1
|
Cantor J. Maximizing the Therapeutic Effect of Endothelin Receptor Antagonists in Pulmonary Fibrosis: A Paradigm for Treating the Disease. Int J Mol Sci 2024; 25:4184. [PMID: 38673771 PMCID: PMC11050024 DOI: 10.3390/ijms25084184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Using a lipopolysaccharide model of acute lung injury, we previously showed that endothelin-1 (ET-1), a potent mediator of vasoconstriction, may act as a "gatekeeper" for the influx of inflammatory cells into the lung. These studies provided a rationale for testing the effect of HJP272, an endothelin receptor antagonist (ERA), in hamster models of pulmonary fibrosis induced by intratracheal instillation of either bleomycin (BLM) or amiodarone (AM). To determine the temporal effects of blocking ET-1 activity, animals were given HJP272 either 1 h before initiation of lung injury or 24 h afterward. The results indicated that pretreatment with this agent caused significant reductions in various inflammatory parameters, whereas post-treatment was ineffective. This finding suggests that ERAs are only effective at a very early stage of pulmonary fibrosis and explains their lack of success in clinical trials involving patients with this disease. Nevertheless, ERAs could serve as prophylactic agents when combined with drugs that may induce pulmonary fibrosis. Furthermore, developing a biomarker for the initial changes in the lung extracellular matrix could increase the efficacy of ERAs and other therapeutic agents in preventing the progression of the disease. While no such biomarker currently exists, we propose the ratio of free to peptide-bound desmosine, a unique crosslink of elastin, as a potential candidate for detecting the earliest modifications in lung microarchitecture associated with pulmonary fibrosis.
Collapse
Affiliation(s)
- Jerome Cantor
- School of Pharmacy and Health Sciences, Queens, NY 11439, USA
| |
Collapse
|
2
|
Khadangi F, Tremblay-Pitre S, Dufour-Mailhot A, Rojas-Ruiz AB, Boucher M, Henry C, Fereydoonzad L, Brunet D, Robichaud A, Bossé Y. Sensitive physiological readouts to evaluate countermeasures for lipopolysaccharide-induced lung alterations in mice. Am J Physiol Lung Cell Mol Physiol 2022; 323:L107-L120. [PMID: 35670484 DOI: 10.1152/ajplung.00073.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite decades of research, studies investigating the physiological alterations caused by an acute bout of inflammation induced by exposing the lung to lipopolysaccharide have yielded inconsistent results. This can be attributed to small effects and/or a lack of fitted physiological testing. Herein, a comprehensive investigation of lung mechanics was conducted in 270 male C57BL/6 mice at 24, 48 or 96 h after an intranasal exposure to saline or lipopolysaccharide at either 1 or 3 mg/kg (30 mice per group). Traditional techniques that probe the lung using small-amplitude perturbations (i.e., oscillometry) were used, together with less conventional and new techniques that probe the lung using maneuvers of large amplitudes. The latter include a partial and a full-range pressure-volume maneuvers to measure quasi-static elastance, compliance, total lung volume, vital capacity and residual volume. The results demonstrate that lung mechanics assessed by oscillometry was only slightly affected by lipopolysaccharide, confirming previous findings. In contradistinction, lipopolysaccharide markedly altered mechanics when the lung was probed with maneuvers of large amplitudes. With the dose of 3 mg/kg at the peak of inflammation (48 h post-exposure), lipopolysaccharide increased quasi-static elastance by 26.7% (p<0.0001), and decreased compliance by 34.5% (p<0.0001). It also decreased lung volumes, including total lung capacity, vital capacity and residual volume by 33.3%, 30.5% and 43.3%, respectively (all p<0.0001). These newly reported physiological alterations represent sensitive outcomes to efficiently evaluate countermeasures (e.g., drugs) in the context of several lung diseases.
Collapse
Affiliation(s)
- Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | - Sophie Tremblay-Pitre
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | - Alexis Dufour-Mailhot
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | - Andrés Bruno Rojas-Ruiz
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | | | - David Brunet
- SCIREQ - Scientific Respiratory Equipment Inc., Montreal, Canada
| | | | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| |
Collapse
|
3
|
Liu X, Khadtare N, Patel H, Stephani R, Cantor J. Time-dependent effects of HJP272, an endothelin receptor antagonist, in bleomycin-induced pulmonary fibrosis. Pulm Pharmacol Ther 2017; 45:164-169. [PMID: 28619646 DOI: 10.1016/j.pupt.2017.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/05/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Using a lipopolysaccharide (LPS) model of acute lung injury, we have previously shown that endothelin-1 (ET-1), a potent mediator of vasoconstriction, may act as a "gatekeeper" for the influx of inflammatory cells into the lung. To further investigate the potential of ET-1 to limit the progression of lung injury, hamsters were treated with an endothelin receptor antagonist (ERA), HJP272, either 1 h prior to intratracheal instillation of bleomycin (BLM) or 24 h afterwards. Lung injury and repair were examined by measuring the following parameters: 1) histopathological changes; 2) neutrophil content in bronchoalveolar lavage fluid (BALF); 3) lung collagen content; 4) tumor necrosis factor receptor 1 (TNFR1) expression by BALF macrophages; 5) BALF levels of: a) transforming growth factor beta-1 (TGF-β1), b) stromal cell-derived factor 1 (commonly referred to as CXCL12), and c) platelet-derived growth factor BB (PDGF-BB); 6) alveolar septal cell apoptosis (as measured by the TUNEL assay). For each of these parameters, animals pretreated with HJP272 showed significant reductions compared to those receiving BLM alone. In contrast, post-treatment with HJP272 was either ineffective or produced only marginally significant changes. The efficacy of a single pretreatment with HJP272 prior to induction of lung injury suggests that subsequent features of the disease are determined at a very early stage. This may explain why ERAs are not an effective treatment for human pulmonary fibrosis. Nevertheless, our findings suggest that they may be useful as prophylactic agents when given in combination with drugs that have fibrogenic potential.
