1
|
Potkule JB, Kahar SP, Kumar M, Annapure US. Impact of non-thermal techniques on enzyme modifications for their applications in food. Int J Biol Macromol 2024; 275:133566. [PMID: 38960264 DOI: 10.1016/j.ijbiomac.2024.133566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The present review elaborates on the details of the enzyme, its structure, specificity, and the mechanism of action of selected enzymes as well as structural changes and loss or gain of activity after non-thermal treatments for food-based applications. Enzymes are biological catalysts found in various systems such as plants, animals, and microorganisms. Most of the enzymes have their optimum pH, temperature, and substrate or group of substrates. The conformational modification of enzymes either increases or decreases the rate of reaction at different pH, and temperature conditions. Enzymes are modified by different techniques to enhance the activity of enzymes for their commercial applications mainly due to the high cost of enzymes, stability, and difficulties that occur during the use of enzymes in different conditions. On the opposite, enzyme inactivation provides its application to extend the shelf life of fruits and vegetables by denaturation and partial inactivation of enzymes. Hence, the activation and inactivation of enzymes are studied by non-thermal techniques in both the model and the food system. The highly reactive species generated during non-thermal techniques cause chemical and structural modification. The enzyme modifications depend on the type and source of the enzyme, type of technique, and the parameters used.
Collapse
Affiliation(s)
- Jayashree B Potkule
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Suraj P Kahar
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai, India
| | - Uday S Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India; Institute of Chemical Technology, Marathwada Campus, Jalna, India.
| |
Collapse
|
2
|
Chen R, Zhao J, Sui Z, Danino D, Corke H. Comparative analysis of granular starch hydrolysis and multi-structural changes by diverse α-amylases sources: Insights from waxy rice starch. Food Chem 2024; 444:138622. [PMID: 38310779 DOI: 10.1016/j.foodchem.2024.138622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
Three cultivars of waxy rice starch with different multi-scale structures were subjected to α-amylase hydrolysis to determine amylopectin fine structure, production of oligosaccharides, morphology, and crystallinity of the partially hydrolyzed starch granules. α-amylases hydrolyzed the amylopectin B2 chain during the initial stage of hydrolysis, suggesting that it is primarily located in the outer shell of the granules. For waxy rice starch with loose structure, α-amylases attacked the crystalline and amorphous regions simultaneously in the initial stage, while for starch granules with compact structure, the outer shell blocklet (crystalline structure) can be a hurdle for α-amylases to proceed to hydrolysis of the internal granule structure. The ability of α-amylases from porcine pancreatic α-amylases to attack the outer shell crystalline structure was lower than that of α-amylases from Bacillus amyloliquefaciens and Aspergillus oryzae. These results show that α-amylase source and rice cultivar combinations can be used to generate diverse structures in degraded waxy rice starch.
Collapse
Affiliation(s)
- Ri Chen
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Jingjing Zhao
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dganit Danino
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Harold Corke
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China.
| |
Collapse
|
3
|
Liu P, Ma L, Duan W, Gao W, Fang Y, Guo L, Yuan C, Wu Z, Cui B. Maltogenic amylase: Its structure, molecular modification, and effects on starch and starch-based products. Carbohydr Polym 2023; 319:121183. [PMID: 37567718 DOI: 10.1016/j.carbpol.2023.121183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Maltogenic amylase (MAA) (EC3.2.1.133), a member of the glycoside hydrolase family 13 that mainly produces α-maltose, is widely used to extend the shelf life of bread as it softens bread, improves its elasticity, and preserves its flavor without affecting dough processing. Moreover, MAA is used as an improver in flour products. Despite its antiaging properties, the hydrolytic capacity and thermal stability of MAA can't meet the requirements of industrial application. However, genetic engineering techniques used for the molecular modification of MAA can alter its functional properties to meet application-specific requirements. This review briefly introduces the structure and functions of MAA, its application in starch modification, its effects on starch-based products, and its molecular modification to provide better insights for the application of genetically modified MAA in starch modification.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Li Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wenmin Duan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
4
|
Wang Y, Bai Y, Dong J, Liu J, Jin Z. Deciphering the structural and functional characteristics of an innovative small cluster branched α-glucan produced by sequential enzymatic synthesis. Carbohydr Polym 2023; 310:120696. [PMID: 36925237 DOI: 10.1016/j.carbpol.2023.120696] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Highly branched α-glucan (HBAG) proved to be a promising material as an osmotic agent in peritoneal dialysis solutions. However, high resistance of HBAG to amylolytic enzymes might be a potential drawback for peritoneal dialysis due to its high degree of branching (20-30 %). To address this issue, we designed a small-clustered α-glucan (SCAG) with a relatively low molecular weight (Mw) and limited branching. Structural characteristics revealed that SCAG was successfully synthesized by modifying waxy rice starch (WRS) using sequential maltogenic α-amylase (MA) and starch branching enzyme (BE). The Mw of SCAG was 1.40 × 105 Da, and its (α1 → 6) bonds ratio was 8.93 %, which was below that of HBAG. A relatively short branch distribution was observed in SCAG (CL = 6.27). Short-range orderliness of WRS was reduced from 0.749 to 0.322 with the MABE incubation. Additionally, SCAG had an extremely low viscosity (~12 cP) and nearly no retrogradation. Although the resistance of SCAG to amylolytic enzymes was enhanced by 15.22 % compared with native WRS, the extent was significantly lower than that of HBAG in previous studies. These new findings demonstrate the potential of SCAG as a novel functional α-glucan in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Jingjing Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Jialin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
