1
|
Wang Z, Li Y, Wu L, Guo Y, Yang G, Li X, Shi X. Rosiglitazone-induced PPARγ activation promotes intramuscular adipocyte adipogenesis of pig. Anim Biotechnol 2023; 34:3708-3717. [PMID: 37149785 DOI: 10.1080/10495398.2023.2206872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Intramuscular fat (IMF) positively influences various aspects of meat quality, while the subcutaneous fat (SF) has negative effect on carcass characteristics and fattening efficiency. Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation, herein, through bioinformatic screen for the potential regulators of adipogenesis from two independent microarray datasets, we identified that PPARγ is a potentially regulator between porcine IMF and SF adipogenesis. Then we treated subcutaneous preadipocytes (SA) and intramuscular preadipocytes (IMA) of pig with RSG (1 µmol/L), and we found that RSG treatment promoted the differentiation of IMA via differentially activating PPARγ transcriptional activity. Besides, RSG treatment promoted apoptosis and lipolysis of SA. Meanwhile, by the treatment of conditioned medium, we excluded the possibility of indirect regulation of RSG from myocyte to adipocyte and proposed that AMPK may mediate the RSG-induced differential activation of PPARγ. Collectively, the RSG treatment promotes IMA adipogenesis, and advances SA lipolysis, this effect may be associated with AMPK-mediated PPARγ differential activation. Our data indicates that targeting PPARγ might be an effective strategy to promote intramuscular fat deposition while reduce subcutaneous fat mass of pig.
Collapse
Affiliation(s)
- Zhaolu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Youlei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Lingling Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Yuan Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| |
Collapse
|
2
|
Ahn JS, Son GH, Kwon EG, Chung KY, Jang SS, Kim UH, Song JY, Lee HJ, Park BK. Intramuscular fat formation in fetuses and the effect of increased protein intake during pregnancy in Hanwoo cattle. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:818-837. [PMID: 37970512 PMCID: PMC10640954 DOI: 10.5187/jast.2023.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 11/17/2023]
Abstract
Understanding adipocyte development in fetus during bovine pregnancy is important for strengthening fattening technology. Additionally, nutritional level of dams during pregnancy has the potential to improve offspring growth and fat development. The purpose of this study is to evaluate the intramuscular adipocyte development and expression level of related genes in bovine fetus, and the effect of increased crude protein (CP) intake during pregnancy on the growth performance and carcass characteristics of male offspring. Eighty six pregnant Hanwoo cows (average body weight, 551.5 ± 51.3 kg, age 5.29 ± 0.61 y) were used. Fetuses were collected at 90, 180 and 270 d of gestation from 18 pregnant Hanwoo cows. The remaining 68 pregnant cows were randomly assigned to 2 feeding groups. The control (CON) group was provided the standard protein diet (n = 34), and treatment (TRT) group was provided a diet with a 5% increase in CP intake (n = 34). Male offspring were divided into two groups according to protein treatment of the pregnant cows: CON male offspring (CON-O) and TRT male offspring (TRT-O). Intramuscular adipocytes were found in the fetal skeletal muscle after 180 days of gestation. Male calf's birth weight increased in the TRT group compared to that in the CON group (p < 0.002). The final body weight (p < 0.003) and average daily gain (p < 0.019) of male offspring were significantly higher in TRT-O than in CON-O. The feed conversion ratio was also improved by 10.5% in TRT-O compared to that in CON-O (p < 0.026). Carcass weight was significantly higher in the TRT-O group than that in the CON-O group (p < 0.003), and back fat was thicker in the TRT-O group (p = 0.07). The gross receipts and net income were higher in TRT-O than in CON-O (p < 0.04). Thus, fetal intramuscular fat can be formed from the mid-gestation period, and increased CP intake during pregnancy can increase net income by improving the growth and carcass weight of male offspring rather than intramuscular fat.
Collapse
Affiliation(s)
- Jun Sang Ahn
- Hanwoo Research Institute, National
Institute of Animal Science, RDA, Pyeongchang 25340,
Korea
| | - Gi Hwal Son
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| | - Eung Gi Kwon
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| | - Ki Yong Chung
- Department of Beef Science, Korea National
College of Agriculture and Fisheries, Jeonju 54874,
Korea
| | - Sun Sik Jang
- Hanwoo Research Institute, National
Institute of Animal Science, RDA, Pyeongchang 25340,
Korea
| | - Ui Hyung Kim
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| | | | - Hyun Jeong Lee
- Hanwoo Research Institute, National
Institute of Animal Science, RDA, Pyeongchang 25340,
Korea
| | - Byung Ki Park
- Department of Animal Science, Kangwon
National University, Chunchoen 24341, Korea
| |
Collapse
|
3
|
Lakshminarayana L, Veeraraghavan V, Gouthami K, Srihari R, Chowdadenahalli Nagaraja P. Effect of Abutilon indicum (L) Extract on Adipogenesis, Lipolysis and Cholesterol Esterase in 3T3-L1 Adipocyte Cell Lines. Indian J Clin Biochem 2023; 38:22-32. [PMID: 36684487 PMCID: PMC9852410 DOI: 10.1007/s12291-022-01022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/06/2022] [Indexed: 01/25/2023]
Abstract
Abutilon indicum (L) is an Indian traditional plant used for the treatment of diabetes and heart diseases. The present study is to evaluate the functional of A. indicum leaf extract as insulin like character to inhibit lipolysis and stimulates Adipogenesis activity. The ability of the A. indicum leaf extract in anti-obesity effect of Adipogenesis, lipolysis and cholesterol esterase functions can be predicted by using 3T3-L1 adipocyte cell lines. Substances were isolated from A. indicum leaves and the double filtered crude sample were used for Adipogenesis, lipolysis and cholesterol esterase activity using 3T3-L1 adipocytes at different concentrations. We used differential media-I, differential media-II and maintenance media (MM1) at concentrations of 20, 40, 60, 80, 100, 200 and 400 µg/mL respectively. In addition to the extract, there is a significance increase in glycerol release (p < 0.001) compared with crude and reference compounds. Cholesterol esterase activity predicts the IC50 = 27.11 µg/mL of orlistat positive control compare with IC50 = 8.158 µg/mL of crude extract. Based on the observation, A. indicum leaf extract can promotes lipolysis and differentiated adipocytes. It is potentially used as adjuvant in the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Lavanya Lakshminarayana