Collapse
Affiliation(s)
- Xingjian Liu
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Nikhil Khadtare
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Hardek Patel
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Ralph Stephani
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Jerome Cantor
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| |
Collapse
|
4
|
Caceres AI, Liu B, Jabba SV, Achanta S, Morris JB, Jordt SE. Transient Receptor Potential Cation Channel Subfamily M Member 8 channels mediate the anti-inflammatory effects of eucalyptol. Br J Pharmacol 2017; 174:867-879. [PMID: 28240768 DOI: 10.1111/bph.13760] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Eucalyptol (1,8-cineol), the major ingredient in the essential oil of eucalyptus leaves and other medicinal plants, has long been known for its anti-inflammatory properties. Eucalyptol interacts with the TRP cation channels among other targets, but it is unclear which of these mediates its anti-inflammatory effects. EXPERIMENTAL APPROACH Effects of eucalyptol were compared in wild-type and TRPM8 channel-deficient mice in two different models: footpad inflammation elicited by complete Freund's adjuvant (CFA) and pulmonary inflammation following administration of LPS. Oedema formation, behavioural inflammatory pain responses, leukocyte infiltration, enzyme activities and cytokine and chemokine levels were measured. KEY RESULTS In the CFA model, eucalyptol strongly attenuated oedema and mechanical allodynia and reduced levels of inflammatory cytokines (IL-1β, TNF-α and IL-6), effects comparable with those of ibuprofen. In the LPS model of pulmonary inflammation, eucalyptol treatment diminished leukocyte infiltration, myeloperoxidase activity and production of TNF-α, IL-1β, IFN-γ and IL-6. Genetic deletion of TRPM8 channels abolished the anti-inflammatory effects of eucalyptol in both models. Eucalyptol was at least sixfold more potent on human, than on mouse TRPM8 channels. A metabolite of eucalyptol, 2-hydroxy-1,8-cineol, also activated human TRPM8 channels. CONCLUSION AND IMPLICATIONS Among the pharmacological targets of eucalyptol, TRPM8 channels were essential for its anti-inflammatory effects in mice. Human TRPM8 channels are more sensitive to eucalyptol than rodent TRPM8 channels explaining the higher potency of eucalyptol in humans. Metabolites of eucalyptol could contribute to its anti-inflammatory effects. The development of more potent and selective TRPM8 agonists may yield novel anti-inflammatory agents.
Collapse
Affiliation(s)
- Ana I Caceres
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Boyi Liu
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology and Acupuncture Research, The 3rd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sairam V Jabba
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | | | - John B Morris
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Yale Tobacco Center of Regulatory Science (TCORS), Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Shirai K, Yoshida S, Matsumaru N, Toyoda I, Ogura S. Effect of enteral diet enriched with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with sepsis-induced acute respiratory distress syndrome. J Intensive Care 2015; 3:24. [PMID: 26015869 PMCID: PMC4443653 DOI: 10.1186/s40560-015-0087-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/17/2015] [Indexed: 12/26/2022] Open
Abstract
Background In this study, the effects of an enteral diet enriched with eicosapentaenoic acid (EPA), γ-linolenic acid (GLA), and antioxidants were compared with a standard enteral diet in critically ill patients with sepsis-induced acute respiratory distress syndrome (ARDS). Methods This study was a single-center, prospective, randomized, single-blind, controlled trial in our Advanced Critical Care Center. Patients were randomized to receive a continuous EPA, GLA, and antioxidant-enriched diet (study group), or an isocaloric standard diet (control group). Results Twenty-three of 46 patients were in the study group, and the other 23 were in the control group. Duration of mechanical ventilation, incidence of new nosocomial infections, changes over time in Sequential Organ Failure Assessment (SOFA) scores, and 60-day mortality were not significantly different between the two groups. The ratio of partial pressure of oxygen to fraction of inspired oxygen on day 7 was significantly higher in the study group (233.0 [185.5–282.8] vs. 274.0 [225.5–310.8], p = 0.021). Duration of ICU stay was significantly shorter in the study group than in the control group (24.0 [20.0–30.0] vs. 15.0 [11.0–24.0], p = 0.008). Conclusions An enteral diet enriched with EPA, GLA, and antioxidants did not improve duration of mechanical ventilation, SOFA score, incidence of new nosocomial infections, or mortality but did favorably influence duration of ICU stay in critically ill patients with sepsis-induced ARDS. Electronic supplementary material The online version of this article (doi:10.1186/s40560-015-0087-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kunihiro Shirai
- Department of Emergency and Critical Care Medicine Ichinomiya Municipal Hospital, Bunkyo, Ichinomiya, Aichi 491-8558 Japan
| | - Shozo Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Naoki Matsumaru
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Izumi Toyoda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
6
|
