related to cardiotoxicity, circulatory shock, hypertension, and atherosclerosis. Plants have been the major sources of medicines until modern eras in which researchers are experiencing a rediscovery of natural compounds as novel therapeutics. One of the most versatile plant is Cannabis sativa L., containing phytocannabinoids that may play a role in the treatment of CVDs. The aim of this review is to collect and investigate several less studied plants rich in cannabinoid-like active compounds able to interact with cannabinoid system; these plants may play a pivotal role in the treatment of disorders related to the cardiovascular system.
Collapse
Affiliation(s)
- Marilisa Pia Dimmito
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Alice Della Valle
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppe Scioli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adriano Mollica
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
11
|
Abstract
Abstract
Introduction
Institute of Natural Fibres and Medicinal Plants (INF&MP) is involved in gathering and evaluation of genetic resources of flax (Linum usitatissimum L.), hemp (Cannabis sativa L.) and medicinal plants, because Poland has signed the Convention on Biological Diversity. Field trials were carried out in 1990–2001 in the Experimental Station in Wojciechów located in Opolskie region. The research material was accessions of genetic resources from the collection of flax, stored at the Institute of Plant Breeding and Acclimatization Institute in Radzików near Warsaw.
Objective
The aim of the publication was to evaluate the following biological features of flax: time of beginning of flowering and vegetation period to yellow maturity.
Methods
The characteristics data for flax accessions are presented according to the methodology of development of the International Flax Database. Each flax accessions from the world collection of flax genetic resources received one of the following assessments of two vegetation periods: very short, short, medium, long and very long. Descriptors of biological features of flax were used, presented in “List of flax descriptors (L. usitatissimum L.)” edited by Janka Nozkova, published in 2011. These descriptors are used to develop the International Flax Database, which in turn helps in the rapid evaluation of the L. usitatissimum genetic resource collection. Carrying out a detailed characterization of biological features of L. usitatissimum accessions is very helpful for breeders in selecting genetic material for breeding new varieties of flax.
Results
The following results were obtained from the time of the beginning of flowering and the vegetation period to yellow maturity. Time of beginning of flowering was the following: very short – 0 accessions, short – 97 accessions, medium – 20 accessions, long – 2 accessions and very long – 0 accessions of flax. The genotypes tested were characterized by the following results in terms of vegetation period from sowing to yellow maturity: very short – 0, short – 37, medium – 62, long – 0 and very long – 0 accessions of flax.
Conclusions
Time of beginning of flowering and the vegetation period to yellow maturity shall be revalorised to the International Flax Database for those L. usitatissimum accessions that did not receive the same assessment of the biological features tested in the two or three years of the study.
Collapse
|
12
|
Karoyo A, Dehabadi L, Alabi W, Simonson CJ, Wilson LD. Hydration and Sorption Properties of Raw and Milled Flax Fibers. ACS OMEGA 2020; 5:6113-6121. [PMID: 32226894 PMCID: PMC7098004 DOI: 10.1021/acsomega.0c00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The physicochemical and hydration properties of mechanically modified flax fibers (FFs) were investigated herein. Raw flax fibers (FF-R) were ball-milled and sieved through mesh with various aperture sizes (420, 210, and 125 μm) to achieve modified samples, denoted as FF-420, FF-210, and FF-125, respectively. The physicochemical and hydration properties of FF-R with variable particle sizes were characterized using several complementary techniques: microscopy (SEM), spectroscopy (FT-IR, XRD, and XPS), thermoanalytical methods (DSC and TGA), adsorption isotherms using gas/dye probes, and solvent swelling studies in liquid H2O. The hydration of FF biomass is governed by the micropore structure and availability of active surface sites, as revealed by the adsorption isotherm results and the TGA/DSC profiles of the hydrated samples. Gravimetric water swelling, water retention values, and vapor adsorption results provide further support that particle size reduction of FF-R upon milling parallels the changes in surface chemical and physicochemical properties relevant to adsorption/hydration in the modified FF materials. This study outlines a facile strategy for the valorization and tuning of the physicochemical properties of agricultural FF biomass via mechanical treatment for diverse applications in biomedicine, energy recovery, food, and biosorbents for environmental remediation.
