1
|
Wang JY, Fan NN, Yuan Y, Bass C, Siemann E, Ji XY, Jiang JX, Wan NF. Plant defense metabolites influence the interaction between an insect herbivore and an entomovirus. Curr Biol 2024; 34:5758-5768.e5. [PMID: 39577425 DOI: 10.1016/j.cub.2024.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
The tri-trophic interaction of plants, insect herbivores, and entomoviruses is an important topic in ecology and pest control. The susceptibility of insect herbivores to entomoviruses (e.g., nucleopolyhedroviruses) is influenced by host plants; however, the role of plant secondary metabolites in determining such susceptibility is poorly understood. Metabolomic analyses of Brassica oleracea, Glycine max, and Ipomoea aquatica plants, which differ in how they affect the susceptibility of Spodoptera exigua to nucleopolyhedroviruses among 14 plants, suggested that the plant secondary metabolites genistein, kaempferol, quercitrin, and coumarin play a role in influencing nucleopolyhedroviruses susceptibility. Subsequently, transcriptomic analysis of caterpillars, treated with nucleopolyhedroviruses alone or with one of these four phenolics, identified four genes (CYP340K4, CXE18, GSTe, and GSTe1) that were significantly downregulated by the phenolics. Functional characterization of these genes suggested that their downregulation significantly increased larval sensitivity to nucleopolyhedroviruses and altered aspects of the immune response. Our findings provide new insight into the role of plant defense metabolites in influencing the interactions between insect herbivores and entomopathogens and identify plant secondary metabolites as potential synergists of viral agents for the control of agricultural pests.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China
| | - Neng-Neng Fan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China
| | - Yuan Yuan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9WT, UK
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Xiang-Yun Ji
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China.
| | - Jie-Xian Jiang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China.
| | - Nian-Feng Wan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China; Institute of Pesticides & Pharmaceuticals, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Nitisha, Sahu S, Parthasarathy V. Pentagon-embedded N-doped coumarinacenes: tandem synthesis and tunable photophysical attributes for biomolecular probing. Org Biomol Chem 2024. [PMID: 39633247 DOI: 10.1039/d4ob01048e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We have synthesized a novel series of nitrogen-doped pentagon-embedded coumarinacenes, namely carbazole-coumarins, via a tandem 1,4-elimination Diels-Alder aromatization reaction. These planar, N-substituted carbazole-coumarins exhibit excellent functionalizability, enhanced photostability and solvent polarity-tunable absorption and blue-to-red emission with notably high fluorescence quantum yields, attesting to their remarkable photophysical properties. These attributes highlight the carbazole-coumarins' potential as robust and efficient fluorescent materials for diverse applications in various fields, including as probes for studying biomolecular systems and dynamics.
Collapse
Affiliation(s)
- Nitisha
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600 036, Tamil Nadu, India.
| | - Sonali Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600 036, Tamil Nadu, India.
| | | |
Collapse
|
3
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
4
|
Rehman S, Ikram M, Khan A, Khan A, Farzia, Khan R, Sinnokrot MO, Puduvalli VK, Jadoon A. Triethylammonium Salts of Dicoumarol: Synthesis, Characterization, Human Antiglioblastoma, Antimicrobial and Antioxidant Studies. Cell Biochem Biophys 2024:10.1007/s12013-024-01532-1. [PMID: 39306823 DOI: 10.1007/s12013-024-01532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 11/03/2024]
Abstract
The most typical primary brain tumor, glioblastoma multiforme (GBM), has a dismal prognosis. They are removed through arduous, potentially fatal operations. The primary cause of tumor recurrence following surgery is glioblastoma stem cells (GSCs). In order to combat the recurrent glioblastoma malignant cells, medications have been developed. Chemotherapies now in use are expensive and encounter resistance. To combat inherent and developed resistance, new and powerful chemotherapeutics are being synthesized. In this regard, dicoumarols were deprotonated by triethylamine to produce corresponding salts which are reported and used for the first time for human antiglioblastoma activity. Spectroscopic characterizations like 1H and 13C-NMR were carried out. The cytotoxicity of normal human astrocytes (NHA) and human glioblastoma cells (A172 and LN229) were both examined in terms of dose and time dependence. The range of the IC50 value for all the deprotonated derivatives against A172 was found to be 2.81-0.24 µM, whereas the range against LN229 was found to be 2.50-0.85 µM. According to cytotoxicity results, malignant cell death was seen in GBM cells treated with triethylamine salts of dicoumarols compared to the control group, which suggested that salts may cause apoptosis in GBM cells. Antimicrobial and antifungal activities were also investigated for all the triethylamine salts of dicoumarols suggesting that salt formation enhances antimicrobial potentials manyfolds compared to the standard drug used. Free radical activities were also investigated using DPPH free radicals.
Collapse
Affiliation(s)
- Sadia Rehman
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan.
| | - Muhammad Ikram
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Afzal Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
- Department of Microbiology, Abbotabad University of Science and Technology, Abbotabad, Pakistan
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adnan Khan
- School of Physics & the Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Farzia
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Rizwan Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mutasem Omar Sinnokrot
- College of Arts and Sciences, American University of IraqBaghdad, Airport Road, Baghdad, Iraq
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayub Jadoon
- Department of Microbiology, Abbotabad University of Science and Technology, Abbotabad, Pakistan
| |
Collapse
|
5
|
Mitsiou VPM, Antonaki AMN, Douka MD, Litinas KE. An Overview on the Synthesis of Lamellarins and Related Compounds with Biological Interest. Molecules 2024; 29:4032. [PMID: 39274880 PMCID: PMC11396623 DOI: 10.3390/molecules29174032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Lamellarins are natural products with a [3,4]-fused pyrrolocoumarin skeleton possessing interesting biological properties. More than 70 members have been isolated from diverse marine organisms, such as sponges, ascidians, mollusks, and tunicates. There is a continuous interest in the synthesis of these compounds. In this review, the synthetic strategies for the synthesis of the title compounds are presented along with their biological properties. Three routes are followed for the synthesis of lamellarins. Initially, pyrrole derivatives are the starting or intermediate compounds, and then they are fused to isoquinoline or a coumarin moiety. Second, isoquinoline is the starting compound fused to an indole moiety. In the last route, coumarins are the starting compounds, which are fused to a pyrrole moiety and an isoquinoline scaffold. The synthesis of isolamellarins, azacoumestans, isoazacoumestans, and analogues is also described. The above synthesis is achieved via metal-catalyzed cross-coupling, [3 + 2] cycloaddition, substitution, and lactonization reactions. The title compounds exhibit cytotoxic, multidrug resistance (MDR), topoisomerase I-targeted antitumor, anti-HIV, antiproliferative, anti-neurodegenerative disease, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Vasiliki-Panagiota M Mitsiou
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia-Maria N Antonaki
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Matina D Douka
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos E Litinas
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Angelini P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:746. [PMID: 39200046 PMCID: PMC11350763 DOI: 10.3390/antibiotics13080746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Antibiotic resistance emerged shortly after the discovery of the first antibiotic and has remained a critical public health issue ever since. Managing antibiotic resistance in clinical settings continues to be challenging, particularly with the rise of superbugs, or bacteria resistant to multiple antibiotics, known as multidrug-resistant (MDR) bacteria. This rapid development of resistance has compelled researchers to continuously seek new antimicrobial agents to curb resistance, despite a shrinking pipeline of new drugs. Recently, the focus of antimicrobial discovery has shifted to plants, fungi, lichens, endophytes, and various marine sources, such as seaweeds, corals, and other microorganisms, due to their promising properties. For this review, an extensive search was conducted across multiple scientific databases, including PubMed, Elsevier, ResearchGate, Scopus, and Google Scholar, encompassing publications from 1929 to 2024. This review provides a concise overview of the mechanisms employed by bacteria to develop antibiotic resistance, followed by an in-depth exploration of plant secondary metabolites as a potential solution to MDR pathogens. In recent years, the interest in plant-based medicines has surged, driven by their advantageous properties. However, additional research is essential to fully understand the mechanisms of action and verify the safety of antimicrobial phytochemicals. Future prospects for enhancing the use of plant secondary metabolites in combating antibiotic-resistant pathogens will also be discussed.
Collapse
Affiliation(s)
- Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
7
|
Heaugwane D, Cerlati O, Belkhir K, Tarek Benkhaled B, Catrouillet S, Fabing I, Claparols C, Vedrenne M, Goudounèche D, Payré B, Lucia Bona B, Tosi A, Baldelli Bombelli F, Vicendo P, Lapinte V, Lonetti B, Mingotaud AF, Gibot L. Coumarin-poly(2-oxazoline)s as synergetic and protein-undetected nanovectors for photodynamic therapy. Int J Pharm 2024; 658:124186. [PMID: 38701908 DOI: 10.1016/j.ijpharm.2024.124186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Because of the difficult challenges of nanopharmaceutics, the development of a variety of nanovectors is still highly desired. Photodynamic therapy, which uses a photosensitizer to locally produce reactive oxygen species to kill the undesired cells, is a typical example for which encapsulation has been shown to be beneficial. The present work describes the use of coumarin-functionalized polymeric nanovectors based on the self-assembly of amphiphilic poly(2-oxazoline)s. Encapsulation of pheophorbide a, a known PDT photosensitizer, is shown to lead to an increased efficiency compared to the un-encapsulated version. Interestingly, the presence of coumarin both enhances the desired photocytotoxicity and enables the crosslinking of the vectors. Various nanovectors are examined, differing by their size, shape and hydrophilicity. Their behaviour in PDT protocols on HCT-116 cells monolayers is described, the influence of their crosslinking commented. Furthermore, the formation of a protein corona is assessed.