HJP272, a novel endothelin receptor antagonist, attenuates lipopolysaccharide-induced acute lung injury in hamsters. Lung 2014; 192:803-10. [PMID: 25087133 DOI: 10.1007/s00408-014-9628-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/16/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Previous studies from this laboratory indicate that endothelin-1 (ET-1), a potent vasoconstrictor, may play an important role in lipopolysaccharide (LPS)-induced release of neutrophils from the pulmonary microvasculature. To further test this concept, Syrian hamsters were treated with a novel endothelin receptor A (ETA) antagonist (HJP272) prior to intratracheal instillation of LPS. METHODS The effect of HJP272 on the LPS-induced inflammatory reaction was determined by measuring: (1) lung histopathological changes, (2) total neutrophils in bronchoalveolar lavage fluid (BALF), (3) expression of tumor necrosis factor receptor 1 (TNFR1) by BALF macrophages, and (4) alveolar septal cell apoptosis. RESULTS Treatment with HJP272 significantly reduced each of these parameters during a 24-hr period following LPS instillation, supporting the concept that limiting the activity of ET-1 may reduce the extent of lung injury. This hypothesis was further tested by giving ET-1 prior to LPS instillation, which resulted in a marked enhancement of LPS-induced lung inflammation, as measured by BALF neutrophils and TNFR1-positive macrophages. Furthermore, the increase in neutrophils resulting from treatment with ET-1 was significantly reduced by HJP272, again demonstrating the ability of ETA receptor antagonists to limit the influx of these cells into the lung. CONCLUSIONS These findings suggest a potential therapeutic role for these agents in diseases where neutrophils are a significant cause of lung injury, such as bronchopneumonia, respiratory distress syndrome, and chronic obstructive pulmonary disease.
Collapse
|
7
|
p120 modulates LPS-induced NF-κB activation partially through RhoA in bronchial epithelial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:932340. [PMID: 24995336 PMCID: PMC4065672 DOI: 10.1155/2014/932340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/22/2014] [Accepted: 05/08/2014] [Indexed: 12/03/2022]
Abstract
p120-Catenin (p120) is an adherens junction protein recognized to regulate cell-cell adhesion. Emerging evidence indicates that p120 may also play an important role in inflammatory responses, and the regulatory mechanisms are still unknown. In the present study, we showed that p120 was associated with airway inflammation. p120 downregulation induced nuclear factor-κB (NF-κB) activation, accompanied with IκBα degradation, p65 nuclear translocation, and increased expression of interleukin-8 (IL-8) in lipopolysaccharide (LPS)- treated C57BL mice and human bronchial epithelial cells (BECs). Moreover, we first found that p120 directly coprecipitated with RhoA in BECs. After LPS stimulation, although total RhoA and p120-bound RhoA were unchanged, RhoA activity was increased. Y27632, a ROCK inhibitor, could partially inhibit nuclear translocation of p65. Overexpression of p120 inactivated RhoA and NF-κB in BECs, whereas p120 loss significantly increased RhoA activity, p65 nuclear translocation, and IL-8 expression. Taken together, our study supports the regulatory role of p120 in airway inflammation and reveals that p120 may modulate NF-κB signaling partially through RhoA.
Collapse
|
8
|
Yoshida T, Nagai K, Inomata T, Ito Y, Betsuyaku T, Nishimura M. Relationship between neutrophil influx and oxidative stress in alveolar space in lipopolysaccharide-induced lung injury. Respir Physiol Neurobiol 2014; 191:75-83. [DOI: 10.1016/j.resp.2013.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
|
9
|
Deng S, Wu Q, Yu K, Zhang Y, Yao Y, Li W, Deng Z, Liu G, Li W, Lian Z. Changes in the relative inflammatory responses in sheep cells overexpressing of toll-like receptor 4 when stimulated with LPS. PLoS One 2012; 7:e47118. [PMID: 23056598 PMCID: PMC3464238 DOI: 10.1371/journal.pone.0047118] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/10/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Many groups of Gram-negative bacteria cause diseases harmful to sheep. TLR4 is an important Toll-like receptor (TLR) which responds to common Gram-negative bacterial infections. Activation of TLR4 leads to the induction of inflammatory responses, which is a linkage between the innate and adaptive immune systems. A vector pTLR4-3S was constructed to overexpress TLR4 gene in sheep. In this study, effects of TLR4 overexpression on inflammation response under LPS stimulated were addressed in vivo and in vitro. METHODOLOGY/PRINCIPAL FINDINGS Sheep fetal fibroblasts were transfected with expression vector pTLR4-3S. Transgenic sheep were produced by microinjection of the constructed plasmids into fertilized eggs. Fetal fibroblasts, monocyte-macrophage and fibroblasts isolated from the transgenic sheep were stimulated by LPS. After that immunoactive factors (TNF-α, IL-10, IL-6, IL-8, IFN-γ), nitric oxide, phagocytize ability and adhesion were detected. Furthermore, transgenic sheep were intradermal injected of LPS in ear and observed pathological changes by HE strain. Overexpression of TLR4 gene was observed on transgenic cells and individuals. In vitro, TLR4 overexpression transgenic cells secreted Th1 and Th2 inducing cytokines with a strong LPS mediated inflammation response and promoting the secretion of nitric oxide, and then recovered to initial level. The phagocytosis index of monocyte/macrophage in transgenic sheep was higher than that of non-transgenic sheep (P<0.05). In vivo, tissue sections showed that transgenic individuals launched inflammation response more quickly. CONCLUSIONS/SIGNIFICANCE Overexpression of TLR4 in transgenic sheep enhanced the clearance of invaded microbe through secretion of cytokines, activation of macrophage, oxidation damage and infiltration of neutrophil.