Collapse
Affiliation(s)
- Abdalla
H. Karoyo
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Leila Dehabadi
- Dr.
Ma’s Laboratories, Inc., Unit 4, 8118 North Fraser Way, Burnaby, British Columbia V5J 0E5, Canada
| | - Wahab Alabi
- Department
of Mechanical Engineering, University of
Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Carey J. Simonson
- Department
of Mechanical Engineering, University of
Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Lee D. Wilson
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
13
|
Styrczewska M, Zuk M, Boba A, Zalewski I, Kulma A. Use of Natural Components Derived from Oil Seed Plants for Treatment of Inflammatory Skin Diseases. Curr Pharm Des 2019; 25:2241-2263. [PMID: 31333096 DOI: 10.2174/1381612825666190716111700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
The incidence of inflammatory skin diseases is increasing, so the search for relevant therapeutics is of major concern. Plants are rich in phytochemicals which can alleviate many symptoms. In this review, we concentrate on compounds found in the seeds of widely cultivated plants, regularly used for oil production. The oils from these plants are often used to alleviate the symptoms of inflammatory diseases through synergetic action of unsaturated fatty acids and other phytochemicals most commonly derived from the terpenoid pathway. The knowledge of the chemical composition of oil seeds and the understanding of the mechanisms of action of single components should allow for a more tailored approach for the treatment for many diseases. In many cases, these seeds could serve as an efficient material for the isolation of pure phytochemicals. Here we present the content of phytochemicals, assumed to be responsible for healing properties of plant oils in a widely cultivated oil seed plants and review the proposed mechanism of action for fatty acids, selected mono-, sesqui-, di- and triterpenes, carotenoids, tocopherol and polyphenols.
Collapse
Affiliation(s)
- Monika Styrczewska
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Magdalena Zuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Aleksandra Boba
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Iwan Zalewski
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Anna Kulma
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
14
|
Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid Signaling in the Skin: Therapeutic Potential of the "C(ut)annabinoid" System. Molecules 2019; 24:E918. [PMID: 30845666 PMCID: PMC6429381 DOI: 10.3390/molecules24050918] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) has lately been proven to be an important, multifaceted homeostatic regulator, which influences a wide-variety of physiological processes all over the body. Its members, the endocannabinoids (eCBs; e.g., anandamide), the eCB-responsive receptors (e.g., CB₁, CB₂), as well as the complex enzyme and transporter apparatus involved in the metabolism of the ligands were shown to be expressed in several tissues, including the skin. Although the best studied functions over the ECS are related to the central nervous system and to immune processes, experimental efforts over the last two decades have unambiguously confirmed that cutaneous cannabinoid ("c[ut]annabinoid") signaling is deeply involved in the maintenance of skin homeostasis, barrier formation and regeneration, and its dysregulation was implicated to contribute to several highly prevalent diseases and disorders, e.g., atopic dermatitis, psoriasis, scleroderma, acne, hair growth and pigmentation disorders, keratin diseases, various tumors, and itch. The current review aims to give an overview of the available skin-relevant endo- and phytocannabinoid literature with a special emphasis on the putative translational potential, and to highlight promising future research directions as well as existing challenges.
Collapse
Affiliation(s)
- Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- HCEMM Nonprofit Ltd., 6720 Szeged, Hungary.
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
15
|
Characterisation and evaluation of morphological trials, biological features and seed yield of 23 flax accessions (Linum usitatissimum L.) of different geographical origins. HERBA POLONICA 2019. [DOI: 10.2478/hepo-2018-0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Summary
Introduction: The Institute of Natural Fibres and Medicinal Plants (INF&MP) is involved in the protection of the genetic resources of flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.). In 1998–2000, the INF&MP conducted research titled “Collection and evaluation of flax and hemp cultivars and ecotypes”. Poland participates in the programme, financed by the Ministry of Agriculture and Rural Development because our country has signed the Convention on Biological Diversity.
