1
|
Spicer LJ, Evans JR, Schreiber NB. Hormone regulation of thrombospondin-1 mRNA in porcine granulosa cells in vitro. Anim Reprod Sci 2022; 244:107048. [PMID: 35914333 PMCID: PMC10867812 DOI: 10.1016/j.anireprosci.2022.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
Thrombospondin-1 (THBS1) is involved in the process of angiogenesis and is down-regulated by insulin-like growth factor 1 (IGF1) in porcine granulosa cells (GC), but what other hormones regulate GC THBS1 and its role in follicular growth is unclear. Thus, six experiments were conducted to determine the influence of other hormones on THBS1 gene expression in porcine GC, and to determine if THBS1 mRNA changes during follicular development. For Exp. 1-5, small (1-5 mm) follicles from ovaries of abattoir gilts were aspirated, GC collected and treated with FSH, IGF1, fibroblast growth factor 9 (FGF9), Sonic hedgehog (SHH), estradiol, cortisol, and/or prostaglandin E2 (PGE2). FSH, IGF1 and FGF9 each decreased (P < 0.05) THBS1 mRNA abundance. Alone, PGE2 increased (P < 0.05) THBS1 mRNA abundance. PGE2 significantly attenuated the FSH-induced inhibition of THBS1 mRNA expression. Estradiol, cortisol, and SHH had no effect on THBS1 mRNA abundance. In Exp. 6, small (1-3 mm), medium (4-6 mm) and large (7-14 mm) follicles were aspirated to measure abundance of THBS1 mRNA in GC which did not differ (P > 0.10) between small and medium-sized follicles but was threefold greater (P < 0.05) in large compared to small or medium follicles. We hypothesize that the inhibitory effects of FSH, IGF1 and FGF9 on the antiangiogenic gene THBS1 could contribute to promoting angiogenesis in the developing follicle, while stimulation of THBS1 mRNA by PGE2 may help reduce angiogenesis during the preovulatory period when PGE2 and THBS1 mRNA are at their greatest levels.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - John R Evans
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nicole B Schreiber
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
2
|
Zhao X, Wu Y, Li H, Li J, Yao Y, Cao Y, Mei Z. Comprehensive analysis of differentially expressed profiles of mRNA, lncRNA, and miRNA of Yili geese ovary at different egg-laying stages. BMC Genomics 2022; 23:607. [PMID: 35986230 PMCID: PMC9392330 DOI: 10.1186/s12864-022-08774-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background The development of the ovaries is an important factor that affects egg production performance in geese. Ovarian development is regulated by genes that are expressed dynamically and stage-specifically. The transcriptome profile analysis on ovarian tissues of goose at different egg laying stages could provide an important basis for screening and identifying key genes regulating ovarian development. Results In this study, 4 ovary tissues at each breeding period of pre-laying (PP), laying (LP), and ceased-laying period (CP), respectively, with significant morphology difference, were used for RNA extraction and mRNAs, lncRNAs, and miRNAs comparison in Yili geese. CeRNA regulatory network was constructed for key genes screening. A total of 337, 1136, and 525 differentially expressed DE mRNAs, 466, 925, and 742 DE lncRNAs and 258, 1131 and 909 DE miRNAs were identified between PP and LP, between CP and LP, and between CP and PP groups, respectively. Functional enrichment analysis showed that the differentially expressed mRNAs and non-coding RNA target genes were mainly involved in the cell process, cytokine-cytokine receptor interaction, phagosome, calcium signaling pathway, steroid biosynthesis and ECM-receptor interaction. Differential genes and non-coding RNAs, PDGFRB, ERBB4, LHCGR, MSTRG.129094.34, MSTRG.3524.1 and gga-miR-145–5p, related to reproduction and ovarian development were highly enriched. Furthermore, lncRNA-miRNA-mRNA regulatory networks related to ovary development were constructed. Conclusions Our study found dramatic transcriptomic differences in ovaries of Yili geese at different egg-laying stages, and a differential lncRNA-miRNA-mRNA regulatory network related to cell proliferation, differentiation and apoptosis and involved in stromal follicle development were established and preliminarily validated, which could be regarded as a key regulatory pathway of ovarian development in Yili geese. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08774-4.
Collapse
|
3
|
Niknam Z, Samadi M, Ghalibafsabbaghi A, Chodari L. IGF-I combined with exercise improve diabetes-induced vascular dysfunction in heart of male Wistar rats. J Cardiovasc Thorac Res 2021; 14:34-41. [PMID: 35620752 PMCID: PMC9106942 DOI: 10.34172/jcvtr.2021.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction: This research investigates the impact of insulin-like growth factor-I (IGF -I)and exercise on mediators associated with angiogenesis (VEGF-A, TSP-1, and NF-кβ) and capillarization status of the diabetic rats’ hearts.
Methods: Splitting of forty Wistar male rats into five groups occurred as following: control,diabetes, diabetes+IGF-I, diabetes+exercise, and diabetes+exercise+IGF-I.Through intraperitoneal administration of 60 mg/kg streptozotocin, the condition of Type 1diabetes was escalated. After four weeks of treatment with IGF-I (2 mg/kg/day) or treadmill exercise (17 m/min, zero degrees slope, 30 min/day), in the heart, microvascular density and protein levels of VEGF-A, TSP-1, and NF-кβ were determined by H&E staining and ELISA,respectively.
Results: Within the diabetic group, observations present a significant decrease in VEGF-A and MVD levels, whereas an increase in the TSP-1 and NF-Κb levels. While these impacts were reversed by either IGF-I or exercise treatments, simultaneous treatment had synergistic effects. Moreover, among diabetic rats, undesirable histologic alterations of the heart were demonstrated, including myonecrosis, interstitial edema, hemorrhage, and mononuclear immune cell infiltration, whereas treatments improved these changes.
Conclusion: These data manifest that IGF-I and exercise can increase the cardiac angiogenesis of diabetic rats through increasing expression of VEGF-A, and decreasing TSP-1 and NF-кβproteins level, also can improve myocardial tissue damages.