Collapse
Affiliation(s)
- Diana Heaugwane
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Orélia Cerlati
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Kedafi Belkhir
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Isabelle Fabing
- Laboratoire SPCMIB, CNRS UMR5068, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse cedex 9, France
| | - Catherine Claparols
- Institut de Chimie de Toulouse, Université Toulouse 3 Paul Sabatier, ICT-FR CNRS 2599, 31062 Toulouse France
| | - Marc Vedrenne
- Institut de Chimie de Toulouse, Université Toulouse 3 Paul Sabatier, ICT-FR CNRS 2599, 31062 Toulouse France
| | - Dominique Goudounèche
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062 Toulouse cedex, France
| | - Bruno Payré
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062 Toulouse cedex, France
| | - Beatrice Lucia Bona
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Alice Tosi
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Patricia Vicendo
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Vincent Lapinte
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Barbara Lonetti
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
8
|
Kapidou E, Litinas KE. An Overview of the Synthesis of 3,4-Fused Pyrrolocoumarins of Biological Interest. Molecules 2024; 29:2748. [PMID: 38930816 PMCID: PMC11206682 DOI: 10.3390/molecules29122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
3,4-Fused pyrrolocoumarins, synthetically prepared or naturally occurring, possess interesting biological properties. In this review, the synthetic strategies for the synthesis of the title compounds are presented along with their biological activities. Two routes are followed for that synthesis. In one, the pyrrole ring is formed from coumarin derivatives, such as aminocoumarins or other coumarins. In the other approach, the pyranone moiety is built from an existing pyrrole derivative or through the simultaneous formation of coumarin and pyrrole frameworks. The above syntheses are achieved via 1,3-dipolar cycloaddition reactions, Michael reaction, aza-Claisen rearrangement reactions, multi-component reactions (MCR), as well as metal-catalyzed reactions. Pyrrolocoumarins present cytotoxic, antifungal, antibacterial, α-glucosidase inhibition, antioxidant, lipoxygenase (LOX) inhibition, and fluorescent activities, as well as benzodiazepine receptor ability.
Collapse
Affiliation(s)
| | - Konstantinos E. Litinas
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
9
|
Younes AH, Mustafa YF. Plant-Derived Coumarins: A Narrative Review of Their Structural and Biomedical Diversity. Chem Biodivers 2024; 21:e202400344. [PMID: 38587035 DOI: 10.1002/cbdv.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Plant-derived coumarin (PDC) is a naturally occurring heterocyclic backbone that belongs to the benzopyrone family. PDC and its based products are characterized by low toxicity and high distribution in a variety of herbal treatments that have numerous therapeutic potentials. These include anticoagulants, antibacterials, anti-inflammatory agents, anticancer agents, antioxidants, and others. So, it may be appropriate to investigate the qualities and potential bioactivities of PDCs. This article provides an overview of the biomedical potentials, availability, and clinical use possibilities of PDCs, with a focus on their important modes of action, using information on various pharmacological qualities discovered. The data used in this study came from published research between 2015 and 2023. We reviewed a selection of databases, including PubMed, Scopus, Web of Science, and Google Scholar, during that period. In conclusion, because of their abundance in medicinal plants, the clinical biochemistry attributes of PDCs are currently of interest. In a variety of medical specialties, PDCs serve a useful role as therapeutic agents.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
10
|
Medeiros-Neves B, Heidrich D, Schuh RS, Brazil NT, Fachel FNS, Cassel E, Vargas RMF, Scroferneker ML, von Poser GL, Koester LS, Teixeira HF. Topical Nanoemulsions as Delivery Systems for Green Extracts of Pterocaulon balansae Aiming at the Treatment of Sporotrichosis. Pharmaceutics 2024; 16:492. [PMID: 38675153 PMCID: PMC11054391 DOI: 10.3390/pharmaceutics16040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Coumarins are benzopyrones found in several plant genera, including Pterocaulon (Asteraceae). These compounds represent an important source of new treatments, especially as antimicrobial and antifungal agents. In this study, two coumarin-rich extracts from Pterocaulon balansae using green technologies were obtained through aqueous maceration (AE) and supercritical fluid extraction (SFE). Such extracts were incorporated into nanoemulsions (NAE and NSFE) composed of a medium-chain triglyceride oil core stabilized by phospholipids. The nanoemulsions exhibited droplet sizes between 127 and 162 nm, pH above 5.0, and viscosity of approximately 1.0 cP, properties compatible with the topical route. The coumarins permeation/retention from formulations through ear porcine skin using Franz-type diffusion cells were evaluated. Whatever the extract, coumarins were distributed in skin layers, especially in the dermis in both intact and impaired (tape stripping) skin. In addition, a significant increase in coumarins that reached up to the receptor fluid was observed for impaired skin, with increases of approximately threefold for NAE and fourfold for NSFE. Finally, antifungal activity of nanoemulsions was evaluated according to minimum inhibitory concentrations, and the values were 250 µg/mL for all strains tested. The overall results demonstrated the feasibility of incorporating P. balansae extracts into nanoemulsions and showed a potential alternative for the treatment of sporotrichosis.
Collapse
Affiliation(s)
- Bruna Medeiros-Neves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Daiane Heidrich
- Departamento de Microbiologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre 90050-170, RS, Brazil; (D.H.); (M.L.S.)
| | - Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Nathalya Tesch Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Flávia Nathiely Silveira Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Eduardo Cassel
- Faculdade de Engenharia, Departamento de Engenharia Química, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681-Prédio 30-Sala 277, Porto Alegre 90619-900, RS, Brazil; (E.C.); (R.M.F.V.)
| | - Rubem Mário Figueiró Vargas
- Faculdade de Engenharia, Departamento de Engenharia Química, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681-Prédio 30-Sala 277, Porto Alegre 90619-900, RS, Brazil; (E.C.); (R.M.F.V.)
| | - Maria Lúcia Scroferneker
- Departamento de Microbiologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre 90050-170, RS, Brazil; (D.H.); (M.L.S.)
| | - Gilsane Lino von Poser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil; (B.M.-N.); (R.S.S.); (N.T.B.); (F.N.S.F.); (G.L.v.P.); (L.S.K.)
| |
Collapse
|
11
|
Ahmad I, Rabbi F, Nisar A, Ul-Haq Z, Khan A. In vitro-in silico pharmacology and chemistry of Stercularin, isolated from Sterculia diversifolia. Comput Biol Chem 2024; 109:108008. [PMID: 38198964 DOI: 10.1016/j.compbiolchem.2023.108008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Stercularin is a coumarin, isolated from the ethyl acetate fraction of stem bark and leaves of S. diversifolia. Pharmacologically it is active against cancer, diabetes, and inflammation etc. The molecule is further screened for in vitro pharmacological activities. In addition, a detailed description on its drug likeness and pharmacokinetic profile has been established to further explore its fate as a drug candidate. Stercularin exhibited antiglycation, immunomodulatory, and leishmanicidal activity in three different in vitro models. The IC50 values obtained in these three assays were 80.22 ± 0.46 mg/ml, 12.8 ± 1.6 μg/ml, and 8.32 ± 0.42 μg/ml, respectively. In case of drug likeness evaluation, Stercularin has acceptable physicochemical properties and compliant with major drug likeness descriptors i.e., Lipinski rule, Pfizer rule, GSK rule, and "golden triangle". Accepting Lipinski rule implies the oral drug development of Stercularin. Pharmacokinetically, Stercularin is permeable to Caco-2 and MDCK cell lines. 'Boiled-egg' plot suggest intestinal route of absorption, blood brain barrier nonpermeating, and not affected by p-glycoprotein. Stercularin has high plasma protein binding with low free fraction circulating in the plasma. Stercularin proved to be the substrate and/or inhibitor of CYP 450 system with a moderate half-life and clearance rate to allow flexible dosing regimen. Finally, slight risk of toxicity exists for Stercularin, but not being limiting factors of drug knock out. A nature isolated Stercularin possess pharmacological activities and is predicted to have acceptable pharmacokinetic profile. Further drug development and in vivo studies are desirable for optimization.
Collapse
Affiliation(s)
- Imad Ahmad
- Department of Pharmacy, The Professional Institute of Health Sciences, Mardan, Khyber Pakhtunkhwa, Pakistan; Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fazle Rabbi
- Department of Pharmacy, Abasyn University Peshawar, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan.
| | - Amna Nisar
- Department of Pharmacy, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Zaheer Ul-Haq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Alamgir Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
12
|
He M, Zhang J, Li N, Chen L, He Y, Peng Z, Wang G. Synthesis, anti-browning effect and mechanism research of kojic acid-coumarin derivatives as anti-tyrosinase inhibitors. Food Chem X 2024; 21:101128. [PMID: 38292671 PMCID: PMC10826612 DOI: 10.1016/j.fochx.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Thirteen kojic acid-coumarin derivatives were synthesized using the principle of molecular hybridization, and their structures were characterized by 1H NMR, 13C NMR, and HRMS. In vitro enzyme inhibition experiments showed that all newly synthesized derivatives have excellent inhibition of tyrosinase (TYR) activity. As a mixed inhibitor, compound 6f has the strongest activity, with an IC50 value of 0.88 ± 0.10 µM. Multispectral experiments have confirmed that the mode of action of compound 6f on TYR was static quenching. In addition, compound 6f formed a new complex with TYR, which increased the hydrophobicity of the enzyme microenvironment, reduced the content of the α-helix in the enzyme, and changed the secondary structure. The experimental results showed that compound 6f effectively inhibited the browning of lotus root slices and had low cytotoxicity. Therefore, compound 6f is believed to have great development potential as a TYR inhibitor in the food industry.