Objective: The objective of the research was the evaluation of the genetic resources of 23 accessions of flax. The characteristics data for flax accessions are presented according to traditional methodology and according to the methodology for developing the International Flax Data Base.
Methods: Field trials were carried out in 1998–2000 in the experimental station in Wojciechów, located in the Opolskie region. The objective was to evaluate the morphological traits, biological features and seed yield of 23 accessions of flax. The research included the following genotypes of Linum usitatissimum L. according to type of use: 12 linseed varieties, three landraces, one accession of unknown type of use, six fibre varieties and one genotype of both types of use.
Results: The total plant length of Linum was short for 12 accessions of flax, medium short (7) and medium (4). The technical length was short (17 accessions), medium short (3) and medium (3). The stem thickness for all accessions was medium, i.e. between 1.2 and 2.0 mm. The panicle length was short (12 accessions), medium (10) and long (1). A number of primary lateral branches of the stems of all flax accessions was medium (4–8 branches). The 1000 seed weight was low for 21 accessions of flax and very low in two genotypes: Currong and UKR 97 104. The size of the corolla (flower) was small (9), medium (12) and large (2) – varieties: Martin and Maxigold. The petal colour of the corolla was blue (11), light blue (8) and white (4) – Crystal, Hella, Kreola, Achay.
Conclusions: Morphological characterisation of the stamen showed that accession K-1390 was segregating because the anther colour was bluish and greish. The highest resistance to lodging was observed for Abby, Peak and Olinette. The following accessions of flax were very resistant to Fusarium: Martin, UKR 97269, Kijewskij and Ukraińskij 3; resistant to Fusarium: Abby, Peak, Olinette, Crystal, Gold Merchant, Currong and Ukraińskij 2. The following varieties were very susceptible to Fusarium: Hella, Kreola, Maxigold and Achay. These varieties should not be used for cross breeding. The best average seed yield in 1998–2000 in Wojciechów was found in the following accessions of flax: Abby (191%), Gold Merchant (162%), Currong (161%), Olinette (151%), PEAK (148%), UKR 97269 (148%), Crystal (138%), Ukraiński 3 (132%), Martin (130%), Pacific (110%) and Ukraiński 2 (103%). These varieties are particularly valuable for flax breeders.
Collapse
|
16
|
De Prez J, Van Vuure AW, Ivens J, Aerts G, Van de Voorde I. Enzymatic treatment of flax for use in composites. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 20:e00294. [PMID: 30568888 PMCID: PMC6288048 DOI: 10.1016/j.btre.2018.e00294] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/21/2018] [Accepted: 11/19/2018] [Indexed: 02/08/2023]
Abstract
Enzymes are highly advantageous compared to dew retting to reach fibers of high and consistent quality. However, no unambiguous insights have been retained from the research, i.e. lacking a clear directive of which enzyme activities are strictly needed. Methods for evaluating enzymatic retting should be standardized, with characterization of chemical, morphological and mechanical properties and analysis of the ease of extraction. Moreover, evaluation should not only be focused on the microscopic level of the fiber but the performance of the resulting composite materials should be assessed as well. The review also covers research challenges for introducing enzymatic treatment in large scale production as well as inherent limitations and economic aspects. Besides their high selectivity and environmentally-friendly processing conditions, applying enzymes may also result in a less severe mechanical post-treatment implying less fiber damage. Moreover, recycling of enzymes and utilization of byproducts may increase the economic feasibility of the process.