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064 India
| | - V. Veeraraghavan
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064 India
| | - Kuruvalli Gouthami
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064 India
| | - Renuka Srihari
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bangalore, 560012 India
| | | |
Collapse
|
4
|
Jin CL, Zeng HR, Xie WY, Gao CQ, Yan HC, Wang XQ. Dietary supplementation with pioglitazone hydrochloride improves intramuscular fat, fatty acid profile, and antioxidant ability of thigh muscle in yellow-feathered chickens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:665-671. [PMID: 31583700 DOI: 10.1002/jsfa.10062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Muscle fat content and fatty acid composition play an important role in poultry flavor and taste. To investigate the effects of pioglitazone hydrochloride (PGZ) on growth performance and thigh muscle quality in yellow-feathered chickens, 360 female chickens were randomly divided into three groups and treated with three doses of PGZ (0, 7.5, and 15 mg kg-1 ) for 28 days. Each group had six replicates of 20 chickens. RESULTS The results showed that dietary supplementation with 15 mg kg-1 PGZ increased average daily feed intake (ADFI) and the average daily gain (ADG) from 0 to 14 days. Furthermore, the triglyceride (TG) level was decreased by 15 mg kg-1 PGZ, whereas the eviscerated yield was increased. The relative weight of the heart and kidneys showed a linear increase with dietary PGZ supplementation, and the drip loss of the thigh muscle was significantly decreased by 15 mg kg-1 PGZ supplementation. Moreover, a* value, intramuscular fat (IMF), and polyunsaturated fatty acids (PUFAs) showed a linear increase, and pH24 h and drip loss showed a quadratic influence with the levels of PGZ supplementation. In particular, the PUFA proportion was increased by 7.63% and 9.14% in the 7.5 mg kg-1 PGZ and 15 mg kg-1 PGZ groups, respectively. Additionally, 15 mg kg-1 of PGZ increased the total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX ) activity. CONCLUSION In summary, 15 mg kg-1 PGZ has substantial effects on growth performance and meat quality, particularly by decreasing drip loss and increasing IMF content, PUFA proportions, and antioxidant ability. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Huan-Ren Zeng
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Wen-Yan Xie
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
5
|
Yaribeygi H, Simental-Mendía LE, Barreto GE, Sahebkar A. Metabolic effects of antidiabetic drugs on adipocytes and adipokine expression. J Cell Physiol 2019; 234:16987-16997. [PMID: 30825205 DOI: 10.1002/jcp.28420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Several classes of antidiabetic agents have been developed that achieve their hypoglycemic outcomes via various molecular mechanisms. Adipose tissue is a major metabolic and energy-storing tissue and plays an important role in many metabolic pathways, including insulin signaling and insulin sensitivity. Adipose tissue monitors and regulates whole body homeostasis via production and release of potent proteins, such as adipokine and adiponectin, into the circulation. Therefore, any agent that can modulate adipocyte metabolism can, in turn, affect metabolic and glucose homeostatic pathways. Antidiabetic drugs are not only recognized primarily as hypoglycemic agents but may also alter adipose tissue itself, as well as adipocyte-derived adipokine expression and secretion. In the current review, we present the major evidence concerning routinely used antidiabetic agents on adipocyte metabolism and adipokine expression.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, México, México
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Jin CL, Wang Q, Zhang ZM, Xu YL, Yan HC, Li HC, Gao CQ, Wang XQ. Dietary Supplementation with Pioglitazone Hydrochloride and Chromium Methionine Improves Growth Performance, Meat Quality, and Antioxidant Ability in Finishing Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4345-4351. [PMID: 29682966 DOI: 10.1021/acs.jafc.8b01176] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work was designed to investigate the synergistic effects of pioglitazone hydrochloride (PGZ) and chromium methionine (CrMet) on meat quality, muscle fatty acid profile, and antioxidant ability of pigs. Pigs in four groups were fed a basic diet or basic diet supplemented with 15 mg/kg of PGZ, 200 μg/kg of CrMet, or 15 mg/kg of PGZ + 200 μg/kg of CrMet. In comparison to the control group, the average daily feed intake, feed/gain ratio, and serum high-density lipoprotein level decreased in the PGZ + CrMet group. Dietary PGZ + CrMet supplementation increased carcass dressing percentage, intramuscular fat, and marbling score. The percentages of C18:1ω-9c, C18:2ω-6c, C18:3ω-3, and polyunsaturated fatty acid (PUFA) in the longissimus thoracis muscle were increased in the PGZ + CrMet group. Greater superoxide dismutase and glutathione peroxidase activities were observed in the PGZ + CrMet group compared to the control group. Collectively, these findings suggested that feed with PGZ and CrMet improved the growth performance and meat quality, especially for PUFA proportions and antioxidant ability.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Qiang Wang
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Zong-Ming Zhang
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Yin-Long Xu
- Guangzhou United Bio-Technology Feed Company, Limited , Guangzhou , Guangdong 510545 , People's Republic of China