Collapse
Affiliation(s)
- Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mahrokh Samadi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences , Urmia, Iran
| | | | - leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Spicer LJ. Wingless-type mouse mammary tumor virus integration site regulation of bovine theca cells. J Anim Sci 2021; 99:6309027. [PMID: 34166505 DOI: 10.1093/jas/skab197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 11/14/2022] Open
Abstract
Ovarian paracrine mediation by components of the wingless-type mouse mammary tumor virus integration site ligands (WNT1 to 11) and their receptors, frizzled family members (FZD1 to 10), has been proposed. Secreted truncated forms of FZD proteins (e.g., secreted frizzled-related protein 4 [SFRP4]) block the action of WNT ligands. Dickkopf-1 (DKK1) is another WNT antagonist, and R-spondin-1 (RSPO1) is one of a group of four secreted proteins that enhance WNT/β-catenin signaling. Our hypothesis was that granulosa cells signal theca cells (TCs) via SFRP4, DKK1, RSPO1, and WNT secretion to regulate TC differentiation and proliferation. Therefore, in vitro experiments were conducted to study the effects of WNT family member 3A (WNT3A), WNT5A, RSPO1, DKK1, insulin-like growth factor 1 (IGF1), bone morphogenetic protein 7 (BMP7), Indian hedgehog (IHH), and fibroblast growth factor 9 (FGF9) on bovine TC proliferation and steroidogenesis. TCs of large (8 to 20 mm) and small (3 to 6 mm) follicles were collected from bovine ovaries; TC monolayers were established in vitro and treated with various doses of recombinant human WNT3A, WNT5A, RSPO1, DKK1, IGF1, FGF9, BMP7, IHH, and/or ovine luteinizing hormone (LH) in serum-free medium for 48 h. In experiment 1, using LH-treated TC, IGF1, IHH, and WNT3A increased (P < 0.05) cell numbers and androstenedione production, whereas WNT3A and BMP7 inhibited (P < 0.05) progesterone production. In experiment 2, FGF9 blocked (P < 0.05) the WNT3A-induced increase in androstenedione production in LH plus IGF1-treated TC. In experiment 3, RSPO1 further increased (P < 0.05) LH plus IGF1-induced progesterone and androstenedione production. In experiment 4, SFRP4 and DKK1 alone had no significant effect on TC proliferation or progesterone production of large-follicle TC but both blocked the inhibitory effect of WNT5A on androstenedione production. In contrast, DKK1 alone inhibited (P < 0.05) small-follicle TC androstenedione production whereas SFRP4 was without effect. We conclude that the ovarian TC WNT system is functional in cattle, with WNT3A increasing proliferation and androstenedione production of TC.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
5
|
Wu Y, Xiao H, Pi J, Zhang H, Pan A, Pu Y, Liang Z, Shen J, Du J. The circular RNA aplacirc_13267 upregulates duck granulosa cell apoptosis by the apla-miR-1-13/THBS1 signaling pathway. J Cell Physiol 2020; 235:5750-5763. [PMID: 31970783 DOI: 10.1002/jcp.29509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/09/2020] [Indexed: 12/31/2022]
Abstract
Follicle development is a key factor that determines the reproductive performance of poultry. The existing evidence suggests that circular RNAs (circRNAs) play an important role in a variety of biological processes, especially in posttranscriptional regulation, but the regulatory mechanism of circRNAs in duck follicle development has rarely been reported. To better explore the molecular mechanism of follicle development in ducks, we sequenced and analyzed the follicular circRNAs; 4,204 circRNAs were predicted in the duck follicles. Fourteen circRNAs were differentially expressed between the white follicles and yellow follicles. The results of our studies showed that aplacirc_013267 promoted cell apoptosis in duck GCs. Moreover, a bioinformatics prediction analysis demonstrated that aplacirc_013267 was involved in a circRNA-miRNA-mRNA coexpression network and was observed to sponge two follicle-related miRNAs by a luciferase activity assay. Furthermore, we found that overexpression of aplacirc_013267 significantly increased thrombospondin-1 (THBS1) expression and downregulated granulosa cell apoptosis. The mechanistic study showed that aplacirc_013267 directly binds to and inhibits apla-mir-1-13; then, aplacirc_013267 increases the expression of THBS1 and upregulates granulosa cell apoptosis. Taken together, our findings demonstrate that circRNAs have potential effects in duck ovarian follicles and that circRNAs may represent a new avenue to understand follicular development.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Wuhan, China
| | - Hongwei Xiao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
6
|
Li Q, Hu S, Wang Y, Deng Y, Yang S, Hu J, Li L, Wang J. mRNA and miRNA Transcriptome Profiling of Granulosa and Theca Layers From Geese Ovarian Follicles Reveals the Crucial Pathways and Interaction Networks for Regulation of Follicle Selection. Front Genet 2019; 10:988. [PMID: 31708963 PMCID: PMC6820619 DOI: 10.3389/fgene.2019.00988] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Follicle development is characterized by the recruitment, growth, selection, and dominance of follicles, and follicle selection determines the lifetime reproductive performance. However, in birds, the molecular mechanisms underlying follicle selection still remain elusive. This study analyzed genome-wide changes in the mRNA and miRNA expression profiles in both the granulosa and theca layers of geese ovarian follicles before selection (4–6- and 8–10-mm follicles) and after selection (F5). The sequencing results showed that a higher number of both differentially expressed (DE) mRNAs and DE miRNAs were identified between 8–10-mm and F5 follicles compared with those between the 4–6- and 8–10-mm follicles, especially in the granulosa layer. Moreover, a Short Time-series Expression Miner analysis identified a large number of DE mRNAs and DE miRNAs that are associated with follicle selection. The functional enrichment analysis showed that DE genes in the granulosa layer during follicle selection were mainly enriched in five pathways related to junctional adhesion and two pathways associated with lipid metabolism. Additionally, an interaction network was constructed to visualize interactions among protein-coding genes, which identified 53 junctional adhesion- and 15 lipid regulation-related protein-coding genes. Then, a co-expression network between mRNAs and miRNAs in relation to junctional adhesion was also visualized and mainly included acy-miR-2954, acy-miR-218, acy-miR-2970, acy-miR-100, acy-miR-1329, acy-miR-199, acy-miR-425, acy-miR-181, and acy-miR-147. Furthermore, miRNA–mRNA interaction pairs related to lipid regulation were constructed including acy-miR-107, acy-miR-138, acy-miR-130, acy-miR-128, and acy-miR-101 during follicular selection. In summary, these data highlight the key roles of junctional adhesion and lipid metabolism during follicular selection and contribute to a better understanding of the mechanisms underlying follicle selection in birds.