Collapse
Affiliation(s)
- Jana De Prez
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M²S), Cluster for Bioengineering Technology (CBeT), Laboratory of Enzyme, Fermentation and Brewing Technology (EFBT), Technology Campus Ghent, Gebroeders De Smetstraat 1, 9000, Ghent, Belgium
| | - Aart Willem Van Vuure
- KU Leuven, Faculty of Engineering Technology, Department of Materials Engineering (MTM), Technology Cluster for Materials Technology (TC-MT), Kasteelpark Arenberg 44 – bus 2450, 3001, Leuven, Belgium
| | - Jan Ivens
- KU Leuven, Faculty of Engineering Technology, Department of Materials Engineering (MTM), Technology Cluster for Materials Technology (TC-MT), Kasteelpark Arenberg 44 – bus 2450, 3001, Leuven, Belgium
| | - Guido Aerts
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M²S), Cluster for Bioengineering Technology (CBeT), Laboratory of Enzyme, Fermentation and Brewing Technology (EFBT), Technology Campus Ghent, Gebroeders De Smetstraat 1, 9000, Ghent, Belgium
| | - Ilse Van de Voorde
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M²S), Cluster for Bioengineering Technology (CBeT), Laboratory of Enzyme, Fermentation and Brewing Technology (EFBT), Technology Campus Ghent, Gebroeders De Smetstraat 1, 9000, Ghent, Belgium
| |
Collapse
|
17
|
The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol 2018; 157:122-133. [PMID: 30138623 DOI: 10.1016/j.bcp.2018.08.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
The skin is the largest organ of the body and has a complex and very active structure that contributes to homeostasis and provides the first line defense against injury and infection. In the past few years it has become evident that the endocannabinoid system (ECS) plays a relevant role in healthy and diseased skin. Specifically, we review how the dysregulation of ECS has been associated to dermatological disorders such as atopic dermatitis, psoriasis, scleroderma and skin cancer. Therefore, the druggability of the ECS could open new research avenues for the treatment of the pathologies mentioned. Numerous studies have reported that phytocannabinoids and their biological analogues modulate a complex network pharmacology involved in the modulation of ECS, focusing on classical cannabinoid receptors, transient receptor potential channels (TRPs), and peroxisome proliferator-activated receptors (PPARs). The combined targeting of several end-points seems critical to provide better chances of therapeutically success, in sharp contrast to the one-disease-one-target dogma that permeates current drug discovery campaigns.
Collapse
|
18
|
|
19
|
Hussain T, Plunkett B, Ejaz M, Espley RV, Kayser O. Identification of Putative Precursor Genes for the Biosynthesis of Cannabinoid-Like Compound in Radula marginata. FRONTIERS IN PLANT SCIENCE 2018; 9:537. [PMID: 29868043 PMCID: PMC5954354 DOI: 10.3389/fpls.2018.00537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/06/2018] [Indexed: 05/06/2023]
Abstract
The liverwort Radula marginata belongs to the bryophyte division of land plants and is a prospective alternate source of cannabinoid-like compounds. However, mechanistic insights into the molecular pathways directing the synthesis of these cannabinoid-like compounds have been hindered due to the lack of genetic information. This prompted us to do deep sequencing, de novo assembly and annotation of R. marginata transcriptome, which resulted in the identification and validation of the genes for cannabinoid biosynthetic pathway. In total, we have identified 11,421 putative genes encoding 1,554 enzymes from 145 biosynthetic pathways. Interestingly, we have identified all the upstream genes of the central precursor of cannabinoid biosynthesis, cannabigerolic acid (CBGA), including its two first intermediates, stilbene acid (SA) and geranyl diphosphate (GPP). Expression of all these genes was validated using quantitative real-time PCR. We have characterized the protein structure of stilbene synthase (STS), which is considered as a homolog of olivetolic acid in R. marginata. Moreover, the metabolomics approach enabled us to identify CBGA-analogous compounds using electrospray ionization mass spectrometry (ESI-MS/MS) and gas chromatography mass spectrometry (GC-MS). Transcriptomic analysis revealed 1085 transcription factors (TF) from 39 families. Comparative analysis showed that six TF families have been uniquely predicted in R. marginata. In addition, the bioinformatics analysis predicted a large number of simple sequence repeats (SSRs) and non-coding RNAs (ncRNAs). Our results collectively provide mechanistic insights into the putative precursor genes for the biosynthesis of cannabinoid-like compounds and a novel transcriptomic resource for R. marginata. The large-scale transcriptomic resource generated in this study would further serve as a reference transcriptome to explore the Radulaceae family.