Collapse
Affiliation(s)
- Shoulong Deng
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Qian Wu
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics, Beijing, P.R. China
| | - Kun Yu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P.R. China
| | - Yuchang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
| | - Wenting Li
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Zhuo Deng
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Guoshi Liu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Wu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
| | - Zhengxing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- National Key Lab of Agrobiotechnology, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
10
|
Hfe deficiency impairs pulmonary neutrophil recruitment in response to inflammation. PLoS One 2012; 7:e39363. [PMID: 22745741 PMCID: PMC3383765 DOI: 10.1371/journal.pone.0039363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/19/2012] [Indexed: 01/25/2023] Open
Abstract
Regulation of iron homeostasis and the inflammatory response are tightly linked to protect the host from infection. Here we investigate how imbalanced systemic iron homeostasis in a murine disease model of hereditary hemochromatosis (Hfe−/− mice) affects the inflammatory responses of the lung. We induced acute pulmonary inflammation in Hfe−/− and wild-type mice by intratracheal instillation of 20 µg of lipopolysaccharide (LPS) and analyzed local and systemic inflammatory responses and iron-related parameters. We show that in Hfe−/− mice neutrophil recruitment to the bronchoalveolar space is attenuated compared to wild-type mice although circulating neutrophil numbers in the bloodstream were elevated to similar levels in Hfe−/− and wild-type mice. The underlying molecular mechanisms are likely multifactorial and include elevated systemic iron levels, alveolar macrophage iron deficiency and/or hitherto unexplored functions of Hfe in resident pulmonary cell types. As a consequence, pulmonary cytokine expression is out of balance and neutrophils fail to be recruited efficiently to the bronchoalveolar compartment, a process required to protect the host from infections. In conclusion, our findings suggest a novel role for Hfe and/or imbalanced iron homeostasis in the regulation of the inflammatory response in the lung and hereditary hemochromatosis.
Collapse
|
11
|
Ishizaki S, Kasuya Y, Kuroda F, Tanaka K, Tsuyusaki J, Yamauchi K, Matsunaga H, Iwamura C, Nakayama T, Tatsumi K. Role of CD69 in acute lung injury. Life Sci 2012; 90:657-65. [PMID: 22483694 DOI: 10.1016/j.lfs.2012.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/20/2012] [Accepted: 03/06/2012] [Indexed: 12/25/2022]
Abstract
AIMS CD69 is an early activation marker in lymphocytes and an important signal transmitter in inflammatory processes. However, its role in acute lung injury (ALI) is still unknown. We used a lipopolysaccharide (LPS)-induced mouse model of ALI to study the role of macrophage-surface CD69 in this condition. MAIN METHODS We investigated bronchoalveolar lavage fluid (BALF) cell subpopulations, myeloperoxidase levels in lung homogenates, lung pathology, and lung oedema in CD69-deficient (CD69(-/-)) mice 24h after LPS instillation. We also determined cytokine/chemokine expression levels in BALF and macrophage culture supernatant from CD69(-/-) and wild type (WT) mice. Also, we investigated CD69, keratinocyte-derived chemokine (KC) and macrophage inflammatory protein (MIP)-2 localization in the lungs after LPS administration. Furthermore, we examined the effect of anti-CD69 antibody on LPS-induced cytokine/chemokine release from cultured macrophages. KEY FINDINGS Our study shows that intratracheal instillation of LPS-induced neutrophilic infiltration, histopathological changes, myeloperoxidase positivity, and oedema in the lung to a lower degree in CD69(-/-) mice than in WT mice. The immunoreactivities for CD69, KC and MIP2 were induced in the lung of WT mice instilled with LPS and were predominantly localized to the macrophages. Moreover, the cytokine/chemokine expression profile between the two genotypes of cultured macrophages in response to LPS was similar to that observed in the BALF. In addition, anti-CD69 antibody inhibited the LPS-induced cytokine/chemokine expression. SIGNIFICANCE These results suggest that CD69 on macrophages plays a crucial role in the progression of LPS-induced ALI and may be a potentially useful target in the therapy for ALI.
Collapse
Affiliation(s)
- Shunsuke Ishizaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tsukue N, Kato A, Ito T, Sugiyama G, Nakajima T. Acute effects of diesel emission from the urea selective catalytic reduction engine system on male rats. Inhal Toxicol 2010; 22:309-20. [PMID: 20064079 DOI: 10.3109/08958370903307652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Short-term inhalation experiments were performed using Fischer 344 rats exposed to emission from the urea selective catalytic reduction (SCR) diesel engine system to identify health effects and compare them to those of the conventional diesel engine system. Rats were exposed to high-, middle-, or low-concentration emission (dilution ratio 1:29, 1:290, or 1:580) or clean air (control) for 1, 3, or 7 days (6 h/day), under driving conditions at a speed of 1320 rpm and a torque of 840 Nm. For the high-concentration group, the major components of the urea SCR emission were 0.04 mg/m(3) particulate matter (PM) and 0.78 ppm nitrogen dioxide (NO(2)); those of the conventional emission were 0.95 mg/m(3) PM and 0.31 ppm NO(2). The authors evaluated the respiratory effects of each emission on rats. Lymphocytes for 3-day exposure of both emissions significantly increased in bronchoalveolar lavage fluid, but there were slight differences. With an increase in potential antioxidant (PAO), 8-hydroxy-2'-deoxyguanosine for the urea SCR emission was significantly decreased, but that of the conventional emission was highest among all groups and did not show a response to PAO. In lungs, heme oxygenase (HO)-1 and tumor necrosis factor (TNF)-alpha mRNA expressions for the urea SCR emission showed a tendency to increase compared to those of the conventional emission. Thus, gene analysis results suggested that NO(2) from the urea SCR emission affected the expressions of mRNAs in lungs. However, as a whole, the results suggested that the health effects of the urea SCR emission might be less than the conventional emission on rats.