| | - Hui-Chao Yan
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Hai-Chang Li
- Department of Surgery, Davis Heart and Lung Research Institute , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Chun-Qi Gao
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Xiu-Qi Wang
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , People's Republic of China
| |
Collapse
|
7
|
Ha J, Kwon S, Hwang JH, Park DH, Kim TW, Kang DG, Yu GE, Park HC, An SM, Kim CW. Squalene epoxidase plays a critical role in determining pig meat quality by regulating adipogenesis, myogenesis, and ROS scavengers. Sci Rep 2017; 7:16740. [PMID: 29196684 PMCID: PMC5711910 DOI: 10.1038/s41598-017-16979-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022] Open
Abstract
In mammals, Squalene epoxidase (SQLE) is an enzyme that converts squalene to 2,3-oxidosqualene, in the early stage of cholesterol generation. Here, we identified single nucleotide polymorphisms (SNPs) in the SQLE gene (c.2565 G > T) by RNA Sequencing from the liver tissue of Berkshire pigs. Furthermore, we found that homozygous GG pigs expressed more SQLE mRNA than GT heterozygous and TT homozygous pigs in longissimus dorsi tissue. Next, we showed that the SNP in the SQLE gene was associated with several meat quality traits including backfat thickness, carcass weight, meat colour (yellowness), fat composition, and water-holding capacity. Rates of myogenesis and adipogenesis induced in C2C12 cells and 3T3-L1 cells, respectively, were decreased by Sqle knockdown. Additionally, the expression of myogenic marker genes (Myog, Myod, and Myh4) and adipogenic marker genes (Pparg, Cebpa, and Adipoq) was substantially downregulated in cells transfected with Sqle siRNA. Moreover, mRNA expression levels of ROS scavengers, which affect meat quality by altering protein oxidation processes, were significantly downregulated by Sqle knockdown. Taken together, our results suggest the molecular mechanism by which SNPs in the SQLE gene can affect meat quality.
Collapse
Affiliation(s)
- Jeongim Ha
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Seulgi Kwon
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Jung Hye Hwang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Da Hye Park
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Tae Wan Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Deok Gyeong Kang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Go Eun Yu
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | | | - Sang Mi An
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Chul Wook Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea.
| |
Collapse
|
8
|
Commonalities in the Association between PPARG and Vitamin D Related with Obesity and Carcinogenesis. PPAR Res 2016; 2016:2308249. [PMID: 27579030 PMCID: PMC4992792 DOI: 10.1155/2016/2308249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
The PPAR nuclear receptor family has acquired great relevance in the last decade, which is formed by three different isoforms (PPARα, PPARβ/δ, and PPAR ϒ). Those nuclear receptors are members of the steroid receptor superfamily which take part in essential metabolic and life-sustaining actions. Specifically, PPARG has been implicated in the regulation of processes concerning metabolism, inflammation, atherosclerosis, cell differentiation, and proliferation. Thus, a considerable amount of literature has emerged in the last ten years linking PPARG signalling with metabolic conditions such as obesity and diabetes, cardiovascular disease, and, more recently, cancer. This review paper, at crossroads of basic sciences, preclinical, and clinical data, intends to analyse the last research concerning PPARG signalling in obesity and cancer. Afterwards, possible links between four interrelated actors will be established: PPARG, the vitamin D/VDR system, obesity, and cancer, opening up the door to further investigation and new hypothesis in this fascinating area of research.
Collapse
|
9
|
Sikkeland J, Sheng X, Jin Y, Saatcioglu F. STAMPing at the crossroads of normal physiology and disease states. Mol Cell Endocrinol 2016; 425:26-36. [PMID: 26911931 DOI: 10.1016/j.mce.2016.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/11/2016] [Accepted: 02/14/2016] [Indexed: 10/24/2022]
Abstract
The six transmembrane protein of prostate (STAMP) proteins, also known as six transmembrane epithelial antigen of prostate (STEAPs), comprises three members: STAMP1-3. Their expression is regulated by a variety of stimuli, including hormones and cytokines, in varied settings and tissues with important roles in secretion and cell differentiation. In addition, they are implicated in metabolic and inflammatory diseases and cancer. Here, we review the current knowledge on the role of STAMPs in both physiological and pathological states.
Collapse
Affiliation(s)
| | - Xia Sheng
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
10
|
Sanada M, Hayashi R, Imai Y, Nakamura F, Inoue T, Ohta S, Kawachi H. 4',6-dimethoxyisoflavone-7-O-β-D-glucopyranoside (wistin) is a peroxisome proliferator-activated receptor γ (PPARγ) agonist that stimulates adipocyte differentiation. Anim Sci J 2016; 87:1347-1351. [PMID: 27071611 DOI: 10.1111/asj.12552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/22/2015] [Accepted: 08/19/2015] [Indexed: 11/27/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that directly activates the expression of adipocyte-specific genes, and is universally accepted as the master regulator for adipocyte differentiation. Using a PPARγ luciferase reporter assay system, we showed that 4',6-dimethoxyisoflavone-7-O-β-D-glucopyranoside (wistin) dose-dependently activates PPARγ. Treatment with wistin enhanced the marker of adipocyte differentiation, such as triglyceride accumulation in 3T3-L1 cells. Real-time quantitative polymerase chain reaction showed that wistin increased the expression of PPARγ2 messenger RNA. Moreover, the addition of wistin upregulated the expression of PPARγ-target genes, aP2 and adiponectin in 3T3-L1 cells. To our knowledge, wistin is the first isoflavonoid O-glycoside that exhibits PPARγ agonist activity.