Collapse
Affiliation(s)
- Tajammul Hussain
- Department of Technical Biochemistry, TU Dortmund University, Dortmund, Germany
- *Correspondence: Tajammul Hussain
| | - Blue Plunkett
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| | - Mahwish Ejaz
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Richard V. Espley
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| | - Oliver Kayser
- Department of Technical Biochemistry, TU Dortmund University, Dortmund, Germany
- Oliver Kayser
| |
Collapse
|
20
|
Lewis M, Yang Y, Wasilewski E, Clarke HA, Kotra LP. Chemical Profiling of Medical Cannabis Extracts. ACS OMEGA 2017; 2:6091-6103. [PMID: 30023762 PMCID: PMC6044620 DOI: 10.1021/acsomega.7b00996] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/06/2017] [Indexed: 05/06/2023]
Abstract
Medical cannabis has been legally available for patients in a number of countries. Licensed producers produce a variety of cannabis strains with different concentrations of phytocannabinoids. Phytocannabinoids in medical cannabis are decarboxylated when subjected to heating for consumption by the patients or when extracted for preparing cannabis derivative products. There is little understanding of the true chemical composition of cannabis extracts, changes occurring during heating of the extracts, and their relevance to pharmacological effects. We investigated the extract from a popular commercial strain of medical cannabis, prior to and after decarboxylation, to understand the chemical profiles. A total of up to 62 compounds could be identified simultaneously in the extract derived from commercial cannabis, including up to 23 phytocannabinoids. Upon heating, several chemical changes take place, including the loss of carboxylic group from the acidic phytocannabinoids. This investigation attempts to reveal the chemical complexity of commercial medical cannabis extracts and the differences in the chemical composition of the native extract and the one subjected to heat. Comprehensive chemical analyses of medical cannabis extracts are needed for standardization, consistency, and, more importantly, an informed employment of this substance for therapeutic purposes.
Collapse
Affiliation(s)
- Melissa
M. Lewis
- Centre
for Molecular Design and Preformulations, and Division of
Experimental Therapeutics, Toronto General Research Institute, Department of Anesthesia
and Pain Management, Toronto General Hospital, and Multi-Organ Transplant Program, Toronto
General Hospital, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Yi Yang
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Ewa Wasilewski
- Centre
for Molecular Design and Preformulations, and Division of
Experimental Therapeutics, Toronto General Research Institute, Department of Anesthesia
and Pain Management, Toronto General Hospital, and Multi-Organ Transplant Program, Toronto
General Hospital, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Hance A. Clarke
- Centre
for Molecular Design and Preformulations, and Division of
Experimental Therapeutics, Toronto General Research Institute, Department of Anesthesia
and Pain Management, Toronto General Hospital, and Multi-Organ Transplant Program, Toronto
General Hospital, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department
of Anesthesia, Faculty of Medicine, University
of Toronto, Toronto, Ontario, Canada M5G 1E2
| | - Lakshmi P. Kotra
- Centre
for Molecular Design and Preformulations, and Division of
Experimental Therapeutics, Toronto General Research Institute, Department of Anesthesia
and Pain Management, Toronto General Hospital, and Multi-Organ Transplant Program, Toronto
General Hospital, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
- E-mail: . Tel. (416) 581-7601. #5-356, PMCRT/MaRS Center,
101 College Street, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
21
|
Beyond Cannabis: Plants and the Endocannabinoid System. Trends Pharmacol Sci 2016; 37:594-605. [DOI: 10.1016/j.tips.2016.04.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022]
|
22
|
Sharma C, Sadek B, Goyal SN, Sinha S, Kamal MA, Ojha S. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:238482. [PMID: 26664449 PMCID: PMC4664820 DOI: 10.1155/2015/238482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ(9)-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| | - Sameer N. Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Mahrastra 425405, India
| | - Satyesh Sinha
- Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
23
|
Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:862391. [PMID: 26347154 PMCID: PMC4539444 DOI: 10.1155/2015/862391] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/30/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022]
Abstract
Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification.