Collapse
Affiliation(s)
- Naomi Tsukue
- Health Effects Research Group, Japan Automobile Research Institute, Tsukuba-city, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
13
|
Nakajima T, Suarez CJ, Lin KW, Jen KY, Schnitzer JE, Makani SS, Parker N, Perkins DL, Finn PW. T cell pathways involving CTLA4 contribute to a model of acute lung injury. THE JOURNAL OF IMMUNOLOGY 2010; 184:5835-41. [PMID: 20385880 DOI: 10.4049/jimmunol.0903238] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute lung injury (ALI) is a frequent pulmonary complication in critically ill patients. We characterized a murine model of LPS-induced ALI, focusing on Th cells. Following LPS administration, bronchoalveolar lavage lymphocytes, neutrophils, IL-6, TNF-alpha, and albumin were increased. Analysis of LPS-induced T cells revealed increased Th cell-associated cytokines (IL-17A, -17F, and -22), as well as increased expression of CD69 (a cell activation marker), Foxp3, and CTLA4 in CD4(+) T cells. Administration of anti-CTLA4 Ab decreased LPS-induced bronchoalveolar lavage albumin and IL-17A, while increasing CD4(+)Foxp3(+) cell number and Foxp3 expression in CD4(+)Foxp3(+) cells. These data suggest that pulmonary LPS administration promotes CD4(+) T cells and that T cell pathways involving CTLA4 contribute to ALI.
Collapse
Affiliation(s)
- Takeshi Nakajima
- Division of Pulmonary and Critical Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Feng T, Yunfeng N, Jinbo Z, Zhipei Z, Huizhong Z, Li L, Tao J, Yunjie W. Single immunoglobulin IL-1 receptor-related protein attenuates the lipopolysaccharide-induced inflammatory response in A549 cells. Chem Biol Interact 2009; 183:442-9. [PMID: 19948160 DOI: 10.1016/j.cbi.2009.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 02/06/2023]
Abstract
The lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4) signaling pathway in alveolar epithelial cells plays an important role in many pathologic processes such as acute lung injury (ALI). The single immunoglobulin IL-1 receptor-related protein (SIGIRR) is an inhibitor of LPS-TLR4 signaling, but its expression and function in alveolar epithelial cells are still unknown. In this study, we examined the expression of SIGIRR in normal human lung tissue using immunohistochemistry, reverse transcription-PCR (RT-PCR) and Western blot and found that SIGIRR was expressed in alveolar epithelial cells. Treatment of an alveolar epithelial cell line, A549, with LPS and we observed a downregulation of SIGIRR mRNA, which returned to normal levels 24h after LPS exposure. A549 cells were then transfected with a SIGIRR eukaryotic expression vector to over-express SIGIRR or, as a control, with an empty vector. Following LPS exposure, the transcriptional activity of NF-kappaB was measured using a dual-luciferase reporter assay system, and the concentration of IL-1beta, TNF-alpha and IL-6 was determined by ELISA, and cell proliferation was measured by MTT. In A549 cells that over-expressed SIGIRR, LPS treatment resulted in a significant decrease in the transcriptional activity of NF-kappaB and cell growth inhibition ratio, as well as lower levels of secreted IL-1beta, TNF-alpha and IL-6. In conclusion, SIGIRR in A549 cells inhibits the transcriptional activity of NF-kappaB and reduces the amount cytokines produced, protecting these cells from acute LPS-induced damage.
Collapse
Affiliation(s)
- Tian Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Forth Military Medical University. Xi'an, Shaanxi, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Philippakis GE, Lazaris AC, Papathomas TG, Zissis C, Agrogiannis G, Thomopoulou G, Nonni A, Xiromeritis K, Nikolopoulou-Stamati P, Bramis J, Patsouris E, Perrea D, Bellenis I. Adrenaline Attenuates the Acute Lung Injury After Intratracheal Lipopolysaccharide Instillation: an Experimental Study. Inhal Toxicol 2008; 20:445-53. [DOI: 10.1080/08958370801903891] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Hansen JS, Larsen ST, Poulsen LK, Nielsen GD. Does lipophilicity per se induce adjuvant effects? Methyl palmitate as model substance does not affect ovalbumin sensitization. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:128-37. [PMID: 17365573 DOI: 10.1080/15287390600755083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Anthopogenically introduced substances and pollutants are suspected to promote sensitization and development of allergic airway diseases, that is, acting as adjuvants. Lipophilicity may serve as an immunological warning signal, promoting adjuvant effects. Whether the lipophilicity of an inhaled compound induces immunomodulatory effects was investigated in a murine inhalation model with the highly lipophilic methyl palmitate (MP) as model substance. First, studies of acute effects following a 1-h exposure of up to 348 mg/m3 MP showed no effects on cell composition in bronchoalveolar lavage (BAL) or on lung function parameters. Thus, MP did not possess irritant or inflammatory properties, which may be a precursive stimulus for adjuvant effects. Second, mice were exposed to aerosols of MP, 6 or 323 mg/m3, for 1 h followed by a 20-min low-dose ovalbumin (OVA) inhalation. OVA only and OVA + Al(OH)3 served as control groups. Exposures were performed 5 times/wk for 2 wk followed by a weekly exposure for 10 wk. Finally, the mice were challenged with a high-dose OVA aerosol for 3 consecutive days. Neither OVA-specific immunoglobulin (Ig) G1, IgE, or IgG2a production, nor inflammatory cells in BAL, nor respiratory patterns were significantly affected in the MP groups. The OVA + Al(OH)3 group had a significantly higher IgG1 and IgE production, as well as higher eosinophil infiltration in the BAL fluid. These studies showed that effects of adjuvants not are necessarily due to their lipophilicity; that is, additional structural properties are required.