5
|
Abedi E, Savadkoohi S, Banasaz S. The effect of thiolation process with l-cysteine on amylolysis efficiency of starch-cysteine conjugate by α-amylase. Food Chem 2023; 410:135261. [PMID: 36610093 DOI: 10.1016/j.foodchem.2022.135261] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/29/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
l-Cysteine (l-Cys) pre-treatment at two concentrations (150 mg/kg; PC1 and 300 mg/kg; PC2) on potato starch was conducted to produce starch-cysteine conjugates. Afterward, the effect of α-amylase on starch digestibility of potato native (PE) and starch-cysteine conjugates (PC1E and PC2E) were examined. Thiolation not only damaged starch according to the formation of pore and blister-like spots on the surface of starch granules, but also provided the functional group to immobilize α-amylase. Starch-cysteine conjugates showed a significantly greater degree of hydrolysis 24.1 % (PC1E) and 36.5 % (PC2E) in comparison with (16.8 %; PE). Destroying the granules integrity were accompanied with decreased crystallinity from 37.7 % to 33.1 % (PC1), 31.1 % (PC2), 27.6 % (PC1E) and 22.4 % (PC2E) with increasing thiol content (%) on surface from 2.3 %; PC1 to 3.4 %; PC2. The ratio of 1047/1022 cm- 1 reduced from 1.112 (native potato starch) to 0.974 (PC1E) and 0.867 (PC2E) after being subjected to α-amylase. Additionally, substantially low pasting viscosities (determined by RVA) along with the thermal properties (determined by DSC) of starch-cysteine conjugates treated with α-amylase could confirm the degradation of molecular structures containing low swelling power.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | - Sobhan Savadkoohi
- Department of Food Science and Technology, Hela Spice Australia, Melbourne, Victoria, Australia
| | - Shahin Banasaz
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualit́e des Produits Animaux, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
6
|
Stachowska-Pietka J, Waniewski J, Olszowska A, Garcia-Lopez E, Wankowicz Z, Lindholm B. Modelling of icodextrin hydrolysis and kinetics during peritoneal dialysis. Sci Rep 2023; 13:6526. [PMID: 37085652 PMCID: PMC10121670 DOI: 10.1038/s41598-023-33480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
In peritoneal dialysis, ultrafiltration is achieved by adding an osmotic agent into the dialysis fluid. During an exchange with icodextrin-based solution, polysaccharide chains are degraded by α-amylase activity in dialysate, influencing its osmotic properties. We modelled water and solute removal taking into account degradation by α-amylase and absorption of icodextrin from the peritoneal cavity. Data from 16 h dwells with icodextrin-based solution in 11 patients (3 icodextrin-exposed, 8 icodextrin-naïve at the start of the study) on dialysate volume, dialysate concentrations of glucose, urea, creatinine and α-amylase, and dialysate and blood concentrations of seven molecular weight fractions of icodextrin were analysed. The three-pore model was extended to describe hydrolysis of icodextrin by α-amylase. The extended model accurately predicted kinetics of ultrafiltration, small solutes and icodextrin fractions in dialysate, indicating differences in degradation kinetics between icodextrin-naïve and icodextrin-exposed patients. In addition, the model provided information on the patterns of icodextrin degradation caused by α-amylase. Modelling of icodextrin kinetics using an extended three-pore model that takes into account absorption of icodextrin and changes in α-amylase activity in the dialysate provided accurate description of peritoneal transport and information on patterns of icodextrin hydrolysis during long icodextrin dwells.
Collapse
Affiliation(s)
- Joanna Stachowska-Pietka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland.
| | - Jacek Waniewski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Anna Olszowska
- Military Institute of Medicine, Central Hospital of the Ministry of Public Defence, Warsaw, Poland
| | - Elvia Garcia-Lopez
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine and Baxter Novum, Karolinska Institutet, Stockholm, Sweden
| | - Zofia Wankowicz
- Military Institute of Medicine, Central Hospital of the Ministry of Public Defence, Warsaw, Poland
| | - Bengt Lindholm
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine and Baxter Novum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Pan S, Wang G, Sun C, Du L, Qi X, Wei Y. A novel maltooligosaccharide-forming α-amylase from Bacillus cereus and its application in the preparation of maltopentaose product. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
8
|
AmyJ33, a truncated amylase with improved catalytic properties. Biotechnol Lett 2022; 44:1447-1463. [DOI: 10.1007/s10529-022-03311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
9
|
Abedi E, Sayadi M, Pourmohammadi K. Effect of freezing-thawing pre-treatment on enzymatic modification of corn and potato starch treated with activated α-amylase: Investigation of functional properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Ding N, Zhao B, Han X, Li C, Gu Z, Li Z. Starch-Binding Domain Modulates the Specificity of Maltopentaose Production at Moderate Temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9057-9065. [PMID: 35829707 DOI: 10.1021/acs.jafc.2c03031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maltooligosaccharide-forming amylases (MFAs) hydrolyze starch into maltooligosaccharides with a defined degree of polymerization. However, the enzymatic mechanism underlying the product specificity remains partially understood. Here, we show that Saccharophagus degradans MFA (SdMFA) contains a noncatalytic starch-binding domain (SBD), which belongs to the carbohydrate-binding module family 20 and enables modulation of the product specificity. Removal of SBD from SdMFA resulted in a 3.5-fold lower production of the target maltopentaose. Conversely, appending SBD to another MFA from Bacillus megaterium improved the specificity for maltopentaose. SdMFA exhibited a higher level of exo-action and greater product specificity when reacting with amylopectin than with amylose. Our structural analysis and molecular dynamics simulation suggested that SBD could promote the recognition of nonreducing ends of substrates and delivery of the substrate chain to a groove end toward the active site in the catalytic domain. Furthermore, we demonstrate that a moderate temperature could mediate SBD to interact with the substrate with loose affinity, which facilitates the substrate to slide toward the active site. Together, our study reveals the structural and conditional bases for the specificity of MFAs, providing generalizable strategies to engineer MFAs and optimize the biosynthesis of maltooligosaccharides.