Collapse
Affiliation(s)
- Min He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Jinfeng Zhang
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Na Li
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lu Chen
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
13
|
Mehra A, Mittal A, Vishwakarma PK. Prediction of Protein-Drug Interactions, Pharmacophore Modeling, and Toxicokinetics of Novel Leads for Type 2 Diabetes Treatment. Curr Drug Metab 2024; 25:355-380. [PMID: 39108115 DOI: 10.2174/0113892002321919240801065905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Small heterocyclic compounds have been crucial in pioneering advances in type 2 diabetes treatment. There has been a dramatic increase in the pharmacological development of novel heterocyclic derivatives aimed at stimulating the activation of Glucokinase (GK). A pharmaceutical intervention for diabetes is increasingly targeting GK as a legitimate target. Diabetes type 2 compromises Glucokinase's function, an enzyme vital for maintaining the balance of blood glucose levels. Medicinal substances strategically positioned to improve type 2 diabetes management are used to stimulate the GK enzyme using heterocyclic derivatives. OBJECTIVE The research endeavor aimed to craft novel compounds, drawing inspiration from the inherent coumarin nucleus found in nature. The goal was to evoke the activity of the glucokinase enzyme, offering a tailored approach to mitigate the undesired side effects typically associated with conventional therapies employed in the treatment of type 2 diabetes. METHODS Coumarin, sourced from nature's embrace, unfolds as a potent and naturally derived ally in the quest for innovative antidiabetic interventions. Coumarin was extracted from a variety of botanical origins, including Artemisia keiskeana, Mallotus resinosus, Jatropha integerrima, Ferula tingitana, Zanthoxylum schinifolium, Phebalium clavatum, and Mammea siamensis. This inclusive evaluation was conducted on Muybridge's digital database containing 53,000 hit compounds. The presence of the coumarin nucleus was found in 100 compounds, that were selected from this extensive repository. Utilizing Auto Dock Vina 1.5.6 and ChemBioDraw Ultra, structures generated through this process underwent docking analysis. Furthermore, these compounds were accurately predicted online log P using the Swiss ADME algorithm. A predictive analysis was conducted using PKCSM software on the primary compounds to assess potential toxicity. RESULTS Using Auto Dock Vina 1.5.6, 100 coumarin derivatives were assessed for docking. Glucokinase (GK) binding was significantly enhanced by most of these compounds. Based on superior binding characteristics compared with Dorzagliatin (standard GKA) and MRK (co-crystallized ligand), the top eight molecules were identified. After further evaluation through ADMET analysis of these eight promising candidates, it was confirmed that they met the Lipinski rule of five and their pharmacokinetic profile was enhanced. The highest binding affinity was demonstrated by APV16 at -10.6 kcal/mol. A comparison between the APV16, Dorzagliatin and MRK in terms of toxicity predictions using PKCSM indicated that the former exhibited less skin sensitization, AMES toxicity, and hepatotoxicity. CONCLUSION Glucokinase is most potently activated by 100 of the compound leads in the database of 53,000 compounds that contain the coumarin nucleus. APV12, with its high binding affinity, favorable ADMET (adjusted drug metabolic equivalents), minimal toxicity, and favorable pharmacokinetic profile warrants consideration for progress to in vitro testing. Nevertheless, to uncover potential therapeutic implications, particularly in the context of type 2 diabetes, thorough investigations and in-vivo evaluations are necessary for benchmarking before therapeutic use, especially experiments involving the STZ diabetic rat model.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| | - Prakhar Kumar Vishwakarma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| |
Collapse
|
14
|
Díaz-Sánchez F, García-Castro MA, Amador-Ramírez MP, Espinosa-Morales D, Varela-Caselis JL. 7-Methoxy-4-methylcoumarin: Standard Molar Enthalpy of Formation Prediction in the Gas Phase Using Machine Learning and Its Comparison to the Experimental Data. ACS OMEGA 2023; 8:49037-49045. [PMID: 38162795 PMCID: PMC10753555 DOI: 10.1021/acsomega.3c06756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Experimentally, the standard molar enthalpy of formation in the crystalline phase at 298.15 K, ΔfHm°(cr) for 7-methoxy-4-methylcoumarin (7M4MC) was calculated by traditional linear regression, which was obtained by combustion calorimetry. Similarly, the standard molar enthalpy of sublimation was determined through the standard molar enthalpy of fusion and by the standard molar enthalpy of vaporization, from differential scanning calorimetry and thermogravimetry, respectively; lately using these results, the standard molar enthalpy of formation in the gas phase was calculated at 298.15 K, ΔfHm°(g). In addition ML was used to predict the standard molar enthalpy of formation in the gas phase for the 7M4MC, constructing an experimental data set containing three kinds of functional groups: esters, coumarins, and aromatic compounds. The procedure was performed by using multiple linear regression algorithms and stochastic gradient descent with a R2 of 0.99. The obtained models were used to compare those predicted values versus experimental for coumarins, resulting in an average error rate of 9.0%. Likewise, four homodesmic reactions were proposed and predicted with the multiple linear regression algorithm of ML obtaining good results.
Collapse
Affiliation(s)
- Fausto Díaz-Sánchez
- Facultad de Ingeniería
Química de la Benemérita Universidad Autónoma
de Puebla, 18 Sur y Av. San Claudio, C.P., Puebla Pue 72570, Mexico
| | - Miguel Angel García-Castro
- Facultad de Ingeniería
Química de la Benemérita Universidad Autónoma
de Puebla, 18 Sur y Av. San Claudio, C.P., Puebla Pue 72570, Mexico
| | - María Patricia Amador-Ramírez
- Facultad de Ciencias Químicas de la Benemérita Universidad
Autónoma de Puebla, 14 Sur y Av. San Claudio, C.P., Puebla Pue 72570, Mexico
| | - Diego Espinosa-Morales
- Facultad de Ingeniería
Química de la Benemérita Universidad Autónoma
de Puebla, 18 Sur y Av. San Claudio, C.P., Puebla Pue 72570, Mexico
| | - Jenaro Leocadio Varela-Caselis
- Dirección de Innovación y Transferencia de Conocimiento
de la Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur
y Av. San Claudio Ciudad Universitaria, C.P., Puebla Pue 72570, Mexico
| |
Collapse
|
15
|
Shkoor M, Thotathil V, Al-Zoubi RM, Su HL, Bani-Yaseen AD. Combined experimental and computational investigations of the fluorosolvatochromism of chromeno[4,3-b]pyridine derivatives: Effect of the methoxy substitution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123210. [PMID: 37536243 DOI: 10.1016/j.saa.2023.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Extensive research has been conducted on the spectral properties of chromeno[4,3-b]pyridine derivatives, owing to their potential applications in sensing, optoelectronic devices, and drug discovery. This study presents a comprehensive investigation into the fluorosolvatochromism of selected chromeno[4,3-b]pyridine derivatives, with a particular emphasis on the impact of methoxy substitution. Three derivatives were synthesized and subjected to spectral analysis: chromeno[4,3-b]pyridine-3-carboxylate (I) as the parent compound, and its 7-methoxy (II) and 8-methoxy (III) substituted derivatives.The UV-Vis absorption spectra of all derivatives exhibited a broad band with a maximum absorption wavelength that remained unaffected by the surrounding medium. However, distinct fluorescence properties were observed among them. Specifically, derivative II displayed notable fluorescence, while derivatives I and III exhibited no fluorescence properties. Furthermore, derivative II exhibited a fluorescence spectrum that is significantly influenced by the polarity of the medium. To investigate the fluorosolvatochromic behavior in depth, we conducted a comprehensive analysis using various neat solvents with different polarities and hydrogen bonding capabilities. The results obtained revealed a significant positive fluorosolvatochromism, with a bathochromic shift in the fluorescence spectrum as the solvent polarity increased. To understand how specific and non-specific interactions between the solute and the solvent affected the fluorosolvatochromism of II, we employed the four empirical scales model of Catalán. The obtained results demonstrated that intramolecular charge transfer played a crucial role in the fluorescence behavior of II. To provide a molecular-level explanation for the experimental spectral properties, we utilized the DFT and TD-DFT/B3LYP/6-31 + G(d) computational methods with the IEFPCM implicit solvation approach. The spectral differences between II and III were rationalized in terms of the frontier molecular orbitals (FMOs: the HOMO and LUMO), where distinct natures were observed among the examined derivatives. This study offers valuable insights into the impact of methoxy substitution on the physical and chemical properties of chromeno[4,3-b]pyridine derivatives, specifically concerning their spectral properties as elucidated by their fluorosolvatochromic behavior.