Collapse
Affiliation(s)
- Jitka Stilund Hansen
- Airway Allergy and Irritation Group, National Institute of Occupational Health, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
17
|
Balzary RW, Cocks TM. Lipopolysaccharide Induces Epithelium- and Prostaglandin E2-Dependent Relaxation of Mouse Isolated Trachea through Activation of Cyclooxygenase (COX)-1 and COX-2. J Pharmacol Exp Ther 2006; 317:806-12. [PMID: 16464966 DOI: 10.1124/jpet.105.097634] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipopolysaccharide (LPS), a Toll-like receptor (TLR) 4 agonist, causes airway hyperreactivity through nuclear factor-kappaB (NF-kappaB). Because NF-kappaB induces cyclooxygenase-2 (COX-2) to increase synthesis of prostaglandins (PGs), including the potent airway anti-inflammatory and smooth muscle relaxant PGE(2), we investigated whether LPS causes short-term PGE(2)-dependent relaxation of mouse isolated trachea. In rings of trachea contracted submaximally with carbachol, LPS caused slowly developing, epithelium-dependent relaxations that reached a maximum within 60 min. Fluorescence immunohistochemistry revealed TLR4-like immunoreactivity localized predominantly to the epithelium. The LPS antagonist polymixin B; the nonselective COX inhibitor indomethacin; the selective COX-1 and COX-2 inhibitors 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC560) and 4-[5-(4-chlorophenyl)-1-(trifluoromethyl)-1H-pyrazol-1-yl]-benzenesulfonamide (SC236), respectively; the transcription inhibitor actinomycin D; the translation inhibitor cycloheximide; the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imadazole (SB203580); and a combination of the mixed DP/EP1/EP2 receptor antagonist 6-isopropoxy-9-xanthone-2-carboxylic acid (AH6809) and the EP4 receptor antagonist 4'-[3-butyl-5-oxo-1-(2-trifluoromethyl-phenyl)-1-5-dihydro-[1,2,4]triazol-4-ylmethyl]-biphenyl-2-sulfonic acid (3-methyl-thiophene-2-carbonyl)-amide (L-161982) all abolished relaxation to LPS, giving instead slowly developing, small contractions over 60 min. The cytosolic phospholipase A(2) (cPLA(2)) inhibitor 1,1,1-trifluoro-6Z,9Z, 12Z,15Z-heneicosateraen-2-one significantly (p < 0.05) inhibited the relaxation to LPS, whereas the NF-kappaB proteasomal inhibitor Z-Leu-Leu-Leu-aldehyde (MG-132) had no affect on the relaxation in the first 20 min, after which it reversed the response to a contraction. In conclusion, our data indicate that LPS activates airway epithelial TLR4 to cause release of PGE(2) and subsequent EP2 and EP4 receptor-dependent smooth muscle relaxation. Activation of both COX-1 and COX-2 seems to be essential for this novel response to LPS, which also involves cPLA(2), p38 MAPK, NF-kappaB, and an unidentified NF-kappaB-independent, labile regulatory protein.
Collapse
Affiliation(s)
- Rowan W Balzary
- Department of Pharmacology, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
18
|
Spight D, Zhao B, Haas M, Wert S, Denenberg A, Shanley TP. Immunoregulatory effects of regulated, lung-targeted expression of IL-10 in vivo. Am J Physiol Lung Cell Mol Physiol 2005; 288:L251-65. [PMID: 15466252 DOI: 10.1152/ajplung.00122.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of pulmonary inflammation involves an intricate balance of both pro- and anti-inflammatory mediators. Acute lung injury can result from direct pulmonary insults that activate alveolar macrophages to respond with increased cytokine expression. Such cytokine gene expression is mediated in part via NF-κB. IL-10 has been previously identified as an important endogenous anti-inflammatory cytokine in vivo on the basis of inhibiting NF-κB activation; however, the mechanism of this inhibition remains incompletely defined. We hypothesized that IL-10 regulated NF-κB activation in vivo via IκK inhibition. A bitransgenic mouse that allowed for externally regulated, lung-specific human IL-10 overexpression was generated. In the bitransgenic mice, introduction of doxycycline induced lung-specific, human IL-10 overexpression. Acute induction of IL-10 resulted in significant decreases in bronchoalveolar lavage fluid neutrophils (48%, P = 0.03) and TNF (62%, P < 0.01) following intratracheal LPS compared with bitransgenic negative mice. In vitro kinase assays showed this decrease to correlate to diminished lung IκK activity. Furthermore, we also examined the effect of chronic IL-10 overexpression in these transgenic mice. Results show that IL-10 overexpression in lungs of mature mice increased the number of intrapulmonary cells the phenotype of which was skewed toward increased B220+/CD45+ B cells and CD4+ T cells and was associated with increased CC chemokine expression. Thus regulated, lung-specific IL-10 overexpression may have a variety of complex immunologic effects depending on the timing and duration of expression.