Collapse
|
24
|
Greydanus DE, Hawver EK, Greydanus MM, Merrick J. Marijuana: current concepts(†). Front Public Health 2013; 1:42. [PMID: 24350211 PMCID: PMC3859982 DOI: 10.3389/fpubh.2013.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022] Open
Abstract
Marijuana (cannabis) remains a controversial drug in the twenty-first century. This paper considers current research on use of Cannabis sativa and its constituents such as the cannabinoids. Topics reviewed include prevalence of cannabis (pot) use, other drugs consumed with pot, the endocannabinoid system, use of medicinal marijuana, medical adverse effects of cannabis, and psychiatric adverse effects of cannabis use. Treatment of cannabis withdrawal and dependence is difficult and remains mainly based on psychological therapy; current research on pharmacologic management of problems related to cannabis consumption is also considered. The potential role of specific cannabinoids for medical benefit will be revealed as the twenty-first century matures. However, potential dangerous adverse effects from smoking marijuana are well known and should be clearly taught to a public that is often confused by a media-driven, though false message and promise of benign pot consumption.
Collapse
Affiliation(s)
- Donald E Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University School of Medicine , Kalamazoo, MI , USA
| | - Elizabeth K Hawver
- Department of Pediatric and Adolescent Medicine, Western Michigan University School of Medicine , Kalamazoo, MI , USA
| | - Megan M Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University School of Medicine , Kalamazoo, MI , USA
| | - Joav Merrick
- National Institute of Child Health and Human Development , Jerusalem , Israel ; Health Services, Division for Intellectual and Developmental Disabilities, Ministry of Social Affairs and Social Services , Jerusalem , Israel ; Division of Pediatrics, Hadassah Hebrew University Medical Center, Mt. Scopus Campus , Jerusalem , Israel ; Kentucky Children's Hospital, University of Kentucky College of Medicine , Lexington, KY , USA
| |
Collapse
|
25
|
Dymińska L, Szatkowski M, Wróbel-Kwiatkowska M, Zuk M, Kurzawa A, Syska W, Gągor A, Zawadzki M, Ptak M, Mączka M, Hanuza J, Szopa J. Improved properties of micronized genetically modified flax fibers. J Biotechnol 2013; 164:292-9. [PMID: 23353730 DOI: 10.1016/j.jbiotec.2013.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
The aim of this study was to investigate the effect of micronization on the compound content, crystalline structure and physicochemical properties of fiber from genetically modified (GM) flax. The GM flax was transformed with three bacterial (Ralstonia eutropha) genes coding for enzymes of polyhydroxybutyrate (PHB) synthesis and under the control of the vascular bundle promoter. The modification resulted in fibers containing the 3-hydroxybutyrate polymer bound to cellulose via hydrogen and ester bonds and antioxidant compounds (phenolic acids, vanillin, vitexin, etc.). The fibers appeared to have a significantly decreased particle size after 20h of ball-milling treatment. Micronized fibers showed reduced phenolic contents and antioxidant capacity compared to the results for untreated fibers. An increased level of PHB was also detected. Micronization introduces structural changes in fiber constituents (cellulose, hemicellulose, pectin, lignin, PHB) and micronized fibers exhibit more functional groups (hydroxyl, carboxyl) derived from those constituents. It is thus concluded that micronization treatments improve the functional properties of the fiber components.
Collapse
Affiliation(s)
- Lucyna Dymińska
- Department of Bioorganic Chemistry, Wrocław University of Economics, Wrocław, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|