Collapse
Affiliation(s)
- Qin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Poultry Science Institute, Chongqing Academy of Animal Science, Chongqing, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yushi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuang Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Zhu W, Yang M, Shang J, Xu Y, Wang Y, Tao Q, Zhang L, Ding Y, Chen Y, Zhao D, Wang C, Chu M, Yin Z, Zhang X. MiR-222 inhibits apoptosis in porcine follicular granulosa cells by targeting the THBS1 gene. Anim Sci J 2019; 90:719-727. [PMID: 30983045 DOI: 10.1111/asj.13208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/06/2019] [Accepted: 03/17/2019] [Indexed: 12/22/2022]
Abstract
Apoptosis of granulosa cells affects follicular atresia and reproduction and is regulated by miRNAs and the expression of certain genes. For the present study, we investigated the regulatory relationship between microRNA-222 (miR-222) and THBS1 in porcine follicular granulosa cells (pGCs) and its effects on apoptosis to provide empirical data for developing methods to improve pig fecundity. Results revealed that miR-222 promotes the proliferation of pGCs. MiRNA mimics and luciferase reporter assays revealed that miR-222 functions as an anti-apoptotic factor in pGCs. MiR-222 mimics in pGCs result in the upregulation of the anti-apoptotic BCL-2 gene, down-regulation of the proapoptotic caspase-3 gene, and inhibition of apoptosis. MiR-222 inhibitors reduced BCL-2 and had no significant effect on caspase-3. MiR-222 mimics promoted estrogen levels. Inhibition of THBS1 inhibited pGC apoptosis. Transfection of THBS1-siRNA reduced the proapoptotic BAX gene. MiR-222 can directly target the 3'-untranslated region of the THBS1 gene. MiR-222 mimics suppressed THBS1 mRNA and proteins, but these were upregulated by the miR-222 inhibitor. Transfection of THBS1-siRNA resulted in the inhibition of the miR-222 inhibitor, which suggests that miR-222 inhibits pGC apoptosis by targeting THBS1. These findings suggest that miR-222 and THBS1 play important roles in follicular atresia, ovarian development, and female reproduction.
Collapse
Affiliation(s)
- Weihua Zhu
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Min Yang
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinnan Shang
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yiliang Xu
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuanlang Wang
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiangqiang Tao
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yueyun Ding
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yige Chen
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Dongdong Zhao
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Mingxing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zongjun Yin
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaodong Zhang
- Anhui Province Key Laboratory of Animal Genetic Resources Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Schütz LF, Hurst RE, Schreiber NB, Spicer LJ. Transcriptome profiling of bovine ovarian theca cells treated with fibroblast growth factor 9. Domest Anim Endocrinol 2018; 63:48-58. [PMID: 29413902 PMCID: PMC5837950 DOI: 10.1016/j.domaniend.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
We reported previously that fibroblast growth factor 9 (FGF9) acts as an antidifferentiation factor, stimulating proliferation of granulosa cells (GCs) and theca cells (TCs) while suppressing hormone-induced steroidogenesis of these cells. How FGF9 acts to simultaneously suppress steroidogenesis and stimulate proliferation remains to be fully elucidated. Thus, this study was undertaken to clarify the effects of FGF9 on the TC transcriptome. Ovaries were obtained from beef heifers at a local abattoir, TCs were isolated from large antral follicles, and cultured with or without 30 ng/mL of FGF9 for 24 h in the presence of LH and IGF-1. After treatment, total RNA was extracted from TC and processed for microarray using Affymetrix GeneChip Bovine Genome Arrays (n = 4/group). Transcriptome analysis comparing FGF9-treated TC with control TC using 1.3-fold cutoff, and a P < 0.05 significance level identified 355 differentially expressed transcripts, with 164 elements upregulated and 191 elements downregulated by FGF9. The ingenuity pathway analysis (IPA) was used to investigate how FGF9 treatment affects molecular pathways, biological functions, and the connection between molecules in bovine TC. The IPA software identified 346 pathways in response to FGF9 in TC involved in several biological functions and unveiled interesting relationships among genes related to cell proliferation (eg, CCND1, FZD5, and MYB), antioxidation/cytoprotection (eg, HMOX1 and NQO1), and steroidogenesis (eg, CYP11A1 and STAR). Overall, genes, pathways, and networks identified in this study painted a picture of how FGF9 may regulate folliculogenesis, providing novel candidate genes for further investigation of FGF9 functions in ovarian follicular development.
Collapse
Affiliation(s)
- L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - R E Hurst
- Department of Urology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | - N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
9
|
Ervin JM, Schütz LF, Spicer LJ. Current status of the role of endothelins in regulating ovarian follicular function: A review. Anim Reprod Sci 2017; 186:1-10. [PMID: 28967452 DOI: 10.1016/j.anireprosci.2017.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Endothelins (EDN) are a group of vasoactive 21 amino acid peptides reported to play roles in steroidogenesis, folliculogenesis, and ovulation. EDN1, EDN2 and EDN3 have all been shown to affect granulosa cell (GC) function in a variety of mammalians species. Herewithin, the role of EDN in regulating steroidogenesis and ovarian follicular development is reviewed, focusing on the localization and function of EDN and their receptors in ovarian follicular function emphasizing species differences. For example, in single ovulating species such as humans and cattle, in the presence of trophic hormones such as FSH and IGF1, EDN1 and EDN2 significantly inhibited GC estradiol production in 2 of 4 studies, while no effect was observed for GC progesterone production in 2 of 4 studies. In contrast, EDN1 exhibited inhibitory effects on progesterone production by GC in 3 of 3 studies in pigs and 3 of 4 studies in rats. Also, EDN1 inhibited GC estradiol production in 4 of 5 studies in rats. Altogether, these results indicate that EDN are produced by ovarian follicles and are involved in the regulation of steroidogenesis of GC of several mammalian species including humans, cattle, pigs and rats, but that these effects may vary with species and culture condition.