Collapse
Affiliation(s)
- Donn Spight
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
19
|
Maris NA, van der Sluijs KF, Florquin S, de Vos AF, Pater JM, Jansen HM, van der Poll T. Salmeterol, a beta2-receptor agonist, attenuates lipopolysaccharide-induced lung inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1122-8. [PMID: 14729506 DOI: 10.1152/ajplung.00125.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipopolysaccharide is ubiquitously present in the environment. To determine the effect of salmeterol, a long-acting beta(2)-receptor agonist, on lipopolysaccharide-induced lung inflammation, mice received lipopolysaccharide (10 microg) intranasally with or without salmeterol intraperitoneally (5 mg/kg) 30 min earlier and 12 h thereafter. Salmeterol dose- and time-dependently inhibited the lipopolysaccharide-induced influx of neutrophils into bronchoalveolar lavage fluid and lung tissue, and these pulmonary neutrophils displayed a reduced expression of CD11b at their surface. To determine the contribution of the salmeterol effect on neutrophil CD11b in the attenuated neutrophil recruitment, we treated mice intranasally exposed to lipopolysaccharide with salmeterol with or without a blocking anti-CD11b antibody. Anti-CD11b profoundly reduced lipopolysaccharide-induced neutrophil influx in bronchoalveolar lavage fluid, an effect that was modestly enhanced by concurrent salmeterol treatment. These data suggest that salmeterol inhibits lipopolysaccharide-induced neutrophil recruitment to the lungs by a mechanism that possibly in part is mediated by an effect on neutrophil CD11b.
Collapse
Affiliation(s)
- Nico A Maris
- Department of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
20
|
Poynter ME, Irvin CG, Janssen-Heininger YMW. A prominent role for airway epithelial NF-kappa B activation in lipopolysaccharide-induced airway inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6257-65. [PMID: 12794158 DOI: 10.4049/jimmunol.170.12.6257] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To reveal the causal role of airway epithelial NF-kappaB activation in evoking airway inflammation, a transgenic mouse was created expressing a mutant version of the inhibitory protein I-kappaBalpha. This I-kappaBalpha superrepressor (I-kappaBalpha(SR)) acts to repress NF-kappaB activation exclusively in airway epithelial cells, under the transcriptional control of the rat CC10 promoter (CC10-I-kappaBalpha(SR)). Compared with transgene-negative littermates, intranasal instillation of LPS did not induce nuclear translocation of NF-kappaB in airway epithelium of CC10-I-kappaBalpha(SR) transgenic mice. Consequently, the influx of neutrophils into the airways and secretion of the NF-kappaB-regulated neutrophilic chemokine, macrophage-inflammatory protein-2, and the inflammatory cytokine, TNF-alpha, were markedly reduced in CC10-I-kappaBalpha(SR) mice relative to the transgene-negative mice exposed to LPS. Despite an inability to activate NF-kappaB in airway epithelium, resident alveolar macrophages from transgene-positive mice were capable of activating NF-kappaB in a manner indistinguishable from transgene-negative mice. These findings demonstrate that airway epithelial cells play a prominent role in orchestrating the airway inflammatory response to LPS and suggest that NF-kappaB signaling in these cells is important for modulating innate immune responses to microbial products.