Collapse
Affiliation(s)
- Mohanad Shkoor
- Department of Chemistry & Earth Sciences, Faculty of Arts & Science, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Vandana Thotathil
- Department of Chemistry & Earth Sciences, Faculty of Arts & Science, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar; Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Haw-Lih Su
- Department of Nature Biotechnology, Nanhua University, Chiayi County 62249, Taiwan
| | - Abdulilah Dawoud Bani-Yaseen
- Department of Chemistry & Earth Sciences, Faculty of Arts & Science, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
16
|
Çelik Onar H, Özden EM, Taslak HD, Gülçin İ, Ece A, Erçağ E. Novel coumarin-chalcone derivatives: Synthesis, characterization, antioxidant, cyclic voltammetry, molecular modelling and biological evaluation studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors. Chem Biol Interact 2023; 383:110655. [PMID: 37573926 DOI: 10.1016/j.cbi.2023.110655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
In this study, a total of 12 coumarin-chalcone derivatives, 6 of which are original were synthesized. The structures of the newly synthesized compounds were elucidated by 1H NMR, 13C NMR, IR, and elemental analysis methods (7g-7l). The antioxidant potencies measured by using CUPRAC method (Trolox equivalent total antioxidant capacity) were as follows: 7j > 7i > 7c > 7d > 7k > 7l > 7f > 7h > 7e > 7g > 7a > 7b. Furthermore, the compounds were evaluated against human carbonic anhydrases I, II, acetylcholinesterase and α-glycosidase enzymes. Compounds 7c, 7e, 7g, 7i, 7j and 7l showed promising human carbonic anhydrase I inhibition compared to the standard Acetazolamide (Ki: 16.64 ± 4.72-49.82 ± 5.82 nM vs Ki: 57.64 ± 5.41 nM). In addition, all compounds exhibited strong inhibition against acetylcholinesterase and α-glycosidase. Ki values were between 2.39 ± 0.97-9.35 ± 3.95 nM (Tacrine Ki: 13.78 ± 4.36 nM) for acetylcholinesterase, and 14.49 ± 8.51-75.67 ± 26.38 nM (Acarbose Ki: 12600 ± 78.00 nM) for α-glycosidase. Binding of 7g was predicted using molecular docking and stability of the complex was confirmed with molecular dynamics simulations which shed a light on the observed activity against acetylcholinesterase. Finally, cyclic voltammetry was also used for the electrochemical characterization of the synthesized compounds.
Collapse
Affiliation(s)
- Hülya Çelik Onar
- İstanbul University- Cerrahpaşa, Faculty of Engineering, Department of Chemistry, İstanbul, Turkey.
| | - Eda Mehtap Özden
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey
| | - Hava Dudu Taslak
- İstanbul University- Cerrahpaşa, Faculty of Engineering, Department of Chemistry, İstanbul, Turkey
| | - İlhami Gülçin
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey
| | - Abdulilah Ece
- Biruni University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| | - Erol Erçağ
- Tekirdağ Namık Kemal University, Faculty of Arts and Sciences, Department of Chemistry, Tekirdağ, Turkey
| |
Collapse
|
17
|
Adra C, Tran TD, Foster K, Tomlin R, Kurtböke Dİ. Untargeted MS-Based Metabolomic Analysis of Termite Gut-Associated Streptomycetes with Antifungal Activity against Pyrrhoderma noxium. Antibiotics (Basel) 2023; 12:1373. [PMID: 37760670 PMCID: PMC10525753 DOI: 10.3390/antibiotics12091373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Pyrrhoderma noxium is a plant fungal pathogen that induces the disease of brown root rot in a large variety of tree species. It is currently infecting many of the amenity trees within Brisbane City of Queensland, Australia. Steering away from harmful chemical fungicides, biological control agents offer environmentally friendly alternatives. Streptomycetes are known for their production of novel bioactive secondary metabolites with biocontrol potential, particularly, streptomycete symbionts isolated from unique ecological niches. In this study, 37 termite gut-associated actinomycete isolates were identified using molecular methods and screened against P. noxium. A majority of the isolates belonged to the genus Streptomyces, and 15 isolates exhibited strong antifungal activity with up to 98.5% mycelial inhibition of the fungal pathogen. MS/MS molecular networking analysis of the isolates' fermentation extracts revealed several chemical classes with polyketides being among the most abundant. Most of the metabolites, however, did not have matches to the GNPS database, indicating potential novel antifungal compounds in the active extracts obtained from the isolates. Pathway enrichment and overrepresentation analyses revealed pathways relating to polyketide antibiotic production, among other antibiotic pathways, further confirming the biosynthetic potential of the termite gut-associated streptomycetes with biocontrol potential against P. noxium.
Collapse
Affiliation(s)
- Cherrihan Adra
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia; (C.A.); (T.D.T.)
| | - Trong D. Tran
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia; (C.A.); (T.D.T.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia
| | - Keith Foster
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia; (K.F.); (R.T.)
| | - Russell Tomlin
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia; (K.F.); (R.T.)
| | - D. İpek Kurtböke
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia; (C.A.); (T.D.T.)
| |
Collapse
|
18
|
Yang Y, Xu J, Li Y, He Y, Yang Y, Liu D, Wu C. Effects of Coumarin on Rhizosphere Microbiome and Metabolome of Lolium multiflorum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1096. [PMID: 36903956 PMCID: PMC10005730 DOI: 10.3390/plants12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Rhizosphere microorganisms can help plants absorb nutrients, coordinate their growth, and improve their environmental adaptability. Coumarin can act as a signaling molecule that regulates the interaction between commensals, pathogens, and plants. In this study, we elucidate the effect of coumarin on plant root microorganisms. To provide a theoretical basis for the development of coumarin-derived compounds as biological pesticides, we determined the effect of coumarin on the root secondary metabolism and rhizosphere microbial community of annual ryegrass (Lolium multiflorum Lam.). We observed that a 200 mg/kg coumarin treatment had a negligible effect on the rhizosphere soil bacterial species of the annual ryegrass rhizosphere, though it exhibited a significant effect on the abundance of bacteria in the rhizospheric microbial community. Under coumarin-induced allelopathic stress, annual ryegrass can stimulate the colonization of beneficial flora in the root rhizosphere; however, certain pathogenic bacteria, such as Aquicella species, also multiply in large numbers in such conditions, which may be one of the main reasons for a sharp decline in the annual ryegrass biomass production. Further, metabolomics analysis revealed that the 200 mg/kg coumarin treatment triggered the accumulation of a total of 351 metabolites, of which 284 were found to be significantly upregulated, while 67 metabolites were significantly downregulated in the T200 group (treated with 200 mg/kg coumarin) compared to the CK group (control group) (p < 0.05). Further, the differentially expressed metabolites were primarily associated with 20 metabolic pathways, including phenylpropanoid biosynthesis, flavonoid biosynthesis, glutathione metabolism, etc. We found significant alterations in the phenylpropanoid biosynthesis and purine metabolism pathways (p < 0.05). In addition, there were significant differences between the rhizosphere soil bacterial community and root metabolites. Furthermore, changes in the bacterial abundance disrupted the balance of the rhizosphere micro-ecosystem and indirectly regulated the level of root metabolites. The current study paves the way towards comprehensively understanding the specific relationship between the root metabolite levels and the abundance of the rhizosphere microbial community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caixia Wu
- Correspondence: ; Tel.: +86-(13)-665293134
| |
Collapse
|
19
|
Patra S, Patra P. A Brief Review on the Design, Synthesis and Biological Evaluation of Pyrazolo[ c]coumarin Derivatives. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2181827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Susanta Patra
- Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Prasanta Patra
- Department of Chemistry, Jhargram Raj College, Jhargram, WB 721507, India
| |
Collapse
|
20
|
Ahmed Z, Tokhi A, Arif M, Rehman NU, Sheibani V, Rauf K, Sewell RDE. Fraxetin attenuates disrupted behavioral and central neurochemical activity in a model of chronic unpredictable stress. Front Pharmacol 2023; 14:1135497. [PMID: 37033640 PMCID: PMC10078985 DOI: 10.3389/fphar.2023.1135497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: Chronic unpredictable stress (CUS) induces long-term neuronal and synaptic plasticity with a neurohormonal disbalance leading to the development of co-existing anxiety, depression, and cognitive decline. The side effects and delayed onset of current clinically used antidepressants has prompted a quest for antidepressants with minimum drawbacks. Fraxetin is a natural coumarin derivative with documented antioxidant and neuroprotective activity though its effects on stress are unknown. This study therefore aimed to investigate any possible acute effect of fraxetin in behavioral tests including a CUS paradigm in correlation with brain regional neurochemical changes. Methods: Mice were subjected to a series of mild stressors for 14 days to induce CUS. Furthermore, behavioral performance in the open field test, forced swim test (FST), Y-maze and elevated plus-maze were evaluated. Postmortem frontal cortical, hippocampal and striatal tissues were analyzed via high-performance liquid chromatography (HPLC) for neurochemical changes. Result: Acute administration of fraxetin (20-60 mg/kg, orally) decreased depression-like behavior in the FST and behavioral anxiety in both the open field test and elevated plus-maze. Memory deficits induced during the CUS paradigm were markedly improved as reflected by enhanced Y maze performance. Concurrent biochemical and neurochemical analyses revealed that only the two higher fraxetin doses decreased elevated serum corticosterone levels while diminished serotonin levels in the frontal cortex, striatum and hippocampus were reversed, though noradrenaline was only raised in the striatum. Concomitantly, dopamine levels were restored by fraxetin at the highest dose exclusively in the frontal cortex. Conclusion: Acute treatment with fraxetin attenuated CUS-induced behavioral deficits, ameliorated the increased corticosterone level and restored altered regional neurotransmitter levels and this may indicate a potential application of fraxetin in the management of anxiety and depression modeled by CUS. However, further studies are warranted regarding the chronic effects of fraxetin behaviorally and neurochemically.