Collapse
Affiliation(s)
- J M Ervin
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States
| | - L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States.
| |
Collapse
|
10
|
Spicer LJ, Schütz LF, Williams JA, Schreiber NB, Evans JR, Totty ML, Gilliam JN. G protein-coupled receptor 34 in ovarian granulosa cells of cattle: changes during follicular development and potential functional implications. Domest Anim Endocrinol 2017; 59:90-99. [PMID: 28040605 PMCID: PMC5357439 DOI: 10.1016/j.domaniend.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/08/2023]
Abstract
Abundance of G protein-coupled receptor 34 (GPR34) mRNA is greater in granulosa cells (GCs) of cystic vs normal follicles of cattle. The present experiments were designed to determine if GPR34 mRNA in granulosa cell [GC] changes during selection and growth of dominant follicles in cattle as well as to investigate the hormonal regulation of GPR34 mRNA in bovine GC in vitro. In Exp. 1, estrous cycles of nonlactating cows were synchronized and then ovariectomized on either day 3-4 or 5-6 after ovulation. GPR34 mRNA abundance in GC was 2.8- to 3.8-fold greater (P < 0.05) in small (1-5 mm) and large (≥8 mm) estrogen-inactive dominant follicles than in large estrogen-active follicles. Also, GPR34 mRNA tended to be greater (P < 0.10) in F2 than F1 follicles on day 3-4 postovulation. In Exp. 2-7, ovaries were collected at an abattoir and GC were isolated and treated in vitro. Expression of GPR34 was increased (P < 0.05) 2.2-fold by IGF1. Tumor necrosis factor (TNF)-α decreased (P < 0.05) the IGF1-induced GPR34 mRNA abundance in small-follicle GC, whereas IGF1 decreased (P < 0.05) GPR34 expression by 45% in large-follicle GC. Treatment of small-follicle GC with either IL-2, prostaglandin E2 or angiogenin decreased (P < 0.05) GPR34 expression, whereas FSH, cortisol, wingless 3A, or hedgehog proteins did not affect (P > 0.10) GPR34 expression. In Exp. 6 and 7, 2 presumed ligands of GPR34, L-a-lysophosphatidylserine (LPPS) and LPP-ethanolamine, increased (P < 0.05) GC numbers and estradiol production by 2-fold or more in small-follicle GC, and this response was only observed in IGF1-treated GC. In conclusion, GPR34 is a developmentally and hormonally regulated gene in GC, and its presumed ligands enhance IGF1-induced proliferation and steroidogenesis of bovine GC.
Collapse
Affiliation(s)
- L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
| | - L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J A Williams
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J R Evans
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - M L Totty
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J N Gilliam
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
11
|
Dentis JL, Schreiber NB, Gilliam JN, Schutz LF, Spicer LJ. Changes in brain ribonuclease (BRB) messenger RNA in granulosa cells (GCs) of dominant vs subordinate ovarian follicles of cattle and the regulation of BRB gene expression in bovine GCs. Domest Anim Endocrinol 2016; 55:32-40. [PMID: 26773365 PMCID: PMC4779677 DOI: 10.1016/j.domaniend.2015.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022]
Abstract
Brain ribonuclease (BRB) is a member of the ribonuclease A superfamily that is constitutively expressed in a range of tissues and is the functional homolog of human ribonuclease 1. This study was designed to characterize BRB gene expression in granulosa cells (GCs) during development of bovine dominant ovarian follicles and to determine the hormonal regulation of BRB in GCs. Estrous cycles of Holstein cows (n = 18) were synchronized, and cows were ovariectomized on either day 3 to 4 or day 5 to 6 after ovulation during dominant follicle growth and selection. Ovaries were collected, follicular fluid (FFL) was aspirated, and GCs were collected for RNA isolation and quantitative polymerase chain reaction. Follicles were categorized as small (1-5 mm; pooled per ovary), medium (5-8 mm; individually collected), or large (8.1-17 mm; individually collected) based on surface diameter. Estradiol (E2) and progesterone (P4) levels were measured by radioimmunoassay (RIA) in FFL. Abundance of BRB messenger RNA (mRNA) in GCs was 8.6- to 11.8-fold greater (P < 0.05) in small (n = 31), medium (n = 66), and large (n = 33) subordinate E2-inactive (FFL E2 < P4) follicles than in large (n = 16) dominant E2-active (FFL E2 > P4) follicles. In the largest 4 follicles, GCs BRB mRNA abundance was negatively correlated (P < 0.01) with FFL E2 (r = -0.65) and E2:P4 ratio (r = -0.46). In experiment 2, GCs from large (8-22 mm diameter) and small (1-5 mm diameter) follicles were treated with insulin-like growth factor 1 (IGF1; 0 or 30 ng/mL) and/or tumor necrosis factor alpha (0 or 30 ng/mL); IGF1 increased (P < 0.05) BRB mRNA abundance, and tumor necrosis factor alpha decreased (P < 0.001) the IGF1-induced BRB mRNA abundance in large-follicle GCs. In experiment 3 to 6, E2, follicle-stimulating hormone, fibroblast growth factor 9, cortisol, wingless 3A, or sonic hedgehog did not affect (P > 0.10) abundance of BRB mRNA in GCs; thyroxine and luteinizing hormone increased (P < 0.05), whereas prostaglandin E2 (PGE2) decreased (P < 0.05) BRB mRNA abundance in small-follicle GCs. Treatment of small-follicle GCs with recombinant human RNase1 increased (P < 0.05) GCs numbers and E2 production. In conclusion, BRB is a hormonally and developmentally regulated gene in bovine GCs and may regulate E2 production during follicular growth in cattle.