Collapse
Affiliation(s)
- Ning Ding
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Xu Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Zhao F, Li Y, Li C, Ban X, Gu Z, Li Z. Glycosyltransferases improve breadmaking quality by altering multiscale structure in gluten-free bread. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Atkinson E, Tuza Z, Perrino G, Stan GB, Ledesma-Amaro R. Resource-aware whole-cell model of division of labour in a microbial consortium for complex-substrate degradation. Microb Cell Fact 2022; 21:115. [PMID: 35698129 PMCID: PMC9195437 DOI: 10.1186/s12934-022-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low-cost sustainable feedstocks are essential for commercially viable biotechnologies. These feedstocks, often derived from plant or food waste, contain a multitude of different complex biomolecules which require multiple enzymes to hydrolyse and metabolise. Current standard biotechnology uses monocultures in which a single host expresses all the proteins required for the consolidated bioprocess. However, these hosts have limited capacity for expressing proteins before growth is impacted. This limitation may be overcome by utilising division of labour (DOL) in a consortium, where each member expresses a single protein of a longer degradation pathway. RESULTS Here, we model a two-strain consortium, with one strain expressing an endohydrolase and a second strain expressing an exohydrolase, for cooperative degradation of a complex substrate. Our results suggest that there is a balance between increasing expression to enhance degradation versus the burden that higher expression causes. Once a threshold of burden is reached, the consortium will consistently perform better than an equivalent single-cell monoculture. CONCLUSIONS We demonstrate that resource-aware whole-cell models can be used to predict the benefits and limitations of using consortia systems to overcome burden. Our model predicts the region of expression where DOL would be beneficial for growth on starch, which will assist in making informed design choices for this, and other, complex-substrate degradation pathways.
Collapse
Affiliation(s)
- Eliza Atkinson
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Zoltan Tuza
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Giansimone Perrino
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Guy-Bart Stan
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK.
| |
Collapse
|
13
|
Wang Y, Ral JP, Saulnier L, Kansou K. How Does Starch Structure Impact Amylolysis? Review of Current Strategies for Starch Digestibility Study. Foods 2022; 11:foods11091223. [PMID: 35563947 PMCID: PMC9104245 DOI: 10.3390/foods11091223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
In vitro digestibility of starch is a common analysis in human nutrition research, and generally consists of performing the hydrolysis of starch by α-amylase in specific conditions. Similar in vitro assays are also used in other research fields, where different methods can be used. Overall, the in vitro hydrolysis of native starch is a bridge between all of these methods. In this literature review, we examine the use of amylolysis assays in recent publications investigating the complex starch structure-amylolysis relation. This review is divided in two parts: (1) a brief review of the factors influencing the hydrolysis of starch and (2) a systematic review of the experimental designs and methods used in publications for the period 2016–2020. The latter reports on starch materials, factors investigated, characterization of the starch hydrolysis kinetics and data analysis techniques. This review shows that the dominant research strategy favors the comparison between a few starch samples most frequently described through crystallinity, granule type, amylose and chain length distribution with marked characteristics. This strategy aims at circumventing the multifactorial aspect of the starch digestion mechanism by focusing on specific features. An alternative strategy relies on computational approaches such as multivariate statistical analysis and machine learning techniques to decipher the role of each factor on amylolysis. While promising to address complexity, the limited use of a computational approach can be explained by the small size of the experimental datasets in most publications. This review shows that key steps towards the production of larger datasets are already available, in particular the generalization of rapid hydrolysis assays and the development of quantification approaches for most analytical results.
Collapse
Affiliation(s)
- Yuzi Wang
- INRAE, UR1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France; (Y.W.); (L.S.)
| | - Jean-Philippe Ral
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia;
| | - Luc Saulnier
- INRAE, UR1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France; (Y.W.); (L.S.)
| | - Kamal Kansou
- INRAE, UR1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France; (Y.W.); (L.S.)
- Correspondence: ; Tel.: +33-02-40-67-51-49
| |
Collapse
|
14
|
Xiao Z, Hou X, Zhang T, Yuan Y, Xiao J, Song W, Yue T. Starch-digesting product analysis based on the hydrophilic interaction liquid chromatography coupled mass spectrometry method to evaluate the inhibition of flavonoids on pancreatic α-amylase. Food Chem 2022; 372:131175. [PMID: 34653779 DOI: 10.1016/j.foodchem.2021.131175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
An accurate hydrophilic interaction liquid chromatography coupled mass spectrometry (HILIC-MS) method is presented to characterize starch digestion by α-amylase and measure the inhibition properties of flavonoids against α-amylase in vitro. Eleven products were found as 1 → 4 linkage glucose oligosaccharides with different degrees of polymerization (DPs) from 2 to 12. The products with DPs of 2, 3, 6, 7, and 9 had higher yields. The product with DP of 9 had the highest yields, which first increased and then decreased with the reaction time. Pelargonidin has the best inhibition activity on all enzyme products. The 3'-hydroxyl of B-ring enhanced the inhibition activity of flavonol and flavone but weakened that of anthocyanin. The C-ring 3-hydroxyl increased the inhibition effect of flavonol on maltose but decreased that on the products with higher DPs than flavone. The HILIC-MS method can provide more detailed information on enzyme products for the study of flavonoids inhibiting α-amylase.