Collapse
Affiliation(s)
- Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of MedicalSciences, Kerman, Iran
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
- *Correspondence: Khalid Rauf,
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Silva VLM, Silva-Reis R, Moreira-Pais A, Ferreira T, Oliveira PA, Ferreira R, Cardoso SM, Sharifi-Rad J, Butnariu M, Costea MA, Grozea I. Dicoumarol: from chemistry to antitumor benefits. Chin Med 2022; 17:145. [PMID: 36575479 PMCID: PMC9793554 DOI: 10.1186/s13020-022-00699-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Dicoumarol, a coumarin-like compound, is known for its anticoagulant properties associated with the ability to inhibit vitamin K, being prescribed as a drug for several decades. The pharmaceutical value of dicoumarol turned it into a focus of chemists' attention, aiming its synthesis and of dicoumarol derivatives, bringing to light new methodologies. In recent years, several other bioactive effects have been claimed for dicoumarol and its derivatives, including anti-inflammatory, antimicrobial, antifungal, and anticancer, although the mechanisms of action underlying them are mostly not disclosed and additional research is needed to unravel them. This review presents a state of the art on the chemistry of dicoumarols, and their potential anticancer characteristics, highlighting the mechanisms of action elucidated so far. In parallel, we draw attention to the lack of in vivo studies and clinical trials to assess the safety and efficacy as drugs for later application.
Collapse
Affiliation(s)
- Vera L. M. Silva
- grid.7311.40000000123236065LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- grid.7311.40000000123236065LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Moreira-Pais
- grid.7311.40000000123236065LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal ,grid.12341.350000000121821287Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal ,grid.5808.50000 0001 1503 7226Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal
| | - Tiago Ferreira
- grid.12341.350000000121821287Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal ,grid.12341.350000000121821287Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- grid.12341.350000000121821287Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal ,grid.12341.350000000121821287Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.12341.350000000121821287Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Rita Ferreira
- grid.7311.40000000123236065LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- grid.7311.40000000123236065LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Javad Sharifi-Rad
- grid.442126.70000 0001 1945 2902Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Monica Butnariu
- Life Sciences University “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| | - Maria Alina Costea
- Life Sciences University “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| | - Ioana Grozea
- Life Sciences University “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| |
Collapse
|
22
|
Ratre P, Kulkarni S, Das S, Liang C, Mishra PK, Thareja S. Medicinal chemistry aspects and synthetic strategies of coumarin as aromatase inhibitors: an overview. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:41. [PMID: 36471176 DOI: 10.1007/s12032-022-01916-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Coumarin is a bicyclic oxygen bearing heterocyclic scaffold formed by fusion of benzene with the pyrone ring. Because of its unique physicochemical characteristics and the ease with which it may be transformed into a wide range of functionalized coumarins during synthesis, coumarin provides a privileged scaffold for medicinal chemists. As a result, many coumarin derivatives have been developed, synthesized, and evaluated to target a variety of therapeutic domains, thereby making it an attractive template for designing novel anti-breast cancer compounds. The main culprit in estrogen overproduction in the estrogen-dependent breast cancer (EDBC), is the enzyme aromatase (AR), and it is thought to be a significant target for the effective treatment of EDBC. Considering coumarins versatility, this review presents a detailed overview of diverse study of aromatase as a target for coumarins. An overview of structure-activity relationship analysis of coumarin core is also included so as to summarize the desired pharmacophoric features essential for design and development of aromatase inhibitors (AIs) using coumarin core. Identification of key synthesis techniques that could aid researchers in designing and developing novel analogues with significant anti-breast cancer properties along with their mechanism of action have also been covered in the current review.
Collapse
Affiliation(s)
- Pooja Ratre
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sweety Das
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710 021, People's Republic of China
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
23
|
Venkatesh GB, HariPrasad S, Jeevan Chakravarthy AS. One-pot synthesis of a new class of alkynyl anionic synthons: the 4-(2',2-trimethylsilylethynylphenoxymethyl)-2 H-chromen-2-ones. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2150851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. B. Venkatesh
- Department of Chemistry, Government Pre-University College, Chickaballapur, India
| | - S. HariPrasad
- Department of Chemistry, Central College Campus, Bengaluru Central University, Bangalore, India
| | | |
Collapse
|
24
|
Niri DR, Sayahi MH, Behrouz S, Moazzam A, Mojtabavi S, Faramarzi MA, Larijani B, Rastegar H, Mohammadi-Khanaposhtani M, Mahdavi M. Design, synthesis, in vitro, and in silico biological evaluations of coumarin-indole hybrids as new anti-α-glucosidase agents. BMC Chem 2022; 16:84. [PMID: 36329490 PMCID: PMC9635080 DOI: 10.1186/s13065-022-00882-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND A series of coumarin-indole hybrids was synthesized as the new α-glucosidase inhibitors. The title hybrids were considered as α-glucosidase inhibitors because had two active pharmacophores against α-glucosidase: coumarin and indole. METHODS The thirteen various derivatives 4a-m were synthesized, purified, and fully characterized. These compounds were evaluated against α-glucosidase in vitro and in silico. In silico pharmacokinetic studies of the most potent compounds were also performed. RESULTS Most of the title compounds exhibited high anti-α-glucosidase activity in comparison to standard drug acarbose. In particular, the phenoxy derivative 4d namely 3-((1H-indol-3-yl)(3-phenoxyphenyl)methyl)-4-hydroxy-2H-chromen-2-one showed promising activity. This compound is a competitive inhibitor against α-glucosidase and showed the lowest binding energy at the α-glucosidase active site in comparison to other potent synthesized compounds and acarbose. CONCLUSION Compound 4d can be a lead compound for further structural development to obtain effective and potent α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Davood Rezapour Niri
- grid.444860.a0000 0004 0600 0546Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Mohammad Hosein Sayahi
- grid.412462.70000 0000 8810 3346Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Somayeh Behrouz
- grid.444860.a0000 0004 0600 0546Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Ali Moazzam
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- grid.411705.60000 0001 0166 0922Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- grid.411705.60000 0001 0166 0922Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- grid.411705.60000 0001 0166 0922Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran ,grid.411495.c0000 0004 0421 4102Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mahdavi
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Functional analysis of a bitter gustatory receptor highly expressed in the larval maxillary galea of Helicoverpa armigera. PLoS Genet 2022; 18:e1010455. [PMID: 36206313 PMCID: PMC9581421 DOI: 10.1371/journal.pgen.1010455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/19/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Many plant secondary substances are feeding deterrents for insects and play a key role in the selection of host plants. The taste sensilla of phytophagous insects contain gustatory sensory neurons sensitive to deterrents but the molecular basis of deterrent chemoreception remains unknown. We investigated the function of Gr180, the most highly expressed bitter gustatory receptor in the maxillary galea of Helicoverpa armigera larvae. Functional analyses using the Xenopus oocyte expression system and two-electrode voltage clamp revealed that the oocytes expressing Gr180 responded to coumarin. Tip recording results showed that the medial sensilla styloconica of the maxilla of fifth instar larvae exhibited electrophysiological responses to coumarin. Two-choice feeding bioassays confirmed that coumarin inhibited larval feeding. A homozygous mutant strain of H. armigera with truncated Gr180 proteins (Gr180-/-) was established using the CRISPR-Cas9 system. The responses of the medial sensilla styloconica in Gr180-/- to coumarin were almost abolished, and the responses to sinigrin and strychnine were also significantly decreased. Knockout of Gr180 alleviated the feeding deterrent effects of coumarin, sinigrin, and strychnine. Thus, we conclude that Gr180 is a receptor responding to coumarin,and also participates in sensing sinigrin and strychnine. These results enhance our understanding of the gustatory sensing mechanisms of phytophagous insects to deterrents.
Collapse
|
26
|
Zhang Y, Bai P, Zhuang Y, Liu T. Two O-Methyltransferases Mediate Multiple Methylation Steps in the Biosynthesis of Coumarins in Cnidium monnieri. JOURNAL OF NATURAL PRODUCTS 2022; 85:2116-2121. [PMID: 35930697 DOI: 10.1021/acs.jnatprod.2c00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coumarins with methoxy groups such as osthole (1), xanthotoxin (2), bergapten (3), and isopimpinellin (4) are typical bioactive ingredients of many medicinal plants. The methylation steps remain widely unknown. Herein, we report the discovery of two methyltransferases in the biosynthesis of O-methyl coumarins in Cnidium monnieri by transcriptome mining, heterologous expression, and in vitro enzymatic assays. The results reveal that (i) CmOMT1 catalyzes the methylation of osthenol (8) as the final step in the biosynthesis of 1, (ii) CmOMT2 shows the highest efficiency and preference for methylating xanthotoxol (11) to form 2, and (iii) CmOMT1 and CmOMT2 also efficiently transform bergaptol (10) and 8-hydroxybergapten (13) into 3 or 4, suggesting the CmOMTs mediate multistep methylations in the biosynthesis of linear furanocoumarins in C. monnieri.