Collapse
Affiliation(s)
- Matoki Sanada
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| | - Ryuichi Hayashi
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| | - Yoshimasa Imai
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| | - Fumiya Nakamura
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| | - Tomoyo Inoue
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan
| | - Shinji Ohta
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroyuki Kawachi
- Graduate School of Bioscience, Nagahama Institute for Bioscience and Technology, Nagahama, Shiga, Japan.
| |
Collapse
|
11
|
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) has been the focus of intense research because ligands for this receptor have emerged as potent insulin sensitizers used in the treatment of type 2 diabetes. There have been described three PPAR isotypes α, δ and γ which have an integrated role in controlling the expression of genes playing key roles in the storage and mobilization of lipids, in glucose metabolism, in morphogenesis and inflammatory response. Recent advances include the discovery of novel genes that are regulated by PPARγ, which helps to explain how activation of this adipocyte predominant transcription factor regulates glucose and lipid homeostasis. Increased levels of circulating free fatty acids and lipid accumulation in non-adipose tissue have been implicated in the development of insulin resistance. This situation is improved by PPARγ ligands, which promotes fatty acid storage in fat deposits and regulates the expression of adipocyte-secreted hormones that impacts on glucose homeostasis. So the net result of the pleiotropic effects of PPARγ ligands is improvement of insulin sensitivity. This review highlights the roles that PPAR gamma play in the regulation of gene expression of multiple diseases including obesity, diabetes and cancer and highlights the gene isolation transformation role. Further studies are needed for the transformation of PPAR gamma gene in plants and evaluate in animals for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- C Janani
- Department of Plant Science, Bharathidasan University, Tiruchirapalli 620 024, India
| | - B D Ranjitha Kumari
- Department of Plant Science, Bharathidasan University, Tiruchirapalli 620 024, India.
| |
Collapse
|
12
|
Oliveira DM, Chalfun-Junior A, Chizzotti ML, Barreto HG, Coelho TC, Paiva LV, Coelho CP, Teixeira PD, Schoonmaker JP, Ladeira MM. Expression of genes involved in lipid metabolism in the muscle of beef cattle fed soybean or rumen-protected fat, with or without monensin supplementation. J Anim Sci 2014; 92:5426-36. [PMID: 25403202 DOI: 10.2527/jas.2014-7855] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Degree of unsaturation of fatty acids, which is influenced by lipid source and level of metabolism in the rumen, is a major determinant in how dietary lipids affect genes that regulate beef marbling. A total of 28 Red Norte bulls with an initial live weight of 361±32 kg (P>0.05) were used in a completely randomized experimental design to analyze the expression of genes that are involved in lipid metabolism in the longissimus dorsi (LD) when diets contained soybean grain or rumen-protected fat, with or without monensin. Treatments were arranged as a 2×2 factorial, with 4 treatments and 7 replicates per treatment. Half of the animals that received soybean or rumen-protected fat were supplemented with 230 mg head(-1) d(-1) of monensin. Gene expression was analyzed by reverse-transcription quantitative PCR (RT-qPCR). Expression of sterol regulatory element-binding protein-1c (SREBP-1c) in the LD muscle was not affected by lipid source or monensin (P>0.05). There was an interaction effect (P<0.05) between lipid source and monensin for peroxisome proliferator-activated receptor α (PPAR-α) and stearoyl-CoA desaturase (SCD) expression, where greater gene expression was found in animals fed soybean plus monensin and the lower gene expression was found in animals fed rumen-protected fat plus monensin. Expression of lipoprotein lipase (LPL) and fatty acid-binding protein 4 (FABP4) were greater (P<0.05) in the LD muscle of animals fed soybean. Monensin had no effect on LPL and FABP4 expression when soybean without monensin was fed, but when rumen-protected fat was fed, monensin increased LPL expression and decreased FABP4 expression (P<0.05). Linoleic and arachidonic acids had negative correlations (P<0.05) with the expression of PPAR-α, SCD, FABP4, and LPL genes. PPAR-α gene expression was not correlated with SREBP-1c but was positively correlated with SCD, FABP4, LPL, and glutathione peroxidase (GPX1) gene expression (P<0.001). Lipid sources and monensin interact and alter the expression of PPAR-α, SCD, acetyl CoA carboxylase α (ACACA), LPL, FABP4, and GPX1. These changes in gene expression were most associated with arachidonic and α-linolenic acids and the ability of lipid sources and monensin to increase these fatty acids in tissues.