Collapse
Affiliation(s)
- Zhengcao Xiao
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an, Shaanxi 710069, China
| | - Xiaohui Hou
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an, Shaanxi 710069, China
| | - Ting Zhang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an, Shaanxi 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an, Shaanxi 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
15
|
Oyedeji O, Olakusehin VO, Okonji RE. A thermostable extracellular α-amylase from Aspergillus flavus S2-OY: Purification, characterisation and application in raw starch hydrolysis. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2005032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Olaoluwa Oyedeji
- Department of Microbiology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Raphael Emuebie Okonji
- Department of Biochemistry and Molecular Biology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
16
|
Gui Y, Zou F, Li J, Tang J, Guo L, Cui B. Corn starch modification during endogenous malt amylases: The impact of synergistic hydrolysis time of α-amylase and β-amylase and limit dextrinase. Int J Biol Macromol 2021; 190:819-826. [PMID: 34534581 DOI: 10.1016/j.ijbiomac.2021.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/15/2022]
Abstract
To expand the utility of barley malts and decrease the cost of enzyme-modified starch production, the structural and physicochemical characteristics of corn starch modified with fresh barley malts at different hydrolysis time were investigated. The results indicated that compared to native starch, A chain (DP 6-12) of the enzyme-treated starches increased at hydrolysis time (≤12 h), but it decreased at hydrolysis time (>12 h). Inversely, B chains (DP > 13) decreased at hydrolysis time (≤12 h) and they generally increased at hydrolysis time (>12 h). The relative crystallinity decreased from 25.63% to 21.38% and 1047 cm-1/1022 cm-1 reduced from 1.042 to 0.942 after endogenous malt amylases at hydrolysis time from 0 to 72 h, and the thermal degradation temperatures decreased from 323.19 to 295.94 °C, whereas the gelatinization temperatures slightly increased. The gel strength decreased at hydrolysis time less than 12 h, but it increased at hydrolysis time more than 12 h. The outcomings would provide a theoretical and applicative basis about how endogenous malt amylases with lower price modify starches to obtain desirable starch derivatives and industrial production.
Collapse
Affiliation(s)
- Yifan Gui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jiahao Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jun Tang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| |
Collapse
|
17
|
Korompokis K, Verbeke K, Delcour JA. Structural factors governing starch digestion and glycemic responses and how they can be modified by enzymatic approaches: A review and a guide. Compr Rev Food Sci Food Saf 2021; 20:5965-5991. [PMID: 34601805 DOI: 10.1111/1541-4337.12847] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Starch is the most abundant glycemic carbohydrate in the human diet. Consumption of starch-rich food products that elicit high glycemic responses has been linked to the occurrence of noncommunicable diseases such as cardiovascular disease and diabetes mellitus type II. Understanding the structural features that govern starch digestibility is a prerequisite for developing strategies to mitigate any negative health implications it may have. Here, we review the aspects of the fine molecular structure that in native, gelatinized, and gelled/retrograded starch directly impact its digestibility and thus human health. We next provide an informed guidance for lowering its digestibility by using specific enzymes tailoring its molecular and three-dimensional supramolecular structure. We finally discuss in vivo studies of the glycemic responses to enzymatically modified starches and relevant food applications. Overall, structure-digestibility relationships provide opportunities for targeted modification of starch during food production and improving the nutritional profile of starchy foods.
Collapse
Affiliation(s)
- Konstantinos Korompokis
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Gui Y, Zou F, Li J, Zhu Y, Guo L, Cui B. The structural and functional properties of corn starch treated with endogenous malt amylases. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Cockburn DW, Kibler R, Brown HA, Duvall R, Moraïs S, Bayer E, Koropatkin NM. Structure and substrate recognition by the Ruminococcus bromii amylosome pullulanases. J Struct Biol 2021; 213:107765. [PMID: 34186214 DOI: 10.1016/j.jsb.2021.107765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 01/15/2023]
Abstract
Pullulanases are glycoside hydrolase family 13 (GH13) enzymes that target α1,6 glucosidic linkages within starch and aid in the degradation of the α1,4- and α1,6- linked glucans pullulan, glycogen and amylopectin. The human gut bacterium Ruminococcus bromii synthesizes two extracellular pullulanases, Amy10 and Amy12, that are incorporated into the multiprotein amylosome complex that enables the digestion of granular resistant starch from the diet. Here we provide a comparative biochemical analysis of these pullulanases and the x-ray crystal structures of the wild type and the nucleophile mutant D392A of Amy12 complexed with maltoheptaose and 63-α-D glucosyl-maltotriose. While Amy10 displays higher catalytic efficiency on pullulan and cleaves only α1,6 linkages, Amy12 has some activity on α1,4 linkages suggesting that these enzymes are not redundant within the amylosome. Our structures of Amy12 include a mucin-binding protein (MucBP) domain that follows the C-domain of the GH13 fold, an atypical feature of these enzymes. The wild type Amy12 structure with maltoheptaose captured two oligosaccharides in the active site arranged as expected following catalysis of an α1,6 branch point in amylopectin. The nucleophile mutant D392A complexed with maltoheptaose or 63-α-D glucosyl-maltotriose captured β-glucose at the reducing end in the -1 subsite, facilitated by the truncation of the active site aspartate and stabilized by stacking with Y279. The core interface between the co-crystallized ligands and Amy12 occurs within the -2 through + 1 subsites, which may allow for flexible recognition of α1,6 linkages within a variety of starch structures.