Collapse
Affiliation(s)
- Yanchen Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penggang Bai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yibin Zhuang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Tao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
27
|
Tsivileva OM, Koftin OV, Evseeva NV. Coumarins as Fungal Metabolites with Potential Medicinal Properties. Antibiotics (Basel) 2022; 11:1156. [PMID: 36139936 PMCID: PMC9495007 DOI: 10.3390/antibiotics11091156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarins are a structurally varied set of 2H-chromen-2-one compounds categorized also as members of the benzopyrone group of secondary metabolites. Coumarin derivatives attract interest owing to their wide practical application and the unique reactivity of fused benzene and pyrone ring systems in molecular structure. Coumarins have their own specific fingerprints as antiviral, antimicrobial, antioxidant, anti-inflammatory, antiadipogenic, cytotoxic, apoptosis, antitumor, antitubercular, and cytotoxicity agents. Natural products have played an essential role in filling the pharmaceutical pipeline for thousands of years. Biological effects of natural coumarins have laid the basis of low-toxic and highly effective drugs. Presently, more than 1300 coumarins have been identified in plants, bacteria, and fungi. Fungi as cultivated microbes have provided many of the nature-inspired syntheses of chemically diverse drugs. Endophytic fungi bioactivities attract interest, with applications in fields as diverse as cancer and neuronal injury or degeneration, microbial and parasitic infections, and others. Fungal mycelia produce several classes of bioactive molecules, including a wide group of coumarins. Of promise are further studies of conditions and products of the natural and synthetic coumarins' biotransformation by the fungal cultures, aimed at solving the urgent problem of searching for materials for biomedical engineering. The present review evaluates the fungal coumarins, their structure-related peculiarities, and their future therapeutic potential. Special emphasis has been placed on the coumarins successfully bioprospected from fungi, whereas an industry demand for the same coumarins earlier found in plants has faced hurdles. Considerable attention has also been paid to some aspects of the molecular mechanisms underlying the coumarins' biological activity. The compounds are selected and grouped according to their cytotoxic, anticancer, antibacterial, antifungal, and miscellaneous effects.
Collapse
Affiliation(s)
- Olga M. Tsivileva
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Oleg V. Koftin
- Department of Biochemistry, V.I. Razumovsky Saratov State Medical University, 112 ul. Bol’shaya Kazach’ya, Saratov 410012, Russia
| | - Nina V. Evseeva
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| |
Collapse
|
28
|
El-Naggar ME, Radwan EK, Rashdan HRM, El-Wakeel ST, Koryam AA, Sabt A. Simultaneous removal of Pb 2+ and direct red 31 dye from contaminated water using N-(2-hydroxyethyl)-2-oxo-2 H-chromene-3-carboxamide loaded chitosan nanoparticles. RSC Adv 2022; 12:18923-18935. [PMID: 35873340 PMCID: PMC9241362 DOI: 10.1039/d2ra02526d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
This study reports the preparation of a new material that can remove synthetic dyes and trace metals simultaneously. A new coumarin derivative was synthesized and its chemical structure was inferred from spectral data (FT-IR, 1H-NMR, 13C-NMR). Meanwhile, chitosan nanoparticles (CsNPs) were prepared then used as a carrier for two different concentrations of the coumarin derivative (C1@CsNPs and C2@CsNPs). The TEM, SEM and DLS findings illustrated that the prepared nanocomposites exhibited spherical shape and small size (less than 200 nm). The performance of the prepared material for the removal of an anionic dye (direct red 31, DR31) and cationic trace metal (Pb2+) was evaluated in unary and binary systems. The results revealed that complete removal of 10 mg L-1 of DR31 and Pb2+ in unary system was achieved at pHo 3.0 and 5.5 using 0.5 and 2.0 g L-1, respectively, of C2@CsNPs. The adsorption of DR31 and Pb2+ followed different mechanisms as deduced from the effect of pHo, kinetic, isotherm and binary adsorption studies. The adsorption of DR31 followed the Langmuir isotherm model and the pseudo-first-order kinetic model. While, the adsorption of Pb2+ followed Freundlich isotherm model and Elovich kinetic model. In the binary system, the co-presence of DR31 and Pb2+ did not affect the adsorption of each other's. Overall, the prepared material showed promising results for the removal of anionic dyes and cations trace metals from contaminated water.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre 33 El Buhouth St, Dokki Giza 12622 Egypt
| | - Emad K Radwan
- Water Pollution Research Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St Dokki 12622 Egypt
| | - Shaimaa T El-Wakeel
- Water Pollution Research Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| | - Asmaa A Koryam
- Water Pollution Research Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| | - Ahmed Sabt
- Department of Natural Compounds Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| |
Collapse
|
29
|
Vilas-Boas DF, Oliveira RRG, Gonçalves-Santos E, Silva LS, Diniz LF, Mazzeti AL, Brancaglion GA, Carvalho DT, Caldas S, Novaes RD, Caldas IS. 4-nitrobenzoylcoumarin potentiates the antiparasitic, anti-inflammatory and cardioprotective effects of benznidazole in a murine model of acute Trypanosoma cruzi infection. Acta Trop 2022; 228:106314. [PMID: 35038424 DOI: 10.1016/j.actatropica.2022.106314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
Abstract
The anti-inflammatory and cardioprotective potential of coumarin metabolites in infectious myocarditis remains overlooked. Thus, the impact of the synthetic 4-nitrobenzoylcoumarin (4NB) alone and combined with benznidazole (Bz) in a murine model of Trypanosoma cruzi-induced acute myocarditis was investigated. Swiss mice infected with T. cruzi were randomized in 8 groups: uninfected, infected untreated or treated with 50 and 100 mg/kg 4NB or Bz alone and combined. Treatments were administered by gavage for 20 days. Cytokines (IL-2, IL-6, IL-10, IL-17, TNFα, and IFN-γ), immunoglobulin reactivity index (total IgG, IgG1, IgG2a and IgG2b), atrial natriuretic peptide (ANP), parasitemia, serum transaminases, heart and liver cellularity were analyzed. T. cruzi infection induced blood parasitism, heart and liver inflammation, upregulated all cytokines, IgG reactivity index, ANP and transaminase levels, determining 43% mortality in untreated mice. Transaminase levels, mean parasitemia, heart inflammation and ANP were reduced in 4NB-treated mice, reaching a 100% survival rate. Total survival (100%) was also obtained in all combinations of Bz and 4NB, which were effective in reducing blood parasitism, transaminases, cytokines and ANP levels, IgG reactivity index, liver and heart interstitial cellularity compared to 50 mg/kg Bz. Our findings indicated that 4NB alone and combined with Bz was well tolerated, showing no evidence of hepatotoxicity. Mainly in combination, these drugs exerted protective effects against T. cruzi-induced acute myocarditis by attenuating blood parasitism, systemic and heart inflammation. Thus, combinations based on 4NB and Bz are potentially relevant to develop new and more effective drug regimens for the treatment of T. cruzi-induced myocarditis.
Collapse
Affiliation(s)
- Diego F Vilas-Boas
- Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Raphaela R G Oliveira
- Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Elda Gonçalves-Santos
- Departamento de Biologia Estrutural, Universidade Federal de Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Luana S Silva
- Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Lívia F Diniz
- Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Ana L Mazzeti
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Guilherme A Brancaglion
- Departamento de Alimentos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Diogo T Carvalho
- Departamento de Alimentos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Sergio Caldas
- Fundação Ezequiel Dias, 30510-010 Belo Horizonte, MG, Brazil
| | - Rômulo D Novaes
- Departamento de Biologia Estrutural, Universidade Federal de Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Ivo S Caldas
- Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
30
|
Rapid and interference-free quantification of nine coumarins in Cnidii Fructus using HPLC-DAD assisted with second-order calibration model. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Kittakoop P, Darshana D, Sangsuwan R, Mahidol C. Alkaloids and Alkaloid-Like Compounds are Potential Scaffolds of Antiviral Agents against SARS-CoV-2 (COVID-19) Virus. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Polyphenols-Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021; 14:nu14010137. [PMID: 35011012 PMCID: PMC8747136 DOI: 10.3390/nu14010137] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
The present review summarizes the studies carried out on this topic in the last five years. According to the new definitions, among all the compounds included in the group of prebiotics, polyphenols are probably the most important secondary metabolites produced by the plant kingdom. Many of these types of polyphenols have low bioavailability, therefore reaching the colon in unaltered form. Once in the colon, these compounds interact with the intestinal microbes bidirectionally by modulating them and, consequently, releasing metabolites. Despite much research on various metabolites, little is known about the chemistry of the metabolic routes used by different bacteria species. In this context, this review aims to investigate the prebiotic effect of polyphenols in preclinical and clinical studies, highlighting that the consumption of polyphenols leads to an increase in beneficial bacteria, as well as an increase in the production of valuable metabolites. In conclusion, there is much evidence in preclinical studies supporting the prebiotic effect of polyphenols, but further clinical studies are needed to investigate this effect in humans.