Collapse
Affiliation(s)
- J L Dentis
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - J N Gilliam
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L F Schutz
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
12
|
Roychoudhury S, Massanyi P, Slivkova J, Formicki G, Lukac N, Slamecka J, Slama P, Kolesarova A. Effect of mercury on porcine ovarian granulosa cells in vitro. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:839-845. [PMID: 26030690 DOI: 10.1080/10934529.2015.1019805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of this in vitro study was to examine dose-dependent changes in the secretion activity [progesterone (P4) and insulin-like growth factor-I (IGF-I)] of porcine ovarian granulosa cells after experimental mercury (Hg) administration, including its apoptotic potential so as to ascertain the possible involvement of Hg in steroidogenesis. Ovarian granulosa cells were incubated with mercuric chloride [mercury (II) chloride or HgCl2] at the doses 50-250 μg mL(-1) for 18 h and compared with control group without Hg addition. Release of P4 and IGF-I by ovarian granulosa cells was assessed by RIA and apoptosis by TUNEL assay. Observations show that P4 release by granulosa cells was significantly (P < 0.05) inhibited at all the doses, while IGF-I release was not affected at any of the doses used, although a decreasing trend in the release of IGF-I was noted in comparison to control. An increasing trend of apoptosis of granulosa cells was noted, the difference being significant (P < 0.05) only at the dose 130 μg mL(-1) HgCl2, in comparison to control. Obtained data suggest a direct effect of Hg on the release of steroid hormone progesterone but not growth factor IGF-I, and a dose-dependent effect on apoptosis of porcine ovarian granulosa cells. Results indicate the interference of Hg in the pathways of steroidogenesis and apoptosis of porcine ovarian granulosa cells.
Collapse
|
13
|
Evans JR, Schreiber NB, Williams JA, Spicer LJ. Effects of fibroblast growth factor 9 on steroidogenesis and control of FGFR2IIIc mRNA in porcine granulosa cells. J Anim Sci 2014; 92:511-9. [PMID: 24664559 PMCID: PMC10837796 DOI: 10.2527/jas.2013-6989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The objectives of this study were to investigate the effects of fibroblast growth factor 9 (FGF9) on hormone-stimulated porcine granulosa cell proliferation and steroid production and to further elucidate the hormonal and developmental control of FGFR2IIIc gene expression in granulosa cells. Porcine ovaries were collected from a local slaughterhouse and granulosa cells were collected from small to medium (1 to 5 mm) follicles for 5 in vitro studies that were conducted. Cells were cultured for 48 h in 5% fetal calf serum plus 5% porcine serum and then treated with various combinations of FSH, IGF-I, FGF9, Sonic hedgehog (SHH), cortisol, PGE2, and/or wingless-type mouse mammary tumor virus integration site family member 5A (WNT5A) in serum-free medium for an additional 24 or 48 h. Medium was collected for analysis of steroid concentration via RIA, or RNA was collected for gene expression analysis of FGFR2IIIc via quantitative reverse transcription PCR. Fibroblast growth factor 9 stimulated (P < 0.05) IGF-I-induced estradiol production in the presence of FSH and testosterone. However, FGF9 had inconsistent effects on progesterone production, stimulating progesterone production in the presence of FSH and testosterone but inhibiting progesterone production in the presence of IGF-I, FSH, and testosterone. Cell numbers were increased (P < 0.05) by FGF9 in the presence of IGF-I and FSH but not in the presence of FSH and absence of IGF-I. For FGFR2IIIc mRNA studies, granulosa cells were treated with FSH, IGF-I, FGF9, SHH, cortisol, PGE2, or WNT5A. Follicle-stimulating hormone alone had no effect (P > 0.10) whereas IGF-I increased (P < 0.05) FGFR2IIIc mRNA abundance. Cortisol, PGE2, SHH, and WNT5A had no effect (P > 0.10) on FGFR2IIIc gene expression whereas FGF9 in the presence of FSH and IGF-I inhibited (P < 0.05) FGFR2IIIc gene expression. In an in vivo study, granulosa cells from large (7 to 14 mm) follicles had greater (P < 0.05) abundance of FGFR2IIIc mRNA than small (1 to 3 mm) or medium (4 to 6 mm) follicles. In conclusion, IGF-I-induced FGFR2IIIc mRNA may be a mechanism for increased responses to FGF9 in FSH plus IGF-I-treated granulosa cells. Fibroblast growth factor 9 and IGF-I may work together as amplifiers of follicular growth and granulosa cell differentiation by stimulating estradiol production and concomitantly stimulating granulosa cell growth in pigs.
Collapse
Affiliation(s)
- J R Evans
- Department of Animal Science, Oklahoma State University, Stillwater 74078
| | | | | | | |
Collapse
|
14
|
Roychoudhury S, Sirotkin AV, Toman R, Kolesarova A. Cobalt-induced hormonal and intracellular alterations in rat ovarian fragments in vitro. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:971-977. [PMID: 25310813 DOI: 10.1080/03601234.2014.951586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of this in vitro study was to examine dose-dependent changes in the secretion activity (progesterone, 17β-estradiol and insulin-like growth factor-I) of rat ovarian fragments after experimental cobalt (Co) administration including the apoptotic potential of Co on rat ovarian fragments by evaluating the expression of apoptotic markers Bax and caspase-3. Ovarian fragments were incubated with cobalt sulphate (CoSO4.7H2O) at the doses 90, 170, 330 and 500 μg.mL(-1) for 24 h and compared with control group without Co addition. Release of progesterone (P4) 17β-estradiol and insulin-like growth factor-I (IGF-I) by ovarian fragments was assessed by RIA, expression of Bax and caspase-3 by SDS-PAGE and Western blotting. Observations show that P4 release by ovarian fragments was significantly (P < 0.05) inhibited after cobalt sulphate addition at higher doses 170-500 μg.mL(-1) used in the study in comparison to control. However, cobalt sulphate addition did not cause any significant change in the release of 17β-estradiol by ovarian fragments at all the doses used in the study (90-500 μg.mL(-1)) in comparison to control. On the contrary, IGF-I release by ovarian fragments was significantly (P < 0.05) stimulated after cobalt sulphate addition at the lowest dose 90 μg.mL(-1) in comparison to control, while other doses did not cause any significant change. Also, addition of cobalt sulphate decreased the expression of both the apoptotic peptides Bax and caspase-3 at the higher doses 170, 330 and 500 μg.mL(-1), but not at the lowest dose 90 μg.mL(-1) used in the study. Obtained results suggest Co induced (1) inhibition in secretion of steroid hormone progesterone, (2) dose-dependent increase in the release of growth factor IGF-I, and (3) decrease in the expression of markers of apoptosis (Bax and caspase-3) of rat ovarian fragments.