Collapse
Affiliation(s)
- Darrell W Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Ryan Kibler
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Rebecca Duvall
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sarah Moraïs
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Edward Bayer
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
20
|
Feller G, Bonneau M, Da Lage JL. Amyrel, a novel glucose-forming α-amylase from Drosophila with 4-α-glucanotransferase activity by disproportionation and hydrolysis of maltooligosaccharides. Glycobiology 2021; 31:1134-1144. [PMID: 33978737 DOI: 10.1093/glycob/cwab036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/12/2022] Open
Abstract
The α-amylase paralogue Amyrel present in true flies (Diptera Muscomorpha) has been classified as a glycoside hydrolase in CAZy family GH13 on the basis of its primary structure. Here we report that, in fact, Amyrel is currently unique amongst Animals as it possesses both the hydrolytic α-amylase activity (EC 3.2.1.1) and a 4-α-glucanotransferase (EC 2.4.1.25) transglycosylation activity. Amyrel reacts specifically on α-(1-4) glycosidic bonds of starch and related polymers but produces a complex mixture of maltooligosaccharides, in sharp contrast with canonical animal α-amylases. With model maltooligosaccharides G2 (maltose) to G7, the Amyrel reaction starts by a disproportionation leading to Gn-1 and Gn + 1 products, which become themselves substrates for new disproportionation cycles. As a result, all detectable odd- and even-numbered maltooligosaccharides at least up to G12 were observed. However, hydrolysis of these products proceeds simultaneously, as shown by p-nitrophenyl-tagged oligosaccharides and microcalorimetry, and upon prolonged reaction, glucose is the major end product followed by maltose. The main structural determinant of these atypical activities was found to be a Gly-His-Gly-Ala deletion in the so-called flexible loop bordering the active site. Indeed, engineering this deletion in pig pancreatic and D. melanogaster α-amylases results in reaction patterns similar to those of Amyrel. It is proposed that this deletion provides more freedom to the substrate for subsites occupancy and allows a less constrained action pattern resulting in versatile activities at the active site.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, B-4000 Liège-Sart Tilman, Belgium
| | - Magalie Bonneau
- UMR 9191 Evolution, Génomes, Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
| | - Jean-Luc Da Lage
- Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, B-4000 Liège-Sart Tilman, Belgium.,UMR 9191 Evolution, Génomes, Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Novev JK, Doostmohammadi A, Zöttl A, Yeomans JM. Mesoscale modelling of polymer aggregate digestion. Curr Res Food Sci 2020; 3:122-133. [PMID: 32914128 PMCID: PMC7473369 DOI: 10.1016/j.crfs.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We use mesoscale simulations to gain insight into the digestion of biopolymers by studying the break-up dynamics of polymer aggregates (boluses) bound by physical cross-links. We investigate aggregate evolution, establishing that the linking bead fraction and the interaction energy are the main parameters controlling stability with respect to diffusion. We show via a simplified model that chemical breakdown of the constituent molecules causes aggregates that would otherwise be stable to disperse. We further investigate breakdown of biopolymer aggregates in the presence of fluid flow. Shear flow in the absence of chemical breakdown induces three different regimes depending on the flow Weissenberg number ( W i ). i) At W i ≪ 1 , shear flow has a negligible effect on the aggregates. ii) At W i ∼ 1 , the aggregates behave approximately as solid bodies and move and rotate with the flow. iii) At W i ≫ 1 , the energy input due to shear overcomes the attractive cross-linking interactions and the boluses are broken up. Finally, we study bolus evolution under the combined action of shear flow and chemical breakdown, demonstrating a synergistic effect between the two at high reaction rates.
Collapse
Affiliation(s)
- Javor K. Novev
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Andreas Zöttl
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, Wien, Austria
| | - Julia M. Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
| |
Collapse
|
22
|
Asgari MS, Tahmasebi B, Mojtabavi S, Faramarzi MA, Rahimi R, Ranjbar PR, Biglar M, Larijani B, Rastegar H, Mohammadi‐Khanaposhtani M, Mahdavi M. Design, synthesis, biological evaluation, and docking study of new acridine‐9‐carboxamide linked to 1,2,3‐triazole derivatives as antidiabetic agents targeting α‐glucosidase. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mohammad S. Asgari
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Behnam Tahmasebi
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Mohammad A. Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Rahmatollah Rahimi
- Department of Chemistry Iran University of Science and Technology Tehran Iran
| | - Parviz R. Ranjbar
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center Iranian Food and Drug Administration, MOHE Tehran Iran
| | - Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
23
|
The dynamics of starch hydrolysis and thickness perception during oral processing. Food Res Int 2020; 134:109275. [DOI: 10.1016/j.foodres.2020.109275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
|
24
|
Reyniers S, Ooms N, Gomand SV, Delcour JA. What makes starch from potato (Solanum tuberosumL.) tubers unique: A review. Compr Rev Food Sci Food Saf 2020; 19:2588-2612. [DOI: 10.1111/1541-4337.12596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Stijn Reyniers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe)KU Leuven Leuven Belgium
| | - Nand Ooms
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe)KU Leuven Leuven Belgium
| | - Sara V. Gomand
- Department of Agriculture and FisheriesGovernment of Flanders Brussels Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe)KU Leuven Leuven Belgium
| |
Collapse
|
25
|
Amylolysis as a tool to control amylose chain length and to tailor gel formation during potato-based crisp making. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Gaenssle ALO, van der Maarel MJEC, Jurak E. Reliability factor for identification of amylolytic enzyme activity in the optimized starch-iodine assay. Anal Biochem 2020; 597:113696. [PMID: 32201136 DOI: 10.1016/j.ab.2020.113696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/06/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Amylolytic enzymes are a group of proteins degrading starch to its constitutional units. For high-throughput screening, simple yet accurate methods in addition to the reducing ends assays are required. In this article, the iodine assay, a photometric assay based on the intensely colored starch-iodine complex, was adapted to enable accurate and objective differentiation between enzyme and background activity using a newly introduced mathematical factor. The method was further improved by designing a simple setup for multiple time point detection and discussing the applicability of single wavelength measurements.