Collapse
Affiliation(s)
- D M Oliveira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - A Chalfun-Junior
- Department of Biology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - M L Chizzotti
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36.570-000
| | - H G Barreto
- Department of Agricultural Sciences, Universidade Federal de Tocantins, Gurupi, Tocantins, Brazil, 77.402-970
| | - T C Coelho
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - L V Paiva
- Department of Chemistry, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - C P Coelho
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - P D Teixeira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - J P Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN 47906
| | - M M Ladeira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| |
Collapse
|
13
|
Bohan AE, Purvis KN, Bartosh JL, Brandebourg TD. The proliferation and differentiation of primary pig preadipocytes is suppressed when cultures are incubated at 37°Celsius compared to euthermic conditions in pigs. Adipocyte 2014; 3:322-32. [PMID: 26317057 DOI: 10.4161/21623945.2014.981434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022] Open
Abstract
Given similarities in metabolic parameters and cardiovascular physiology, the pig is well positioned as a biomedical model for metabolic disease and obesity in humans. Better understanding molecular mechanisms governing porcine adipocyte hyperplasia may provide insight into the regulation of adipose tissue development that is useful both when considering the pig as a commodity and when extrapolating porcine data to human disease. Primary cultures of pig stromal-vascular cells have served as a useful tool for investigating factors that regulate preadipocyte proliferation and differentiation. However, such cultures have generally been maintained at 37°C in vitro despite euthermia being 39°C in pigs. To address potential concerns about the physiological relevance of culturing primary pig preadipocytes under what would be hypothermic conditions in vivo, the objective of this study was to investigate the effect of culture temperature on the proliferation and differentiation of pig preadipocytes in primary culture. Culturing primary preadipocytes at 37 rather than 39°C decreases their proliferation rates based upon cleavage of the tetrazolium salt, MTT (P < 0.001), reduction of resazurin (P < 0.001), and daily cell counts (P < 0.001). Likewise, culturing primary porcine preadipocytes at 37°C suppressed their adipogenic potential based upon monitoring adipogenesis morphologically, biochemically, and via the expression of mRNA encoding adipogenic marker genes. Collectively, these data indicate the proliferation and differentiation of primary pig preadipocytes is suppressed when cultures are incubated at 37°C compared to normal body temperature of pigs. This may confound investigation of factors that impact adipocyte hyperplasia in the pig.
Collapse
|
14
|
Leucaena leucocephala fruit aqueous extract stimulates adipogenesis, lipolysis, and glucose uptake in primary rat adipocytes. ScientificWorldJournal 2014; 2014:737263. [PMID: 25180205 PMCID: PMC4142670 DOI: 10.1155/2014/737263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/25/2022] Open
Abstract
Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro “insulin-like” activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties.
Collapse
|
15
|
Chen X, Feng Y, Yang WJ, Shu G, Jiang QY, Wang XQ. Effects of dietary thiazolidinedione supplementation on growth performance, intramuscular fat and related genes mRNA abundance in the longissimus dorsi muscle of finishing pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1012-20. [PMID: 25049880 PMCID: PMC4093500 DOI: 10.5713/ajas.2012.12722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/26/2013] [Accepted: 02/01/2013] [Indexed: 02/08/2023]
Abstract
The objective of this study was to investigate the effect of dietary supplementation with thiazolidinedione (TZD) on growth performance and meat quality of finishing pigs. In Experiment 1, 80 castrated finishing pigs (Large White×Landrace, BW = 54.34 kg) were randomly assigned to 2 treatments with 5 replicates of 8 pigs each. The experimental pigs in the 2 groups were respectively fed with a diet with or without a TZD supplementation (15 mg/kg). In Experiment 2, 80 castrated finishing pigs (Large White×Landrace, BW = 71.46 kg) were divided into 2 treatments as designed in Experiment 1, moreover, carcass evaluations were performed. The results from Experiment 1 showed that TZD supplementation could significantly decreased the average daily feed intake (ADFI) (p<0.05) during 0 to 28 d, without impairing the average daily gain (ADG) (p>0.05). In Experiment 2, the ADG was significantly increased by TZD supplementation during 14 to 28 d and 0 to 28 d (p<0.05) and the feed:gain ratio (F:G) was significantly decreased by TZD supplementation during 0 to 28 d (p<0.05). Compared with the control group, TZD group had significantly higher serum triglyceride (TG) concentration at 28h and serum high-density lipoprotein (HDL) levels at 14 d (p<0.05). Moreover, there was an apparent improvement in the marbling score (p<0.10) and intramuscular fat (IMF) content (p<0.10) of the longissimus dorsi muscle in pigs treated by TZD supplementation. Real-time RT-PCR analyses demonstrated that pigs of TZD group had higher mRNA abundance of PPARγ coactivator 1 (PGC-1) (p<0.05) and fatty acid-binding protein 3 (FABP3) (p<0.05) than pigs of control group. Taken together, these results suggested that dietary TZD supplementation could improve growth performance and increase the IMF content of finishing pigs through regulating the serum parameters and genes mRNA abundance involved in fat metabolism.
Collapse
Affiliation(s)
- X Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Y Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - W J Yang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - G Shu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Q Y Jiang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - X Q Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
16
|
Hiller B. Recent developments in lipid metabolism in ruminants – the role of fat in maintaining animal health and performance. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an14555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Optimising farm animal performance has long been the key focus of worldwide livestock production research. Advances in the understanding of metabolism/phenotype associations have outlined the central role of the lipid metabolism of farm animals for economically relevant phenotypic traits, such as animal health (immune status, fertility/reproductive capacity, adaptability/metabolic flexibility, robustness, well being) and performance aspects (meat/milk quality and quantity) and have led to an extensive exploitation of lipid metabolism manipulation strategies (e.g. tailored nutritional regimes, alimentary/intravenous fat supplementation, rumen-protected fat feeding, hormone application). This contribution gives an overview of established concepts to tailor animals’ lipid metabolism and highlights novel strategies to expand these application-oriented approaches via improved analysis tools, omics-approaches, cell model systems and systems biology methods.