Collapse
|
15
|
Roychoudhury S, Bulla J, Sirotkin AV, Kolesarova A. In vitro changes in porcine ovarian granulosa cells induced by copper. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:625-633. [PMID: 24521407 DOI: 10.1080/10934529.2014.865404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Objective of this in vitro study was to examine the secretion activity (progesterone and insulin-like growth factor I) of porcine ovarian granulosa cells after copper (Cu) addition and to outline a potential intracellular mediator (cyclin B1) of its effects. It also aimed at investigating the apoptotic potential of Cu on porcine ovarian granulosa cells after addition in vitro. Ovarian granulosa cells were incubated with copper sulphate (CuSO4·5H2O) at the doses 0.33, 0.40, 0.50, 1.0 and 2.0 μL mL(-1) for 18 h and compared with control group without Cu addition. Release of progesterone (P4) and insulin-like growth factor I (IGF-I) by granulosa cells was assessed by RIA, expression of cyclin B1 by immunocytochemistry and apoptosis by TUNEL assay. Observations show that P4 release by granulosa cells was inhibited while the release of IGF-I and cyclin B1 was stimulated significantly (P < 0.05) by CuSO4·5H2O addition at the dose 2.0 μL mL(-1). Also, addition of CuSO4.5H2O at the lowest dose used in the study (0.33 μL mL(-1)) significantly (P < 0.05) decreased apoptosis in granulosa cells. In conclusion, results indicate dose dependent effect of Cu on (1) secretion of steroid hormone progesterone and growth factor IGF-I, (2) expression of cyclin B1 as marker of proliferation of porcine ovarian granulosa cells, (3) apoptosis of porcine ovarian granulosa cells and, (4) that the effect of Cu on ovarian cell proliferation could be mediated by IGF-I and cyclin B1. Obtained data suggest interference of Cu in the pathways of proliferation of porcine ovarian granulosa cells through hormonal and intracellular peptide cyclin B1.
Collapse
|
16
|
Abstract
Fibroblast growth factor 9 (FGF9) protein affects granulosa cell (GC) function but is mostly localized to theca cell (TC) and stromal cell of rat ovaries. The objectives of this study were to determine the 1) effects of FGF9 on TC steroidogenesis, gene expression, and cell proliferation; 2) mechanism of action of FGF9 on TCs; and 3) hormonal control of FGF9 mRNA expression in TCs. Bovine ovaries were collected from a local slaughterhouse and TCs were collected from large (8-22 mm) follicles and treated with various hormones in serum-free medium for 24 or 48 h. FGF9 caused a dose-dependent inhibition (P<0·05) of LH- and LH+IGF1-induced androstenedione and progesterone production. Also, FGF9 inhibited (P<0·05) LH+IGF1-induced expression of LHCGR, CYP11A1, and CYP17A1 mRNA (via real-time RT-PCR) in TCs. FGF9 had no effect (P>0·10) on STAR mRNA abundance. Furthermore, FGF9 inhibited dibutyryl cAMP-induced progesterone and androstenedione production in LH+IGF1-treated TCs. By contrast, FGF9 increased (P<0·05) the number of bovine TCs. Abundance of FGF9 mRNA in GCs and TCs was several-fold greater (P<0·05) in small (1-5 mm) vs large follicles. Tumor necrosis factor α and WNT5A increased (P<0·05) abundance of FGF9 mRNA in TCs. In summary, expression of FGF9 mRNA in TCs is developmentally and hormonally regulated. FGF9 may act as an autocrine regulator of ovarian function in cattle by slowing TC differentiation via inhibiting LH+IGF1 action via decreasing gonadotropin receptors and the cAMP signaling cascade while stimulating proliferation of TCs.
Collapse
Affiliation(s)
- N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | |
Collapse
|
17
|
Schreiber NB, Spicer LJ. Effects of fibroblast growth factor 9 (FGF9) on steroidogenesis and gene expression and control of FGF9 mRNA in bovine granulosa cells. Endocrinology 2012; 153:4491-501. [PMID: 22798350 PMCID: PMC3423607 DOI: 10.1210/en.2012-1003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression of fibroblast growth factor-9 (FGF9) is decreased in granulosa cells (GC) of cystic follicles compared with normal dominant follicles in cattle. The objectives of this study were to investigate the effects of FGF9 on GC steroidogenesis, gene expression, and cell proliferation and to determine the hormonal control of GC FGF9 production. GC were collected from small (1-5 mm) and large (8-22 mm) bovine follicles and treated in vitro with various hormones in serum-free medium for 24 or 48 h. In small- and large-follicle GC, FGF9 inhibited (P < 0.05) IGF-I-, dibutyryl cAMP-, and forskolin-induced progesterone and estradiol production. In contrast, FGF9 increased (P < 0.05) GC numbers induced by IGF-I and 10% fetal calf serum. FGF9 inhibited (P < 0.05) FSHR and CYP11A1 mRNA abundance in small- and large-follicle GC but had no effect (P > 0.10) on CYP19A1 or StAR mRNA. In the presence of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, FGF9 also decreased (P < 0.05) pregnenolone production. IGF-I inhibited (P < 0.05) whereas estradiol and FSH had no effect (P > 0.10) on FGF9 mRNA abundance. TNFα and wingless-type mouse mammary tumor virus integration site family member-3A decreased (P < 0.05) whereas T(4) and sonic hedgehog increased (P < 0.05) FGF9 mRNA abundance in control and IGF-I-treated GC. Thus, GC FGF9 gene expression is hormonally regulated, and FGF9 may act as an autocrine regulator of ovarian function by slowing follicular differentiation via inhibiting IGF-I action, gonadotropin receptors, the cAMP signaling cascade, and steroid synthesis while stimulating GC proliferation in cattle.