Collapse
Affiliation(s)
- Aline L O Gaenssle
- Bioproduct Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, the Netherlands.
| | | | - Edita Jurak
- Bioproduct Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, the Netherlands.
| |
Collapse
|
27
|
Sanchez-Gorostiaga A, Bajić D, Osborne ML, Poyatos JF, Sanchez A. High-order interactions distort the functional landscape of microbial consortia. PLoS Biol 2019; 17:e3000550. [PMID: 31830028 PMCID: PMC6932822 DOI: 10.1371/journal.pbio.3000550] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/26/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding the link between community composition and function is a major challenge in microbial population biology, with implications for the management of natural microbiomes and the design of synthetic consortia. Specifically, it is poorly understood whether community functions can be quantitatively predicted from traits of species in monoculture. Inspired by the study of complex genetic interactions, we have examined how the amylolytic rate of combinatorial assemblages of six starch-degrading soil bacteria depend on the separate functional contributions from each species and their interactions. Filtering our results through the theory of biochemical kinetics, we show that this simple function is additive in the absence of interactions among community members. For about half of the combinatorially assembled consortia, the amylolytic function is dominated by pairwise and higher-order interactions. For the other half, the function is additive despite the presence of strong competitive interactions. We explain the mechanistic basis of these findings and propose a quantitative framework that allows us to separate the effect of behavioral and population dynamics interactions. Our results suggest that the functional robustness of a consortium to pairwise and higher-order interactions critically affects our ability to predict and bottom-up engineer ecosystem function in complex communities.
Collapse
Affiliation(s)
- Alicia Sanchez-Gorostiaga
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
| | - Djordje Bajić
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
| | - Melisa L. Osborne
- The Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts, United States of America
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
| | - Juan F. Poyatos
- The Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts, United States of America
- Logic of Genomic Systems Laboratory, Spanish National Biotechnology Centre (CNB-CSIC), Madrid, Spain
| | - Alvaro Sanchez
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- The Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
28
|
Codină GG, Dabija A, Oroian M. Prediction of Pasting Properties of Dough from Mixolab Measurements Using Artificial Neuronal Networks. Foods 2019; 8:E447. [PMID: 31581568 PMCID: PMC6835905 DOI: 10.3390/foods8100447] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 11/16/2022] Open
Abstract
An artificial neuronal network (ANN) system was conducted to predict the Mixolab parameters which described the wheat flour starch-amylase part (torques C3, C4, C5, and the difference between C3-C4and C5-C4, respectively) from physicochemical properties (wet gluten, gluten deformation index, Falling number, moisture content, water absorption) of 10 different refined wheat flourssupplemented bydifferent levels of fungal α-amylase addition. All Mixolab parameters analyzed and the Falling number values were reduced with the increased level of α-amylase addition. The ANN results accurately predicted the Mixolab parameters based on wheat flours physicochemical properties and α-amylase addition. ANN analyses showed that moisture content was the most sensitive parameter in influencing Mixolab maximum torque C3 and the difference between torques C3 and C4, while wet gluten was the most sensitive parameter in influencing minimum torque C4 and the difference between torques C5 and C4, and α-amylase level was the most sensitive parameter in predicting maximum torque C5. It is obvious that the Falling number of all the Mixolab characteristics best predicted the difference between torques C3 and C4.
Collapse
Affiliation(s)
| | - Adriana Dabija
- Stefan cel Mare University of Suceava, Faculty of Food Engineering, 720229 Suceava, Romania
| | - Mircea Oroian
- Stefan cel Mare University of Suceava, Faculty of Food Engineering, 720229 Suceava, Romania.
| |
Collapse
|
29
|
de Souza Moretti MM, Yu W, Zou W, Franco CML, Albertin LL, Schenk PM, Gilbert RG. Relationship between the molecular structure of duckweed starch and its in vitro enzymatic degradation kinetics. Int J Biol Macromol 2019; 139:244-251. [DOI: 10.1016/j.ijbiomac.2019.07.206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023]
|
30
|
Moran E. Starch: Granule, Amylose-Amylopectin, Feed Preparation, and Recovery by the Fowl's Gastrointestinal Tract. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Influence of molecular structure on the susceptibility of starch to α-amylase. Carbohydr Res 2019; 479:23-30. [DOI: 10.1016/j.carres.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 01/22/2023]
|
32
|
|
33
|
Repin N, Cui SW, Goff HD. Impact of dietary fibre on in vitro digestibility of modified tapioca starch: viscosity effect. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2016.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Arnal G, Cockburn DW, Brumer H, Koropatkin NM. Structural basis for the flexible recognition of α-glucan substrates by Bacteroides thetaiotaomicron SusG. Protein Sci 2018; 27:1093-1101. [PMID: 29603462 PMCID: PMC5980535 DOI: 10.1002/pro.3410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022]
Abstract
Bacteria that reside in the mammalian intestinal tract efficiently hydrolyze dietary carbohydrates, including starch, that escape digestion in the small intestine. Starch is an abundant dietary carbohydrate comprised of α1,4 and α1,6 linked glucose, yet mammalian intestinal glucoamylases cannot effectively hydrolyze starch that has frequent α1,6 branching as these structures hinder recognition and processing by α1,4-specific amylases. Here we present the structure of the cell surface amylase SusG from Bacteroides thetaiotaomicron complexed with a mixed linkage amylosaccharide generated from transglycosylation during crystallization. Although SusG is specific for α1,4 glucosidic bonds, binding of this new oligosaccharide at the active site demonstrates that SusG can accommodate α1,6 branch points at subsite -3 to -2, and also at subsite+1 adjacent to the site of hydrolysis, explaining how this enzyme may be able to process a wide range of limit dextrins in the intestinal environment. These data suggest that B. thetaiotaomicron and related organisms may have a selective advantage for amylosaccharide scavenging in the gut.