Collapse
|
33
|
Geng CA, Deng ZT, Huang Q, Xiang CL, Chen JJ. Six New 3,5-Dimethylcoumarins from Chelonopsis praecox, Chelonopsis odontochila and Chelonopsis pseudobracteata. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:643-649. [PMID: 34529253 PMCID: PMC8599598 DOI: 10.1007/s13659-021-00318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Ten 3,5-dimethylcoumarins (1-6 and 8‒11) involving six new ones (1-6), together with a known 3-methylcoumarin (7), were isolated from the aerial parts of three Chelonopsis plants, C. praecox, C. odontochila, and C. pseudobracteata. The structures of the new compounds were determined by extensive HRESIMS, 1D and 2D NMR spectroscopic analyses. According to the substitution at C-5, these coumarins were classified into 5-methyl, 5-hydroxymethyl, 5-formyl, and 5-nor types. All the isolates were assayed for their inhibition on α-glucosidase, protein tyrosine phosphatase 1B, and T-cell protein tyrosine phosphatase in vitro.
Collapse
Affiliation(s)
- Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Zhen-Tao Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Qian Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Chun-Lei Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
34
|
Sinha S, Singh K, Ved A, Hasan SM, Mujeeb S. Therapeutic Journey and Recent Advances in the Synthesis of Coumarin Derivatives. Mini Rev Med Chem 2021; 22:1314-1330. [PMID: 34784861 DOI: 10.2174/1389557521666211116120823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Coumarin is an oxygen-containing compound in medicinal chemistry. Coumarin plays an important role in both natural systems like plants and also in synthetic medicinal applications as drug molecules. Many structurally different coumarin compounds were found to show a big range of similarity with the vital molecular targets for their pharmacological action and small modifications in their structures resulted insignificant changes in their biological activities. OBJECTIVE This review gives detailed information about the studies of the recent advances in various pharmacological aspects of coumarins. METHOD Various oxygen-containing heterocyclic compounds represented remarkable biological significances. The fused aromatic oxygen-heterocyclic nucleus is able to change its electron density; thus changing the chemical, physical and biological properties respectively due to its multiple binding modes with the receptors, which play crucial role in pharmacological screening of drugs. A number of heterocyclic compounds have been synthesized which have their nucleus derived from various plants and animals. In coumarins, benzene ring is fused with pyrone nucleus which provides stability to the nucleus. Coumarins have shown a wide range of pharmacological activities such as anti-tumour, anti-coagulant, anti-inflammatory, anti-oxidant, antiviral, anti-malarial, anti-HIV and antimicrobial activity etc. Results: Reactive oxygen species like superoxide anion, hydroxyl radical and hydrogen peroxide are a type of unstable molecule that contains oxygen, which reacts with other molecules in the cell during the metabolism process but it may produce cytotoxicity when reactive oxygen species increase in number, by the damage of biological macromolecules. Hydroxyl radical (˙OH), is a strong oxidizing agent and it is responsible for the cytotoxicity by oxygen in different plants, animals and other microbes. coumarin is the oldest and effective compound having antimicrobial activity, anti-inflammatory, antioxidant, antidepressant activity, analgesic, anticonvulsant activity, etc. Naturally existing coumarin compounds act against SARS-CoV-2 by preventing viral replication through the targeting on active site against the Mpro target protein. CONCLUSION This review highlights the different biological activities of coumarin derivatives. In this review we provide an updated summary of the researches which are related to recent advances in biological activities of coumarins analogue and their most recent activities against COVID -19. Natural compounds act as a rich resource for novel drug development against various SARS-CoV-2 viral strains including viruses like herpes simplex virus, influenza virus, human immunodeficiency virus, hepatitis B and C viruses, middle east respiratory syndrome and severe acute respiratory syndrome.
Collapse
Affiliation(s)
- Shweta Sinha
- Faculty of Pharmacy, Integral University, Kursi road, Lucknow-226026 (U.P.). India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Kursi road, Lucknow-226026 (U.P.). India
| | - Akash Ved
- Goel Institute of Pharmaceutical Sciences, Lucknow -226028 (U.P.). India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi road, Lucknow-226026 (U.P.). India
| | - Samar Mujeeb
- Hygia Institute of Pharmaceutical Education and Research, Lucknow. India
| |
Collapse
|
35
|
Song Z, Lu Q, Tao A, Wu T. Synthesis and Anti-cancer Activity of Paclitaxel-Coumarin Conjugate. Curr Org Synth 2021; 18:587-591. [PMID: 33655867 DOI: 10.2174/1570179418666210303113406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Paclitaxel, a natural diterpenoid compound, has anti-tumor effect by acting on tubulin, whereas coumarin, another kind of natural product, has anti-tumor effect, along with some other effects, such as anti-bacterial-., Moreover, it also possesses fluorescence. OBJECTIVE Multi targeting is an effective strategy in drug design to combat tumor. Therefore, a combination of paclitaxel with other active molecular drugs for exploring the novel lead with multi-functions is in demand. MATERIALS AND METHODS To synthsize paclitaxel-coumarin conjugate via click chemistry and to investigate anticancer activity by MTT assay and the scratch test. RESULTS AND DISCUSSION The results of MTT assay showed that compared tothe paclitaxel, the anti-tumor activity of the conjugate was significantly improved. The results of flow cytometry showed that the conjugate had a stronger ability to induce apoptosis. The scratch test results showed that the conjugate had better anti- metastasis ability than paclitaxel. CONCLUSION These findings indicated that paclitaxel and coumarin had a synergistic effect, which paved the way for the development of paclitaxel through fluorescence.
Collapse
Affiliation(s)
- Zurong Song
- College of Pharmaceutical Sciences, Anhui Xinhua University, Hefei 230088, China
| | - Qin Lu
- Proctology Department, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Ali Tao
- College of Pharmaceutical Sciences, Anhui Xinhua University, Hefei 230088, China
| | - Tianchen Wu
- Proctology Department, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| |
Collapse
|
36
|
Sudan CRC, Pereira LC, Silva AF, Moreira CPDS, de Oliveira DS, Faria G, Dos Santos JSC, Leclercq SY, Caldas S, Silva CG, Lopes JCD, de Almeida VL. Biological Activities of Extracts from Ageratum fastigiatum: Phytochemical Study and In Silico Target Fishing Approach. PLANTA MEDICA 2021; 87:1045-1060. [PMID: 34530481 DOI: 10.1055/a-1576-4080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study, the ethanolic extract from aerial parts of Ageratum fastigiatum was evaluated in vitro against epimastigote forms of Trypanosoma cruzi (Y strain), promastigote forms of Leishmania amazonensis (PH8 strain), and L. chagasi (BH400 strain). The extract was also evaluated against Staphylococcus aureus (ATCC 25 923), Escherichia coli (ATCC 11 775), Pseudomonas aeruginosa (ATCC 10 145), and Candida albicans (ATCC 36 802). The phytochemical screening was performed by thin-layer chromatography and high-performance liquid chromatography. The extract was fractionated using flash preparative chromatography. The ethanolic extract showed activity against T. cruzi, L. chagasi, and L. amazonensis and antimicrobial activity against S. aureus, E. coli, P. aeruginosa, and C. albicans. The phytochemical screening revealed coumarins, terpenes/sterols, and flavonoids in the ethanolic extract. In addition, the coumarin identified as ayapin was isolated from this extract. We also performed in silico prediction of potential biological activities and targets for compounds previously found in A. fastigiatum. Several predictions were confirmed both retrospectively and prospectively by experimental results described here or elsewhere. Some activities described in the in silico target fishing approach were validated by the ethnopharmacological use and known biological properties. Some new activities and/or targets were predicted and could guide future studies. These results suggest that A. fastigiatum can be an interesting source of substances with antiparasitic and antimicrobial activities.
Collapse
Affiliation(s)
| | - Lucas Campos Pereira
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Andréia Fonseca Silva
- Empresa de Pesquisa Agropecuária de Minas, Gerais (EPAMIG), Belo Horizonte, MG, Brazil
| | | | | | - Gilson Faria
- Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Janete Soares Coelho Dos Santos
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sophie Yvette Leclercq
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sergio Caldas
- Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Cláudia Gontijo Silva
- Serviço de Fitoquímica e Prospecção Farmacêutica, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Júlio César Dias Lopes
- Chemoinformatics Group (NEQUIM), Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vera Lúcia de Almeida
- Serviço de Fitoquímica e Prospecção Farmacêutica, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| |
Collapse
|
37
|
Akay S, Kayan B, Jouyban A, Martínez F, Acree WE. Solubility of coumarin in (ethanol + water) mixtures: Determination, correlation, thermodynamics and preferential solvation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Irgashev RA, Steparuk AS, Rusinov GL. Synthesis of 6H,7H-chromeno[3′,4′:4,5]thieno[3,2-b]indol-6-ones using the Fischer indolization reaction. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Evaluation of the purification process of Croton tiglium L. seeds by chromatographic methods. JPC-J PLANAR CHROMAT 2021. [DOI: 10.1007/s00764-021-00111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Rani S, Raheja K, Luxami V, Paul K. A review on diverse heterocyclic compounds as the privileged scaffolds in non-steroidal aromatase inhibitors. Bioorg Chem 2021; 113:105017. [PMID: 34091288 DOI: 10.1016/j.bioorg.2021.105017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer, emerging malignancy is common among women due to overexpression of estrogen. Estrogens are biosynthesized from androgens by aromatase, a cytochrome P450 enzyme complex, and play a pivotal role in stimulating cell proliferation. Therefore, deprivation of estrogen by blocking aromatase is considered as the effective way for the inhibition and treatment of breast cancer. In recent years, various non-steroidal heterocyclic functionalities have been extensively developed and studied for their aromatase inhibition activity. This review provides information about the structural-activity relationship of heterocycles (Type II) towards aromatase. This aids the medicinal chemist around the significance of different heterocyclic moieties and helps to design potent aromatase inhibitors.