Collapse
|
17
|
Sikkeland J, Saatcioglu F. Differential expression and function of stamp family proteins in adipocyte differentiation. PLoS One 2013; 8:e68249. [PMID: 23874564 PMCID: PMC3707909 DOI: 10.1371/journal.pone.0068249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/27/2013] [Indexed: 12/19/2022] Open
Abstract
Six transmembrane protein of prostate (Stamp) proteins play an important role in prostate cancer cell growth. Recently, we found that Stamp2 has a critical role in the integration of inflammatory and metabolic signals in adipose tissue where it is highly expressed and regulated by nutritional and metabolic cues. In this study, we show that all Stamp family members are differentially regulated during adipogenesis: whereas Stamp1 expression is significantly decreased upon differentiation, Stamp2 expression is increased. In contrast, Stamp3 expression is modestly changed in adipocytes compared to preadipocytes, and has a biphasic expression pattern during the course of differentiation. Suppression of Stamp1 or Stamp2 expression both led to inhibition of 3T3-L1 differentiation in concert with diminished expression of the key regulators of adipogenesis - CCAAT/enhancer binding protein alpha (C/ebpα) and peroxisome proliferator-activated receptor gamma (Pparγ). Upon Stamp1 knockdown, mitotic clonal expansion was also inhibited. In contrast, Stamp2 knockdown did not affect mitotic clonal expansion, but resulted in a marked decrease in superoxide production that is known to affect adipogenesis. These results suggest that Stamp1 and Stamp2 play critical roles in adipogenesis, but through different mechanisms.
Collapse
Affiliation(s)
- Jørgen Sikkeland
- Department of Biosciences, University of Oslo, Postboks, Oslo, Norway
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Postboks, Oslo, Norway
- * E-mail:
| |
Collapse
|
18
|
Physiological and Nutritional Roles of PPAR across Species. PPAR Res 2013; 2013:807156. [PMID: 23766760 PMCID: PMC3671276 DOI: 10.1155/2013/807156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 11/17/2022] Open
|
19
|
Effect of 2,4-thiazolidinedione on limousin cattle growth and on muscle and adipose tissue metabolism. PPAR Res 2012; 2012:891841. [PMID: 23304114 PMCID: PMC3523600 DOI: 10.1155/2012/891841] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/27/2012] [Indexed: 01/05/2023] Open
Abstract
The main adipogenic transcription factor PPARγ possesses high affinity to 2,4-TZD, a member of the Thiazolidinedione family of insulin-sensitizing compounds used as adipogenic agents. We evaluated 2,4-TZD's effect on bovine growth and PPAR tissue expression. Seventeen Limousin bulls (18 month-old; 350 kg body weight (BW)) were assigned into 2 treatments: control and 2,4-TZD (8 mg/70 kg BW) and were fed until bulls reached 500 kg BW. They were weighed and their blood was sampled. DNA, RNA, and protein were determined in liver; skeletal muscle; subcutaneous (SC), omental, perirenal adipose tissues (AT) to determine protein synthesis rate and cellular size. Expression of PPAR mRNA was measured in liver and muscle (PPARα, -δ, and -γ) and SC adipose tissue (γ) by real-time PCR. No significant differences were found (P > 0.1) in weight gain, days on feed, and carcass quality. Muscle synthesis was greater in controls (P < 0.05); cell size was larger with 2,4-TZD (P < 0.05). PPARα, -δ, and -γ expressions with 2,4-TZD in liver were lower (P < 0.01) than in muscle. No differences were found for PPARγ mRNA expression in SCAT. The results suggest the potential use of 2,4-TZD in beef cattle diets, because it improves AT differentiation, liver, and muscle fatty acid oxidation that, therefore, might improve energy efficiency.
Collapse
|
20
|
Du M, Huang Y, Das AK, Yang Q, Duarte MS, Dodson MV, Zhu MJ. Meat Science and Muscle Biology Symposium: manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J Anim Sci 2012; 91:1419-27. [PMID: 23100595 DOI: 10.2527/jas.2012-5670] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beef cattle are raised for their lean tissue, and excessive fat accumulation accounts for large amounts of waste. On the other hand, intramuscular fat or marbling is essential for the palatability of beef. In addition, tender beef is demanded by consumers, and connective tissue contributes to the background toughness of beef. Recent studies show that myocytes, adipocytes, and fibroblasts are all derived from a common pool of progenitor cells during embryonic development. It appears that during early embryogenesis, multipotent mesenchymal stem cells first diverge into either myogenic or adipogenic-fibrogenic lineages; myogenic progenitor cells further develop into muscle fibers and satellite cells whereas adipogenic-fibrogenic lineage cells develop into the stromal-vascular fraction of skeletal muscle where reside adipocytes, fibroblasts, and resident fibro-adipogenic progenitor cells (the counterpart of satellite cells). Strengthening myogenesis (i.e., formation of muscle cells) enhances lean growth, promoting intramuscular adipogenesis (i.e., formation of fat cells) increases marbling, and reducing intramuscular fibrogenesis (i.e., formation of fibroblasts and synthesis of connective tissue) improves overall tenderness of beef. Because the abundance of progenitor cells declines as animals age, it is more effective to manipulate progenitor cell differentiation at an early developmental stage. Nutritional, environmental, and genetic factors shape progenitor cell differentiation; however, up to now, our knowledge regarding mechanisms governing progenitor cell differentiation remains rudimentary. In summary, altering mesenchymal progenitor cell differentiation through nutritional management of cows, or fetal programming, is a promising method to improve cattle performance and carcass value.