Collapse
Affiliation(s)
- Matthew E Poynter
- Vermont Lung Center and Department of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
21
|
Domachowske JB, Bonville CA, Easton AJ, Rosenberg HF. Pulmonary eosinophilia in mice devoid of interleukin‐5. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.6.966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Cynthia A. Bonville
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, New York
| | - Andrew J. Easton
- Department of Biology, University of Warwick, Coventry, United Kingdom; and
| | - Helene F. Rosenberg
- Eosinophil Pathoplysiology Section, Laboratory of Host Defenses, NIAID, NIH, Bethesda, Maryland
| |
Collapse
|
22
|
Asti C, Ruggieri V, Porzio S, Chiusaroli R, Melillo G, Caselli GF. Lipopolysaccharide-induced lung injury in mice. I. Concomitant evaluation of inflammatory cells and haemorrhagic lung damage. Pulm Pharmacol Ther 2000; 13:61-9. [PMID: 10799283 DOI: 10.1006/pupt.2000.0231] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intratracheal instillation of lipopolysaccharide (LPS) induces an inflammatory response characterized by infiltration of polymorphonuclear neutrophils (PMNs) into the extracellular matrix and by the release of mediators that play a fundamental role in lung damage. In the present study, we developed a mouse model which allows correlation of the inflammatory response and haemorrhagic tissue injury in the same animal. In particular, the different steps of the inflammatory response and tissue damage were evaluated by the analysis of three parameters: myeloperoxidase (MPO) activity in the parenchyma, reflecting PMNs accumulation into the lung, inflammatory cells count in the bronchoalveolar lavage fluid (BALF), reflecting their extravasation, and total haemoglobin estimation in BALF, a marker of haemorrhagic tissue damage consequent to PMNs degranulation. In our experimental conditions, intra-tracheal administration of 10 microg/mouse of LPS evoked an increase of MPO activity in the lung at 4 h (131%) and 6 h (147%) from endotoxin challenge. A significant increase of PMNs in the BALF was noticed at these times with a plateau between the 12nd and 24th h. PMN accumulation produced a time-dependent haemorrhagic lung damage until 24 h after LPS injection (4 h: +38%; 6 h: +23%; 12 h: +44%; 24 h: +129% increase of haemoglobin concentration in the BALF vs. control). Lung injury was also assessed histopathologically. Twenty-four hours after the challenge, diffuse alveolar haemorrhage, as well as PMN recruitment in the interstitium and alveolus were observed in the LPS group. This model was pharmacologically characterized by pretreatment of LPS-treated mice with antiinflammatory drugs acting on different steps of the <<inflammatory cascade>>. We demonstrated that: a) betamethasone (1, 3, 10, 30 mg/kg p.o.) reduced in a dose-dependent manner the MPO activity, the number of inflammatory cells and, at the same time, lung injury; b) pentoxifylline, a TNFalpha production inhibitor (200 mg/kg i.p.), inhibited PMN extravasation and lung haemorrhage but it was not able to reduce MPO activity in the lung; c) L-680,833, an anti-elastase compound (30 mg/kg po), decreased significantly only the haemorrhagic lung damage; d) indomethacin, a non steroidal antiinflammatory drug (5 mg/kg p.o.), did not show any effect on any of the parameters considered. In conclusion, our in vivo mouse model is a practical alternative to animal models of ARDS (Adult Respiratory Distress Syndrome) recently described and it permits to dissect and to characterize the different steps of PMNs infiltration and, at the same time, the damage caused by their activation.
Collapse
Affiliation(s)
- C Asti
- Section of Pharmacology, DOMPE' S.p.A., Italy
| | | | | | | | | | | |
Collapse
|
23
|
Brandolini L, Asti C, Ruggieri V, Intilangelo A, Pellegrini L, Chiusaroli R, Caselli GF, Bertini R. Lipopolysaccharide-induced lung injury in mice. II. Evaluation of functional damage in isolated parenchyma strips. Pulm Pharmacol Ther 2000; 13:71-8. [PMID: 10799284 DOI: 10.1006/pupt.2000.0232] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary inflammatory diseases are characterized by changes in airway responsiveness. This phenomenon is commonly related to the action of inflammatory mediators produced by infiltrated leukocytes. The aim of this study was to investigate in an ex vivo experimental model the effect of acute instillation of lipopolysaccharide (bacterial endotoxin; LPS) on lung parenchyma contractility. We firstly characterized the responsiveness of isolated murine lung to airway stimuli. Murine parenchymal strips were found to be mainly sensitive to 5-hydroxytryptamine (5-HT) while the cholinergic agonist, methacholine (MCh), evoked a smaller contractile response. 5-HT responsiveness was inhibited by methysergide. No significant parenchymal contraction was evoked by histamine, substance P and bradykinin. Lung responsiveness to 5-HT was significantly reduced by in vivo LPS treatment and this effect was only partially paralleled by leukocyte infiltration. In addition, LPS-induced hyporesponsiveness was significantly inhibited by betamethasone (BMS) or pentoxifylline (PTX) pretreatment suggesting that 5-HT lung hyporesponsiveness could be mediated by LPS-induced inflammatory mediators such as inflammatory cytokines.
Collapse
Affiliation(s)
- L Brandolini
- Section of Pharmacology, DOMPE S.p.A., L'Aquila, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Blackwell TS, Lancaster LH, Blackwell TR, Venkatakrishnan A, Christman JW. Differential NF-kappaB activation after intratracheal endotoxin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L823-30. [PMID: 10516225 DOI: 10.1152/ajplung.1999.277.4.l823] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the relationship between nuclear factor (NF)-kappaB DNA binding activity, cytokine gene expression, and neutrophilic alveolitis in rats after intratracheal (IT) instillation of endotoxin [lipopolysaccharide (LPS)]. NF-kappaB activation in lung tissue mirrored neutrophilic alveolitis after IT LPS instillation, with NF-kappaB activation and neutrophilic influx beginning 2 h after IT LPS doses of 0.01 mg/kg or greater. In lung lavage fluid cells, however, transient NF-kappaB activation was present in alveolar macrophages by 15 min after IT LPS instillation, followed by a second peak of NF-kappaB activation corresponding to the onset on neutrophilic alveolitis. For cytokines thought to be NF-kappaB dependent, two different patterns of mRNA expression were found. Interleukin (IL)-1alpha, IL-1beta, and tumor necrosis factor-alpha showed increased mRNA by 30 min after IT LPS instillation, but IL-6- and cytokine-induced neutrophil chemoattractant mRNAs were not substantially increased until 2 h after IT LPS instillation. Therefore, IT LPS causes differential NF-kappaB activation in air space cells and lung tissue, which likely determines production of key cytokines and directs the evolution of neutrophilic alveolitis.
Collapse
Affiliation(s)
- T S Blackwell
- Division of Allergy, Department of Medicine, Vanderbilt University School of Medicine, Nashville 37232-2650, USA
| | | | | | | | | |
Collapse
|