Collapse
Affiliation(s)
- Sudesh Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Konpal Raheja
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| |
Collapse
|
41
|
Ashok D, Ramakrishna K, Nagaraju N, Reddy MR, Dharavath R, Sarasija M. Microwave-Assisted Synthesis of Substituted 2-(2H-Chromen-3-yl)-5-phenyl-1H-imidazole Based Coumarin Derivatives and Their Antimicrobial Activity. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221040216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Synthesis and Biological Screening of New 4-Hydroxycoumarin Derivatives and Their Palladium(II) Complexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8849568. [PMID: 34007407 PMCID: PMC8102111 DOI: 10.1155/2021/8849568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/06/2020] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
Two newly synthesized 4-hydroxycoumarin bidentate ligands (L1 and L2) and their palladium(II) complexes (C1 and C2) were screened for their biological activities, in vitro and in vivo. Structures of new compounds were established based on elemental analysis, 1H NMR, 13C NMR, and IR spectroscopic techniques. The obtained compounds were tested for their antioxidative and cytotoxic activities and results pointed to selective antiradical activity of palladium(II) complexes towards •OH and -•OOH radicals and anti-ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical) activity comparable to that of ascorbate. Results indicated the effect of C1 and C2 on the enzymatic activity of the antioxidative defense system. In vitro cytotoxicity assay performed on different carcinoma cell lines (HCT166, A375, and MIA PaCa-2), and one healthy fibroblast cell line (MRC-5) showed a cytotoxic effect of both C1 and C2, expressed as a decrease in carcinoma cells' viability, mostly by induction of apoptosis. In vivo toxicity tests performed on zebrafish embryos indicated different effects of C1 and C2, ranging from adverse developmental effect to no toxicity, depending on tested concentration. According to docking studies, both complexes (C1 and C2) showed better inhibitory activity in comparison to other palladium(II) complexes.
Collapse
|
43
|
Hussain MI, Reigosa MJ. Secondary Metabolites, Ferulic Acid and p-Hydroxybenzoic Acid Induced Toxic Effects on Photosynthetic Process in Rumex acetosa L. Biomolecules 2021; 11:biom11020233. [PMID: 33562880 PMCID: PMC7915730 DOI: 10.3390/biom11020233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/26/2022] Open
Abstract
The elimination of broadleaf weeds from agricultural fields has become an urgent task in plant and environment protection. Allelopathic control is considered a potential approach because of its exclusive and ecological safety measures. Plant secondary metabolites also called allelochemicals are released from plant leaves, roots, stem, bark, flowers and play significant roles in soil rhizosphere signaling, chemical ecology, and plant defense. The present study was carried out to evaluate the impact of two allelochemicals; ferulic acid (FA) and p-hydroxybenzoic acid (pHBA) on photosynthetic characteristics; Fv/Fm: efficiency of photosystem II photochemistry in the dark-adapted state; ΦPSII: photosynthetic quantum yield; NPQ, non-photochemical quenching; qP, photochemical quenching, and photon energy dissipation (1−qP)/NPQ in Rumex acetosa following 6 days exposure. R. acetosa seedlings were grown in perlite culture, irrigated with Hoagland solution and treated with allelopathic compounds FA and pHBA and were evaluated against the photosynthetic attributes. Both compounds behaved as potent inhibitors of photosynthetic traits such as Fv/Fm, ΦPSII, qP, and NPQ in R. acetosa. Photon energy dissipation (1−qP)/NPQ increased significantly from days 3 to 6. Higher dissipation of absorbed energy indicates the inactivation state of reaction centers and their inability to effectively use the absorbed energy in photosynthesis. These results indicated the potential allelopathic application of FA and pHBA for control of broadleaf weed, Rumex acetosa.
Collapse
Affiliation(s)
- M. Iftikhar Hussain
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Manuel J. Reigosa
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain;
| |
Collapse
|
44
|
Gutiérrez Gaitén YI, Melissa Norden J, Scull Lizama R, Felipe González A, Oruña Sánchez L, Baeza Fonte AN, Ocanto Torres Z. Phytochemical profile, acute dermal toxicity and wound healing activity of Guettarda calyptrata A. Rich. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: The leaves and barks of Guettarda calyptrata have been attributed to the property of healing wounds on the skin and mucous membranes. However, the scientific information about the phytochemical composition and biological properties is scarce. This research evaluates the chemical composition, dermal safety, and wound healing properties of a hydroalcoholic extract of G. calyptrata. Methods: Hydroalcoholic extract of G. calyptrata was obtained from leaves. The phytochemical profile was analyzed by phytochemical screening, thin layer chromatography, high performance liquid chromatography (HPLC), and quantification of phenols and flavonoids by Folin-Ciocalteu and aluminum chloride methods, respectively. An acute dermal toxicity test was performed in rats, and the healing activity was evaluated using the excision wound model at 100 mg/kg of the extracts. Statistical significance (P < 0.05) was determined by an analysis of variance followed by the Student-Newman-Keuls test. Results: The presence of alkaloids, saponins, terpenoids, phenolic compounds, rutin, and quercetin flavonoids, among others, was suggested. The extract did not cause toxicity at the dose of 2000 mg/kg and was able to reduce the size of the wounds during the seven days of the test, with a healing effect comparable to the silver sulfadiazine cream used as a positive control, favoring collagen deposition and re-epithelialization. Conclusion: This work makes an important contribution to the chemical composition and provides the first findings on the efficacy in the healing of topical wounds, which justify the use of G. calyptrata in traditional Cuban medicine.
Collapse
Affiliation(s)
| | | | - Ramón Scull Lizama
- Department of Pharmacy, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | | | - Loida Oruña Sánchez
- Department of Research and Teaching, Institute of Oncology and Radiology, Havana, Cuba
| | - Alen Nils Baeza Fonte
- Laboratory for the Characterization of the Structure of Substances, Institute of Materials Science and Technology, University of Havana, Havana, Cuba
| | | |
Collapse
|
45
|
Zhang CB, Yuan JF, Cai YH, Xie YS, Li R, Fan MM, Li JJ. Recyclable Heterogeneous Nanocrystal Promoted Cascade Reaction in Water: An Access to Green Synthesis of Highly Functionalized 4H-Pyrans Containing Phosphonate Motif. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Zheng J, Wu Z, Yang N, Zhou K, Hu W, Ou S, Liu P. Widely Targeted UHPLC-MS/MS Metabolomic Analysis on the Chemical Variation in Blueberry-Filled Pastries During Processing. Front Nutr 2020; 7:569172. [PMID: 33240917 PMCID: PMC7680857 DOI: 10.3389/fnut.2020.569172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
The majority of components in fruits are sensitive to heat-processing. Nevertheless, fruits are becoming popular ingredients in processed foods, like bakery foods. Therefore, the fate of the components in the fruit-involved food during thermal processing is important for the assessment of their nutritional values and sensory properties. Unfortunately, comprehensive knowledge of the compositional alteration in real food products during processing is limited. In the current study, a popular bakery food, blueberry-filled pastry, was taken as the object, and a widely targeted metabolomic approach was applied to investigate the holistic compositional variation of blueberry filling during pastry preparation. Amongst the total of 630 chemicals identified, 288 chemicals were screened as differential compounds between samples collected at different processing stages. The most variation of the chemicals was observed during the process of stir-frying. A total of 197 chemicals varied significantly in concentrations during stir-frying, while only 75 chemicals altered significantly in contents during baking. Amongst 288 differential compounds, 117 belonged to the group of phenolic compounds, with the others found to be sugars and organic acids, amino acids, lipids, nucleotides, etc. The possible mechanisms of the chemical alterations during thermal processing were also discussed in the current study. The data provide comprehensive information on the compositional changes in berry-containing fillings during thermal processing, and hints and emphasis for further investigation of the underlying mechanisms.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Zhongjun Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Nan Yang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Kangning Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
47
|
Pentenyl Coumarins from the Roots and Stems of Nicotiana rustica and their Bioactivity. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Muhammad A, Feng X, Rasool A, Sun W, Li C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol Adv 2020; 43:107555. [DOI: 10.1016/j.biotechadv.2020.107555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
49
|
Zhu LJ, Luo D, Lv N, Li YK, Mi QL, Wang J, Kong WS, Gao Q, Li GP, Yang GY, Hu QF, Guan Y, Ye YQ. Two New Coumarins from the Roots and Stems of Nicotiana tabacum and their Bioactivity. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03157-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Recent Advances in Organocatalyzed Asymmetric Synthesis of Benzopyran and Benzodihydropyran (Chromane) Nuclei. Symmetry (Basel) 2019. [DOI: 10.3390/sym11121510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Benzopyran and benzodihydropyran (chromane) nuclei are the core structure of many natural products, in particular flavonoids. Many compounds possessing this structure are nutraceuticals, pharmaceutical nutrients. Therefore, benzopyran and chromane scaffolds are important building blocks in organic synthesis and many efforts have been made to set up efficient methods for their synthesis. In particular, asymmetric methods are of great importance, being natural products, and generally chiral substances. This review aims to cover literature in the range 2017–first half of 2019.
Collapse
|