Collapse
Affiliation(s)
- M Du
- Department of Animal Sciences, Washington State University, Pullman 99164, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Ghoreishi S, Rajaian H, Sheykhzade M, Alikhani M, Rahmani H, Hajipour A, Khorvash M, Khodaei H. Pharmacokinetics of pioglitazone, a thiazolidinedione derivative, in male Naeini (Iranian fat-tailed) sheep. JOURNAL OF APPLIED ANIMAL RESEARCH 2012. [DOI: 10.1080/09712119.2012.658061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Cui J, Zeng Y, Wang H, Chen W, Du J, Chen Q, Hu Y, Yang L. The effects of DGAT1 and DGAT2 mRNA expression on fat deposition in fatty and lean breeds of pig. Livest Sci 2011. [DOI: 10.1016/j.livsci.2011.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Kakiuchi-Kiyota S, Arnold LL, Yokohira M, Suzuki S, Pennington KL, Cohen SM. Evaluation of PPARγ agonists on rodent endothelial cell proliferation. Toxicology 2011; 287:91-8. [DOI: 10.1016/j.tox.2011.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
|
24
|
Landim AV, Castanheira M, Fioravanti MCS, Pacheco A, Cardoso MTM, Louvandini H, McManus C. Physical, chemical and sensorial parameters for lambs of different groups, slaughtered at different weights. Trop Anim Health Prod 2011; 43:1089-96. [DOI: 10.1007/s11250-011-9806-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2011] [Indexed: 11/29/2022]
|
25
|
Deiuliis J, Shin J, Murphy E, Kronberg SL, Eastridge ML, Suh Y, Yoon JT, Lee K. Bovine adipose triglyceride lipase is not altered and adipocyte fatty acid-binding protein is increased by dietary flaxseed. Lipids 2010; 45:963-73. [PMID: 20886305 DOI: 10.1007/s11745-010-3476-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/14/2010] [Indexed: 12/25/2022]
Abstract
In this paper, we report the full-length coding sequence of bovine ATGL cDNA and analyze its expression in bovine tissues. Similar to human, mouse, and pig ATGL sequences, bovine ATGL has a highly conserved patatin domain that is necessary for lipolytic function in mice and humans. This suggests that ATGL is functionally intact as a triglyceride lipase in cattle. Tissue distribution of ATGL gene expression was highest in fat and muscle (skeletal and cardiac) tissue, while protein expression was solely detectible in the adipose tissue. The effect of 109 days of flaxseed supplementation on ATGL and adipocyte fatty acid-binding protein (FABP4 or A-FABP, E-FABP or FABP5) expression was examined in Angus steers. Supplemented steers had greater triacylglycerol (TAG) content in the muscle compared with unsupplemented ones. Additionally, supplementation increased A-FABP expression and decreased stearoyl-CoA desaturase 1 (SCD-1) expression in muscle, while total ATGL expression was unaffected. In summary, supplementation of cattle rations with flaxseed increased muscle TAG concentrations attributed in part to increased expression of key enzymes involved in lipid trafficking (A-FABP) and metabolism (SCD-1).
Collapse
Affiliation(s)
- Jeffrey Deiuliis
- Department of Animal Sciences and The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Poulos SP, Dodson MV, Hausman GJ. Cell line models for differentiation: preadipocytes and adipocytes. Exp Biol Med (Maywood) 2010; 235:1185-93. [PMID: 20864461 DOI: 10.1258/ebm.2010.010063] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In vitro models have been invaluable in determining the mechanisms involved in adipocyte proliferation, differentiation, adipokine secretion and gene/protein expression. The cells presently available for research purposes all have unique advantages and disadvantages that one should be aware of when selecting cells. Established cell lines, such as 3T3-L1 cells, are easier and less costly to use than freshly isolated cells, even though freshly isolated cells allow for various comparisons such as the in vitro evaluation of different in vivo conditions that may not be possible using cell lines. Moreover, stem cells, transdifferentiated cells or dedifferentiated cells are relatively new cell models being evaluated for the study of adipocyte regulation and physiology. The focus of this brief review is to highlight similarities and differences in adipocyte models to aid in appropriate model selection and data interpretation for successful advancement of our understanding of adipocyte biology.
Collapse
Affiliation(s)
- Sylvia P Poulos
- The Coca-Cola Company, Research and Technology, Atlanta, GA 30313, USA.
| | | | | |
Collapse
|
27
|
Dodson MV, Jiang Z, Chen J, Hausman GJ, Guan LL, Novakofski J, Thompson DP, Lorenzen CL, Fernyhough ME, Mir PS, Reecy JM. Allied industry approaches to alter intramuscular fat content and composition in beef animals. J Food Sci 2010; 75:R1-8. [PMID: 20492190 DOI: 10.1111/j.1750-3841.2009.01396.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biochemical and biophysical research tools are used to define the developmental dynamics of numerous cell lineages from a variety of tissues relevant to meat quality. With respect to the adipose cell lineage, much of our present understanding of adipogenesis and lipid metabolism was initially determined through the use of these methods, even though the in vitro or molecular environments are far removed from the tissues of meat animals. This concise review focuses on recent cellular and molecular biology-related research with adipocytes, and how the research might be extended to the endpoint of altering red meat quality. Moreover, economic and policy impacts of such in animal production regimens is discussed. These issues are important, not only with respect to palatability, but also to offer enhanced health benefits to the consumer by altering content of bioactive components in adipocytes.