Collapse
Affiliation(s)
- Nicole B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | |
Collapse
|
18
|
Rao JU, Shah KB, Puttaiah J, Rudraiah M. Gene expression profiling of preovulatory follicle in the buffalo cow: effects of increased IGF-I concentration on periovulatory events. PLoS One 2011; 6:e20754. [PMID: 21701678 PMCID: PMC3119055 DOI: 10.1371/journal.pone.0020754] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 05/10/2011] [Indexed: 11/21/2022] Open
Abstract
The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development.
Collapse
Affiliation(s)
- Jyotsna U. Rao
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Kunal B. Shah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Jayaram Puttaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Medhamurthy Rudraiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
19
|
Padilla J, Simmons GH, Davis JW, Whyte JJ, Zderic TW, Hamilton MT, Bowles DK, Laughlin MH. Impact of exercise training on endothelial transcriptional profiles in healthy swine: a genome-wide microarray analysis. Am J Physiol Heart Circ Physiol 2011; 301:H555-64. [PMID: 21622830 DOI: 10.1152/ajpheart.00065.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While the salutary effects of exercise training on conduit artery endothelial cells have been reported in animals and humans with cardiovascular risk factors or disease, whether a healthy endothelium is alterable with exercise training is less certain. The purpose of this study was to evaluate the impact of exercise training on transcriptional profiles in normal endothelial cells using a genome-wide microarray analysis. Brachial and internal mammary endothelial gene expression was compared between a group of healthy pigs that exercise trained for 16-20 wk (n = 8) and a group that remained sedentary (n = 8). We found that a total of 130 genes were upregulated and 84 genes downregulated in brachial artery endothelial cells with exercise training (>1.5-fold and false discovery rate <15%). In contrast, a total of 113 genes were upregulated and 31 genes downregulated in internal mammary artery endothelial cells using the same criteria. Although there was an overlap of 66 genes (59 upregulated and 7 downregulated with exercise training) between the brachial and internal mammary arteries, the identified endothelial gene networks and biological processes influenced by exercise training were distinctly different between the brachial and internal mammary arteries. These data indicate that a healthy endothelium is indeed responsive to exercise training and support the concept that the influence of physical activity on endothelial gene expression is not homogenously distributed throughout the vasculature.
Collapse
Affiliation(s)
- Jaume Padilla
- Dept. of Biomedical Sciences, E102 Veterinary Medicine, 1600 E. Rollins Rd., Univ. of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Grado-Ahuir JA, Aad PY, Spicer LJ. New insights into the pathogenesis of cystic follicles in cattle: microarray analysis of gene expression in granulosa cells. J Anim Sci 2011; 89:1769-86. [PMID: 21239663 DOI: 10.2527/jas.2010-3463] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ovarian follicular growth and development are regulated by extraovarian and intraovarian factors, which influence granulosa cell proliferation and differentiation. However, the molecular mechanisms that drive follicular growth are not completely understood. Ovarian follicular cysts are one of the most common causes of reproductive failure in dairy cattle. Nevertheless, the primary cause of cyst formation has not been clearly established. A gene expression comparison may aid in elucidating the causes of ovarian cyst disease. Our objective was to identify differentially expressed genes in ovarian granulosa cells between normal dominant and cystic follicles of cattle. Granulosa cells and follicular fluid were isolated from dominant and cystic follicles collected via either ultrasound-guided aspiration from dairy cows (n = 24) or slaughterhouse ovaries from beef cows (n = 23). Hormonal analysis for progesterone, estradiol, and androstenedione in follicular fluid was performed by RIA. Total RNA was extracted and hybridized to 6 Affymetrix GeneChip Bovine Genome Arrays (Affymetrix, Santa Clara, CA). Abundance of mRNA for differentially expressed selected genes was determined through quantitative real-time reverse-transcription PCR. Follicular cysts showed greater (P < 0.05) progesterone, lesser (P < 0.05) estradiol, and no differences (P > 0.10) in androstenedione concentrations compared with noncystic follicles. A total of 163 gene sequences were differentially expressed (P < 0.01), with 19 upregulated and 144 downregulated. From selected target genes, quantitative real-time reverse-transcription PCR confirmed angiogenin, PGE(2) receptor 4, and G-protein coupled receptor 34 genes as upregulated in cystic follicles, and Indian hedgehog protein precursor and secreted frizzled-related protein 4 genes as downregulated in cystic follicles. Further research is required to elucidate the role of these factors in follicular development and cyst formation.
