1
|
Tregub PP, Ibrahimli I, Averchuk AS, Salmina AB, Litvitskiy PF, Manasova ZS, Popova IA. The Role of microRNAs in Epigenetic Regulation of Signaling Pathways in Neurological Pathologies. Int J Mol Sci 2023; 24:12899. [PMID: 37629078 PMCID: PMC10454825 DOI: 10.3390/ijms241612899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
In recent times, there has been a significant increase in researchers' interest in the functions of microRNAs and the role of these molecules in the pathogenesis of many multifactorial diseases. This is related to the diagnostic and prognostic potential of microRNA expression levels as well as the prospects of using it in personalized targeted therapy. This review of the literature analyzes existing scientific data on the involvement of microRNAs in the molecular and cellular mechanisms underlying the development of pathologies such as Alzheimer's disease, cerebral ischemia and reperfusion injury, and dysfunction of the blood-brain barrier.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Alla B. Salmina
- Research Center of Neurology, 125367 Moscow, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Azizidoost S, Farzaneh M. MicroRNAs as a Novel Player for Differentiation of Mesenchymal Stem Cells into Cardiomyocytes. Curr Stem Cell Res Ther 2023; 18:27-34. [PMID: 35466882 DOI: 10.2174/1574888x17666220422094150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is defined as a class of disorders affecting the heart and blood vessels. Cardiomyocytes and endothelial cells play important roles in cardiac regeneration and heart repair. However, the proliferating capacity of cardiomyocytes is limited. To overcome this issue, mesenchymal stem cells (MSCs) have emerged as an alternative strategy for CVD therapy. MSCs can proliferate and differentiate (or trans-differentiate) into cardiomyocytes. Several in vitro and in vivo differentiation protocols have been used to obtain MSCs-derived cardiomyocytes. It was recently investigated that microRNAs (miRNAs) by targeting several signaling pathways, including STAT3, Wnt/β-catenin, Notch, and TBX5, play a crucial role in regulating cardiomyocytes' differentiation of MSCs. In this review, we focused on the role of miRNAs in the differentiation of MSCs into cardiomyocytes.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Keshavarz R, Aghaee-Bakhtiari SH, Pakzad P, Banach M, Sahebkar A. Evaluation of miRNA-27a/b expression in patients with familial hypercholesterolemia. Arch Med Sci 2022; 20:1314-1320. [PMID: 39439685 PMCID: PMC11493071 DOI: 10.5114/aoms/150500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 10/25/2024] Open
Abstract
Introduction We aimed to evaluate the serum level of miRNA-27 expression in patients with familial hypercholesterolemia (FH). Material and methods miRNA-27a/b levels in serum were compared between 39 patients with heterozygous FH (HeFH = 20) and homozygous FH (HoFH = 19), and 20 healthy subjects (control group). The expression level of miRNA-27a/b was measured using real-time PCR. Results miRNA-27a/b expression in heFH patients (fold change: 2.21 ±0.69, p = 0.001) and in the subgroup of hoFH (fold change: 3 ±1.19, p = 0.001) was significantly higher compared to healthy people. In the comparison between HoFH and HeFH, the HoFH group had a significantly higher level of miRNA-27a/b expression (FC: 1.84 ±1.19, p = 0.009). Conclusions We observed higher miRNA-27a/b expression in patients with FH than in healthy individuals. In comparison with HoFH and HeFH groups, the former had a higher expression level of miRNA-27a/b, which indicates the potential of miRNA-27a/b as a candidate marker for the severity of disease in individuals with FH.
Collapse
Affiliation(s)
- Reihaneh Keshavarz
- Department of Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Parviz Pakzad
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maciej Banach
- Nephrology and Hypertension, Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Ionescu RF, Enache RM, Cretoiu SM, Cretoiu D. The Interplay Between Gut Microbiota and miRNAs in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:856901. [PMID: 35369298 PMCID: PMC8965857 DOI: 10.3389/fcvm.2022.856901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
The human microbiota contains microorganisms found on the skin, mucosal surfaces and in other tissues. The major component, the gut microbiota, can be influenced by diet, genetics, and environmental factors. Any change in its composition results in pathophysiological changes that can further influence the evolution of different conditions, including cardiovascular diseases (CVDs). The microbiome is a complex ecosystem and can be considered the metagenome of the microbiota. MicroRNAs (miRNAs) are speculated to interact with the intestinal microbiota for modulating gene expressions of the host. miRNAs represent a category of small non-coding RNAs, consisting of approximately 22 nucleotides, which can regulate gene expression at post-transcriptional level, by influencing the degradation of mRNA and modifying protein amounts. miRNAs display a multitude of roles, being able to influence the pathogenesis and progression of various diseases. Circulating miRNAs are stable against degradation, due to their enclosure into extracellular vesicles (EVs). This review aims to assess the current knowledge of the possible interactions between gut microbiota, miRNAs, and CVDs. As more scientific research is conducted, it can be speculated that personalized patient care in the future may include the management of gut microbiota composition and the targeted treatment against certain expression of miRNAs.
Collapse
Affiliation(s)
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- *Correspondence: Sanda Maria Cretoiu ;
| | - Dragos Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| |
Collapse
|
5
|
Natrus L, Labudzynskyi D, Muzychenko P, Chernovol P, Klys Y. Plasma-derived exosomes implement miR-126-associated regulation of cytokines secretion in PBMCs of CHF patients in vitro. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022066. [PMID: 35775773 PMCID: PMC9335432 DOI: 10.23750/abm.v93i3.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/05/2022]
Abstract
Background The investigation of regulatory effects of intra-exosomal compounds, especially microRNAs, has promising therapeutic prospects in the treatment of numerous diseases, including cardiovascular disorders. In this study, we investigated the effect of healthy donors` plasma exosomes (HDPE) on the production of cytokines by PBMC cells of patients with congestive heart failure (CHF) and showed the integral role of miRNA-126 in CHF-mediated changes of mononuclear paracrine secretion. Methods Peripheral blood mononuclear cells (PBMСs) were isolated from a peripheral blood of fifteen patients with CHF (age, 66,8±9,8 years; left ventricular ejection fraction, 44±19%). The concentration of cytokines (IL-10, ICAM-1, VEGF-A, TNF-α and MCP-1) in culture medium and PBMCs was measured by ELISA. The level of miRNA-126 expression in PBMCs was performed by real-time PCR. Results Dramatic increase of ICAM-1 level in activated PBMCs of CHF patients, as well as an increase of the IL-10, ICAM-1 and TNF-α levels in the culture medium was observed. It was accompanied by CHF-related miRNA-126 overexpression in PBMCs. HDPE treatment distinguished by a tendency to reduction in miRNA-126 expression by CHF PBMCs and correlated with upregulation of IL-10, ICAM-1, TNF-α and MCP-1 with normalization of cytokines secretion. Conclusions The altered paracrine secretion of cytokines by CHF PBMCs and miRNA-126 overexpression in vitro was found. HDPE treatment modulated production and secretion of most of studied cytokines by CHF PBMCs in vitro. The experimental application of exosomes for the modulation of paracrine secretion and PBMCs cellular functions may be promising for CVD therapy, including endothelial dysfunction and CHF.
Collapse
Affiliation(s)
- Larysa Natrus
- Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro Labudzynskyi
- Palladin Institute of Biochemistry of National Academy of Science of Ukraine, Kyiv, Ukraine
| | | | | | - Yuliia Klys
- Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|