Collapse
Affiliation(s)
- Michael V Dodson
- Dept. of Animal Science, Washington State Univ., Pullman, WA 99164, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shin J, Li B, Davis ME, Suh Y, Lee K. Comparative analysis of fatty acid-binding protein 4 promoters: Conservation of peroxisome proliferator-activated receptor binding sites1. J Anim Sci 2009; 87:3923-34. [DOI: 10.2527/jas.2009-2124] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
29
|
Fang Q, Yin J, Li F, Zhang J, Watford M. Characterization of methionine adenosyltransferase 2beta gene expression in skeletal muscle and subcutaneous adipose tissue from obese and lean pigs. Mol Biol Rep 2009; 37:2517-24. [PMID: 19701798 DOI: 10.1007/s11033-009-9767-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine. Two genes (MAT1A and MAT2A) encode for the catalytic subunit of MAT, while a third gene (MAT2beta) encodes for a regulatory subunit (MAT II beta) that regulates the activity of the MAT2A-encoded isoenzyme and intracellular S-adenosylmethionine levels. Our previous work identified MAT2beta as a candidate gene for intramuscular fat (IMF) deposition in porcine skeletal muscle by microarray technology. Here, we cloned porcine MAT2beta cDNA and compared its expression pattern in subcutaneous adipose tissue and skeletal muscle from obese (Rongchang Breed) and lean (Pig Improvement Company, PIC) pigs (n = 6). The porcine MAT2beta cDNA was 1,800 bp long and encodes for 334 amino acids sharing high similarity with other species. MAT2beta is expressed at a higher level in liver and duodenum, followed by the stomach, fat and longissinus dorsi muscle. As expected, both subcutaneous fat content and IMF content were higher in obese than in lean pigs (both P < 0.01). MAT2beta mRNA abundance was lower in both subcutaneous adipose tissue and skeletal muscle in obese pigs compared with lean pigs (both P < 0.01). MAT II beta protein content was lower in skeletal muscle in obese than in lean pigs (P < 0.05), whereas the opposite was observed in subcutaneous adipose tissue (P < 0.01). These data demonstrated an obesity-related expression variation of the MAT II beta subunit in skeletal muscle and adipose tissue in pigs, and suggest a novel role for the MAT2beta gene in regulation of IMF deposition in skeletal muscle.
Collapse
Affiliation(s)
- Qian Fang
- State Key Laboratory of Animal Nutrition, China Agricultural University, 100193 Beijing, China
| | | | | | | | | |
Collapse
|
30
|
Andersen DC, Jensen L, Schrøder HD, Jensen CH. "The preadipocyte factor" DLK1 marks adult mouse adipose tissue residing vascular cells that lack in vitro adipogenic differentiation potential. FEBS Lett 2009; 583:2947-53. [PMID: 19665021 DOI: 10.1016/j.febslet.2009.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/03/2009] [Indexed: 01/22/2023]
Abstract
Delta-like 1 (Dlk1) is expressed in 3T3-L1 preadipocytes and has frequently been referred to as "the" preadipocyte marker, yet the phenotype of DLK1(+) cells in adipose tissue remains undetermined. Herein, we demonstrate that DLK1(+) cells encompass around 1-2% of the adult mouse adipose stromal vascular fraction (SVF). Unexpectedly, the DLK1(+)SVF population was enriched for cells expressing genes generally ascribed to the vascular lineage and did not possess any adipogenic differentiation potential in vitro. Instead, DLK1(+) cells comprised an immediate ability for cobblestone formation, generation of tube-like structures on matrigel, and uptake of Acetylated Low Density-Lipoprotein, all characteristics of endothelial cells. We therefore suggest that DLK1(+)SVF cells are of a vascular origin and not them-selves committed preadipocytes as assumed hitherto.
Collapse
|
31
|
Effect of level of eicosapentaenoic acid on the transcriptional regulation of Δ-9 desaturase using a novel in vitro bovine intramuscular adipocyte cell culture model. Animal 2009; 3:718-27. [DOI: 10.1017/s1751731109004054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Tong J, Zhu MJ, Underwood KR, Hess BW, Ford SP, Du M. AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. J Anim Sci 2008; 86:1296-305. [PMID: 18344293 DOI: 10.2527/jas.2007-0794] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Marbling, or i.m. fat, is an important factor determining beef quality. Both adipogenesis and hypertrophy of existing adipocytes contribute to enhanced marbling. We hypothesized that the fetal stage is important for the formation of i.m. adipocytes and that AMP-activated protein kinase (AMPK) has a key role in adipogenesis during this stage. The objective of this study was to assess the role of AMPK in adipogenesis in fetal sheep muscle and 3T3-L1 cells. Nonpregnant ewes were randomly assigned to a control (Con, 100% of NRC recommendations, n = 7) or overfed (OF, 150% of NRC, n = 7) diet from 60 d before to 75 d after conception, when the ewes were killed. The fetal LM was collected at necropsy for biochemical analyses. The activity of AMPK was less in the fetal muscle of OF sheep. The expression of peroxisome proliferator-activated receptor (PPAR)gamma, a marker of adipogenesis, was greater in OF fetal muscle compared with Con fetal muscle. To further show the role of AMPK in adipogenesis, we used 3T3-L1 cells. The 3T3-L1 cells were incubated in a standard adipogenic medium for 24 h and 10 d. Activation of AMPK by 5-aminoimidazole-4-car-boxamide-1-beta-d-ribonucleoside dramatically inhibited the expression of PPARgamma and reduced the presence of adipocytes after 10 d of differentiation. Inhibition of AMPK by compound C enhanced the expression of PPARgamma. In conclusion, these data show that AMPK activity is inversely related to adipogenesis in fetal sheep muscle and 3T3-L1 cells.
Collapse
Affiliation(s)
- J Tong
- Department of Animal Science and Interdepartmental Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie 82071, USA
| | | | | | | | | | | |
Collapse
|