Collapse
Affiliation(s)
- J A Grado-Ahuir
- Department of Animal Science, Oklahoma State University, Stillwater 74078, USA
| | | | | |
Collapse
|
21
|
MCGRAY AJR, GINGERICH T, PETRIK JJ, LAMARRE J. Rapid Insulin-like Growth Factor-1-induced Changes in Granulosa Cell Thrombospondin-1 Expression In Vitro. J Reprod Dev 2011; 57:76-83. [DOI: 10.1262/jrd.10-045h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Kolesarova A, Capcarova M, Sirotkin AV, Medvedova M, Kalafova A, Filipejova T, Kovacik J. In vitro assessment of molybdenum-induced secretory activity, proliferation and apoptosis of porcine ovarian granulosa cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:170-175. [PMID: 21240704 DOI: 10.1080/10934529.2011.532430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Molybdenum (Mo) is an essential trace element and it plays an important role in cell functions. The mechanism of the action of molybdenum in connection with growth factor IGF-I, proliferation-related peptide cyclin B1 and apoptosis-related peptide caspase-3 has not been examined previously in porcine ovarian granulosa cells. The general objective of this in vitro study was to examine the secretory activity of porcine ovarian granulosa cells after experimental Mo administration and to outline the potential intracellular mediators of its effects. Ovarian granulosa cells were incubated with ammonium molybdate for 18 hours: 1.0 mg/mL; 0.5 mg/mL; 0.33 mg/mL; 0.17 mg/mL and 0.09 mg/mL, while the control group received no Mo. The secretion of IGF-I was assessed by RIA and expression of cyclin B1 and caspase-3 by immunocytochemistry. IGF-I release was decreased by Mo addition at the doses 1.0 mg/mL and 0.5 mg/mL. The expression of cyclin B1 was stimulated by Mo addition at all doses ranging from 1.0-0.09 mg/mL. Caspase-3 expression was also stimulated after experimental Mo addition at the doses 1.0 and 0.5 mg/mL. These data contribute to new insights regarding the mechanism of action of Mo on porcine ovarian functions, secretory activity, proliferation and apoptosis of granulosa cells through hormonal and intracellular substances such as are cyclin B1 and caspase-3.
Collapse
Affiliation(s)
- Adriana Kolesarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
23
|
Faulk CK, Pérez-Domínguez R, Webb KA, Holt GJ. The novel finding of four distinct prepro-IGF-I E domains in a perciform fish, Sciaenops ocellatus, during ontogeny. Gen Comp Endocrinol 2010; 169:75-81. [PMID: 20674575 DOI: 10.1016/j.ygcen.2010.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/06/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022]
Abstract
In fishes, insulin-like growth factor-I (IGF-I) stimulates growth and differentiation but also plays a role in a number of other processes including osmoregulation, metabolism, immune response and reproduction. This study presents the cDNA encoding multiple prepro-IGF-I transcripts obtained from red drum, Sciaenopsocellatus, and examines differential expression in select adult tissues and during ontogeny. Four distinct transcripts were sequenced which were identical in the coding region for the signal (132 bp) and mature (204 bp) peptides but differed in the coding region of the E peptide by the exclusion of 117 (Ea-1), 81 (Ea-2) or 36 (Ea-3) bp compared to the 222 bp present in Ea-4. Analysis of the pertinent portion of the genomic sequence of this gene suggests that the transcripts are a result of alternative splicing. This is the first report of the expression of all four known prepro-IGF-I transcripts in a teleost other than a salmonid. The deduced amino acid sequences exhibited 70-95% identity with teleosts and somewhat lower identity to other vertebrates (60-75%). Three of the 4 transcripts (Ea-2, Ea-3, Ea-4) were expressed in the liver, ovary, spleen, gall bladder, brain, red muscle, pancreas and spinal cord of adults. Only the Ea-4 transcript was expressed in adult stomach tissue while no signal was detected in pituitary, retina, intestine, adipose or white muscle. In contrast, all 4 transcripts were expressed throughout ontogeny. The apparent expression of the Ea-1 transcript only during the larval stage may indicate a developmental role for this E peptide in red drum.
Collapse
Affiliation(s)
- Cynthia K Faulk
- The University of Texas at Austin, Marine Science Institute, Port Aransas, TX, United States.
| | | | | | | |
Collapse
|
24
|
Hayashi KG, Ushizawa K, Hosoe M, Takahashi T. Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles. Reprod Biol Endocrinol 2010; 8:11. [PMID: 20132558 PMCID: PMC2833166 DOI: 10.1186/1477-7827-8-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/05/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bovine follicular development is regulated by numerous molecular mechanisms and biological pathways. In this study, we tried to identify differentially expressed genes between largest (F1) and second-largest follicles (F2), and classify them by global gene expression profiling using a combination of microarray and quantitative real-time PCR (QPCR) analysis. The follicular status of F1 and F2 were further evaluated in terms of healthy and atretic conditions by investigating mRNA localization of identified genes. METHODS Global gene expression profiles of F1 (10.7 +/- 0.7 mm) and F2 (7.8 +/- 0.2 mm) were analyzed by hierarchical cluster analysis and expression profiles of 16 representative genes were confirmed by QPCR analysis. In addition, localization of six identified transcripts was investigated in healthy and atretic follicles using in situ hybridization. The healthy or atretic condition of examined follicles was classified by progesterone and estradiol concentrations in follicular fluid. RESULTS Hierarchical cluster analysis of microarray data classified the follicles into two clusters. Cluster A was composed of only F2 and was characterized by high expression of 31 genes including IGFBP5, whereas cluster B contained only F1 and predominantly expressed 45 genes including CYP19 and FSHR. QPCR analysis confirmed AMH, CYP19, FSHR, GPX3, PlGF, PLA2G1B, SCD and TRB2 were greater in F1 than F2, while CCL2, GADD45A, IGFBP5, PLAUR, SELP, SPP1, TIMP1 and TSP2 were greater in F2 than in F1. In situ hybridization showed that AMH and CYP19 were detected in granulosa cells (GC) of healthy as well as atretic follicles. PlGF was localized in GC and in the theca layer (TL) of healthy follicles. IGFBP5 was detected in both GC and TL of atretic follicles. GADD45A and TSP2 were localized in both GC and TL of atretic follicles, whereas healthy follicles expressed them only in GC. CONCLUSION We demonstrated that global gene expression profiling of F1 and F2 clearly reflected a difference in their follicular status. Expression of stage-specific genes in follicles may be closely associated with their growth or atresia. Several genes identified in this study will provide intriguing candidates for the determination of follicular growth.
Collapse
Affiliation(s)
- Ken-Go Hayashi
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Koichi Ushizawa
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Misa Hosoe
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Toru Takahashi
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| |
Collapse
|
25
|
Kolesarova A, Capcarova M, Sirotkin A, Massanyi P. Insulin-Like Growth Factor-I and Progesterone Release by Ovarian Granulosa Cells of Hens after Experimental Lead and Molybdenum Administrations in vitro. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/ijps.2009.890.895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|