Collapse
Affiliation(s)
- Gregory Arnal
- Michael Smith Laboratories, University of British Columbia, 2185 East MallVancouverBritish ColumbiaV6T 1Z4Canada
| | - Darrell W. Cockburn
- Department of Microbiology and ImmunologyUniversity of Michigan Medical School, 1150 W Medical Center DriveAnn ArborMichigan
- Present address:
Department of Food SciencePennsylvania State UniversityUniversity ParkPennsylvania
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East MallVancouverBritish ColumbiaV6T 1Z4Canada
- Department of ChemistryUniversity of British Columbia, 2036 Main MallVancouverBritish ColumbiaV6T 1Z1Canada
- Department of Biochemistry and Molecular BiologyUniversity of British Columbia, 2350 Health Sciences MallVancouverBritish ColumbiaV6T 1Z3Canada
| | - Nicole M. Koropatkin
- Department of Microbiology and ImmunologyUniversity of Michigan Medical School, 1150 W Medical Center DriveAnn ArborMichigan
| |
Collapse
|
35
|
Goff HD, Repin N, Fabek H, El Khoury D, Gidley MJ. Dietary fibre for glycaemia control: Towards a mechanistic understanding. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2017.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Guo L. In vitro amylase hydrolysis of amylopectins from cereal starches based on molecular structure of amylopectins. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
The glycogen of Galdieria sulphuraria as alternative to starch for the production of slowly digestible and resistant glucose polymers. Carbohydr Polym 2017; 169:75-82. [PMID: 28504180 DOI: 10.1016/j.carbpol.2017.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 11/20/2022]
Abstract
Highly branched glucose polymers produced from starch are applied in various products, such as peritoneal dialysis solutions and sports drinks. Due to its insoluble, granular nature, the use of native starch as substrate requires an energy consuming pre-treatment to achieve solubilization at the expense of process costs. Glycogen, like starch, is also a natural glucose polymer that shows more favorable features, since it is readily soluble in cold water and more accessible by enzymes. The extremophilic red microalga Galdieria sulphuraria accumulates large amounts of a small, highly branched glycogen that could represent a good alternative to starch as substrate for the production of highly branched glucose polymers. In the present work, we analyzed the structure-properties relationship of this glycogen in its native form and after treatment with amyloglucosidase and compared it to highly branched polymers produced from potato starch. Glycogen showed lower susceptibility to digestive enzymes and significantly decreased viscosity in solution compared to polymers derived from starch, properties conferred by its shorter side chains and higher branch density. The action of amyloglucosidase on native glycogen was somewhat limited due to the high branch density but resulted in the production of a hyperbranched polymer that was virtually resistant to digestive enzymes.
Collapse
|
38
|
Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates. Carbohydr Polym 2016; 152:51-61. [DOI: 10.1016/j.carbpol.2016.06.097] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 11/23/2022]
|
39
|
Dias JP, Schrack JA, Shardell MD, Egan JM, Studenski S. Association of abdominal fat with serum amylase in an older cohort: The Baltimore Longitudinal Study of Aging. Diabetes Res Clin Pract 2016; 116:212-7. [PMID: 27321338 PMCID: PMC5832961 DOI: 10.1016/j.diabres.2016.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
Abstract
AIMS Abdominal fat is a major determinant of metabolic diseases in older individuals. Obesity and diabetes are associated with low serum amylase (SA) levels, but the association between SA and metabolic disease is poorly understood. We investigated the association of low SA with diabetes and sex-specific associations of serum amylase with abdominal fat in older adults. METHODS In community-dwelling volunteers from the Baltimore Longitudinal Study of Aging (778 participants, age 66.8±13.6years), we assessed abdominal fat by computed tomography and diabetes status using the American Diabetes Association criteria. Linear regression analyses assessed the cross-sectional associations between abdominal fat and SA, and logistic regression assessed the odds of diabetes, given low SA. RESULTS In unadjusted analyses, individuals in the lowest SA quartile (<48μ/L) had 1.97 greater odds of diabetes, (95%CI, 1.01-3.83) than those in the highest quartile (⩾80μ/L). This association was no longer significant after adjusting for visceral adipose tissue area (VAT, dm(2)), abdominal subcutaneous adipose tissue (SAT, dm(2)) or BMI. In adjusted analyses, VAT and SAT were significantly associated with SA in both sexes. Among women, SA was more strongly associated with VAT than with SAT or BMI; VAT (β=-0.117±0.048, P<0.001), SAT (β=-0.023±0.025, P=0.346) and BMI (β=-0.0052±0.075, P=0.49). CONCLUSIONS The association between SA and diabetes was explained mainly by abdominal visceral fat. In women, SA was more strongly associated with VAT than with BMI or SAT. These findings provide motivation for future mechanistic studies on SA's role in metabolic diseases.
Collapse
Affiliation(s)
- Jenny Pena Dias
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21225, United States.
| | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Michelle D Shardell
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21225, United States
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21225, United States
| | - Stephanie Studenski
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21225, United States
| |
Collapse
|
40
|
Kamon M, Sumitani JI, Tani S, Kawaguchi T, Kamon M, Sumitani J, Tani S, Kawaguchi T. Characterization and gene cloning of a maltotriose-forming exo-amylase from Kitasatospora sp. MK-1785. Appl Microbiol Biotechnol 2015; 99:4743-53. [PMID: 25620369 DOI: 10.1007/s00253-015-6396-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 12/14/2022]
Abstract
A maltotriose-forming amylase (G3Amy) from Kitasatospora sp. MK-1785 was successfully isolated from a soil sample by inhibiting typical extracellular α-amylases using a proteinaceous α-amylase inhibitor. G3Amy was purified from the MK-1785 culture supernatant and characterized. G3Amy produced maltotriose as the principal product from starch and was categorized as an exo-α-amylase. G3Amy could also transfer maltotriose to phenolic and alcoholic compounds. Therefore, G3Amy can be useful for not only maltotriose manufacture but also maltooligosaccharide-glycoside synthesis. Further, the G3Amy gene was cloned and expressed in Escherichia coli cells. Analysis of its deduced amino acid sequence revealed that G3Amy consisted of an N-terminal GH13 catalytic domain and two C-terminal repeat starch-binding domains belonging to CBM20. It is suggested that natural G3Amy was subjected to proteolysis at N-terminal region of the anterior CBM20 in the C-terminal region. As with natural G3Amy, recombinant G3Amy could produce and transfer maltotriose from starch.
Collapse
Affiliation(s)
- Masahiro Kamon
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Biodegradable flocculants based on polyacrylamide and poly(N,N-dimethylacrylamide) grafted amylopectin. Int J Biol Macromol 2014; 70:26-36. [DOI: 10.1016/j.ijbiomac.2014.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 11/20/2022]
|
42
|
Kolya H, Tripathy T. Hydroxyethyl Starch-g-Poly-(N,N-dimethylacrylamide-co-acrylic acid): An efficient dye removing agent. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Gujral HS, Sharma P, Kaur H, Singh J. Physiochemical, Pasting, and Thermal Properties of Starch Isolated from Different Barley Cultivars. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2011.595863] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Derde L, Gomand S, Courtin C, Delcour J. Characterisation of three starch degrading enzymes: Thermostable β-amylase, maltotetraogenic and maltogenic α-amylases. Food Chem 2012; 135:713-21. [DOI: 10.1016/j.foodchem.2012.05.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/20/2012] [Accepted: 05/02/2012] [Indexed: 11/29/2022]
|
45
|
Vriesekoop F, Rathband A, MacKinlay J, Bryce JH. The Evolution of Dextrins During the Mashing and Fermentation of All-malt Whisky Production. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2010.tb00425.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Delavat F, Phalip V, Forster A, Plewniak F, Lett MC, Lièvremont D. Amylases without known homologues discovered in an acid mine drainage: significance and impact. Sci Rep 2012; 2:354. [PMID: 22482035 PMCID: PMC3319935 DOI: 10.1038/srep00354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/08/2012] [Indexed: 12/25/2022] Open
Abstract
Acid Mine Drainages (AMDs) are extreme environments characterized by acidic and oligotrophic conditions and by metal contaminations. A function-based screening of an AMD-derived metagenomic library led to the discovery and partial characterization of two non-homologous endo-acting amylases sharing no sequence similarity with any known amylase nor glycosidase. None carried known amylolytic domains, nor could be assigned to any GH-family. One amylase displayed no similarity with any known protein, whereas the second one was similar to TraC proteins involved in the bacterial type IV secretion system. According to the scarce similarities with known proteins, 3D-structure modelling using I-TASSER was unsuccessful. This study underlined the utility of a function-driven metagenomic approach to obtain a clearer image of the bacterial community enzymatic landscape. More generally, this work points out that screening for microorganisms or biomolecules in a priori incongruous environments could provide unconventional and new exciting ways for bioprospecting.
Collapse
|
47
|
Guerra NP, Pastrana Castro L. Modelling the effects of ageing time of starch on the enzymatic activity of three amylolytic enzymes. ScientificWorldJournal 2012; 2012:402439. [PMID: 22666116 PMCID: PMC3361276 DOI: 10.1100/2012/402439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/11/2012] [Indexed: 11/17/2022] Open
Abstract
The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, vmax decreased significantly (P < 0.05) and KM increased (although not always significantly) with the increase in t. The conformational changes produced in the starch chains as a consequence of the ageing seemed to affect negatively the diffusivity of the starch to the active site of the enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G].
Collapse
Affiliation(s)
- Nelson P Guerra
- Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo, Ourense Campus, 32004 Ourense, Spain.
| | | |
Collapse
|
48
|
Preparation and Applications of Amylose Supramolecules by Means of Phosphorylase-Catalyzed Enzymatic Polymerization. Polymers (Basel) 2012. [DOI: 10.3390/polym4010116] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Kaneko Y, Fujisaki K, Kyutoku T, Furukawa H, Kadokawa JI. Preparation of Enzymatically Recyclable Hydrogels Through the Formation of Inclusion Complexes of Amylose in a Vine-Twining Polymerization. Chem Asian J 2010; 5:1627-33. [DOI: 10.1002/asia.201000012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Goesaert H, Bijttebier A, Delcour JA. Hydrolysis of amylopectin by amylolytic enzymes: level of inner chain attack as an important analytical differentiation criterion. Carbohydr Res 2010; 345:397-401. [DOI: 10.1016/j.carres.2009.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/25/2009] [Accepted: 11/07/2009] [Indexed: 11/29/2022]
|